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Abstract
The continuous approval of covalent drugs in recent years for the treatment of diseases has led to an increased search for 
covalent agents by medicinal chemists and computational scientists worldwide. In the computational parlance, molecular 
docking which is a popular tool to investigate the interaction of a ligand and a protein target, does not account for the for-
mation of covalent bond, and the increasing application of these conventional programs to covalent targets in early drug 
discovery practice is a matter of utmost concern. Thus, in this comprehensive review, we sought to educate the docking 
community about the realization of covalent docking and the existence of suitable programs to make their future virtual-
screening events on covalent targets worthwhile and scientifically rational. More interestingly, we went beyond the classical 
description of the functionality of covalent-docking programs down to selecting the ‘best’ program to consult with during 
a virtual-screening campaign based on receptor class and covalent warhead chemistry. In addition, we made a highlight on 
how covalent docking could be achieved using random conventional docking software. And lastly, we raised an alert on the 
growing erroneous molecular docking practices with covalent targets. Our aim is to guide scientists in the rational docking 
pursuit when dealing with covalent targets, as this will reduce false-positive results and also increase the reliability of their 
work for translational research.
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Introduction

The accidental discovery of covalent agents and their unique 
ability to induce irreversible and full inhibition of drug tar-
gets has resulted in a paradigm shift in disease treatment 
away from noncovalent therapeutics [1, 2]. This has resulted 
in a considerable advancement in the field of covalent target-
ing, allowing for a better understanding of their inhibitory 
mechanisms and the development of new covalent binders 
for ‘undruggable’ targets [3, 4]. Docking experiment has 
evolved over time and has made a substantial contribution 
to drug development by replicating biological occurrences 
and so providing insights into the molecular and geometri-
cal transitions involved with biomolecular systems [5–10]. 
Molecular docking is a simulation used in structure-based 
rational drug design to discover proper conformations of 
small-molecule ligands and to evaluate the strength of the 
interaction between binary complexes, which typically 

involves a receptor target and one chemical compound [6, 
8, 11]. The prediction of protein–small molecule interac-
tions, commonly using molecular docking, is a crucial step 
in the rational drug discovery process. There are a variety 
of docking tools available to assess the interaction between 
receptor targets and chemical entities. However, most of 
these conventional docking programs lack the intrinsic 
functionality to account for covalent inhibition mechanisms 
between covalently bound complexes and, hence, only focus 
on the docking between two molecules through noncova-
lent interactions. Nevertheless, recent years have witnessed 
the development of docking programs and protocols with 
enhanced functionality to delineate the biophysical interac-
tion between covalently bound complexes [12–14]. Despite 
the establishment of these covalent-docking software/pro-
tocols, the computational drug discovery community has 
experienced limited use of these programs for covalent drug 
discovery applications, majorly due to a lack of technical 
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and methodological approaches to target covalent receptors. 
Hence, by discussing the concepts, technicalities, challenges, 
and identification of ideal covalent-docking tools for virtual-
screening campaigns, we intend to aid the docking commu-
nity in the design of covalent drugs. Finally, as a wake-up 
call to retrospective studies on erroneous covalent drug dis-
covery practices, we aim to sensitize our audience to being 
cautious when dealing with covalent biomolecular systems.

Covalent inhibition in biomolecular system

Covalent inhibition is typically a mechanism in which 
small-molecule compounds reversibly or irreversibly inac-
tivate their targeted protein receptors. Generally, a two-step 
dependent process is required for covalent inhibition (Fig. 1). 
To begin with, an inhibitor forms a reversible association 
with the target enzyme, bringing the inhibitor's chemical 
warhead into close proximity with a specified reactive amino 
acid residue of the enzyme. The second stage involves the 
formation of a covalent link between the inhibitor and the 
enzyme's reactive component [3, 15]. Reversible inhibitors 
are distinguished from covalent inhibitors by the absence 
of the second step [16]. After a length of time, a covalently 
conjugated inhibitor may undergo additional chemical trans-
formations to be released from its target enzyme. Addition-
ally, it may form an irreversible reaction with the target, 
thereby confining the enzyme in an inactive state. Since the 
late nineteenth century, when Frederick Bayer began manu-
facturing aspirin as a painkiller and anti-inflammatory thera-
peutic, the use of chemical entities as covalent inhibitors 
to target functionally essential enzymes in cells has been 
implemented [17]. Although aspirin has been on the market 
since the early twentieth century, its mechanism of action 
was not discovered until the 1970s, when Roth and col-
leagues demonstrated that it irreversibly blocked cyclooxy-
genase-1 (COX1), an enzyme critical for prostaglandin 
formation [18]. On binding with COX1, aspirin covalently 
modifies an active site serine residue through an acetylation 
mechanism, thereby inhibiting its activity (Fig. 2) [19–21]. 
Along with aspirin, acetaminophen was developed in the 
late nineteenth century and soon adopted as a painkiller in 

the clinic. Although its method of action is unknown, the 
electron-rich nature of acetaminophen renders it suscepti-
ble to oxidation, resulting in quinine-like compounds. These 
quinone-like compounds are prone to attack by nucleophilic 
protein/enzyme residues, resulting in protein/enzyme inhibi-
tion [22]. As a result, acetaminophen can be regarded as a 
covalent inhibitor as well. Penicillin is another early-iden-
tified covalent agent. Penicillin's accidental discovery as an 
antibiotic can be considered one of the most momentous 
discoveries in the history of drug development. Numerous 
penicillin analogs have been approved for human use. They 
all have a similar mechanism of action to penicillin and con-
tain a beta-lactam as the chemical warhead. This beta-lactam 
combines with a serine residue in the active site of D-Ala-D-
Ala transpeptidase, which is involved in bacterial cell wall 
production, and so inactivates it, resulting in the disruption 
and lysis of the bacterial cell wall structure [23].

Additional covalent antibiotics include beta-lactamase 
inhibitors such as clavulanic acid [24], sulbactam [25], and 
tazobactam [26]. Although covalent inhibitors have long 
been used to treat intervening human health conditions, 
the concept of covalent inhibition did not gain widespread 
acceptance until the 1970s, when it was discovered that 
many covalent drug metabolites have adverse effects on 
human health. For example, it was discovered that aceta-
minophen's cellular metabolites are hepatotoxic [27, 28]. 
Acetaminophen is oxidized by cytochrome P450 to highly 
reactive quinone intermediates (NAPQI and benzoquinone), 
which undergo covalent alteration when they combine with 
glutathione (GSH) or the sulfhydryl group of cysteine resi-
dues in proteins [16]. Unwanted immunogenic reactions in 
patients may result from nonspecific covalent drug-protein 
adducts. Despite this disadvantage, numerous factors have 
rekindled the pharmaceutical industry's interest in develop-
ing covalent medicines as therapeutic agents. First, there 
were successful covalent medications on the market, such 
as aspirin and penicillin. Second, not all covalent drugs 
become hazardous when metabolically activated. Addition-
ally, certain natural compounds act as covalent inhibitors 
[29]. Furthermore, covalent inhibitors have several advan-
tages over reversible inhibitors, including high target affin-
ity and prolonged residence time in patients. Consequently, 

Fig. 1  Two steps required for covalent inhibition of enzyme
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unwanted pharmacokinetic features can frequently be tol-
erated because the inhibitors' pharmacodynamic properties 
outlast their detectable plasma concentration. On the basis 
of these data, it has been argued that if the reactivity of a 
covalent inhibitor's warhead can be regulated, there should 
be no major problems with employing it therapeutically. As 
a result of these factors, the development of covalent inhibi-
tors has accelerated significantly over the last two decades 
(Table 1 consist of FDA-approved covalent drugs in recent 
years). Covalent inhibitors are generally composed of elec-
trophiles that react with nucleophilic residues in enzymes. 
To date, compounds with a range of electrophilic warheads 

have been found as covalent inhibitors, including halome-
thyl carbonyl, vinyl sulfonyl, phosphonate, aldehyde, ketone, 
vinyl carbonyl, boronic acid, and many more (Table 2) [30]. 
A novel class of inhibitors dubbed "sulfur tethers" has also 
garnered interest due to its potential to covalently conjugate 
cysteines in enzymes [31]. Three steps are typically required 
to build a covalent inhibitor for a given enzyme target. First, 
structural analysis of the target reveals which nucleophile 
(e.g., cysteine, serine) is present in or near a potential bind-
ing pocket. The nucleophile must be unique within that 
protein family; otherwise, selectivity will be low. Second, a 
reversible inhibitor with some potency (IC50 values ranging 

Fig. 2  A Acetylation of Aspirin by COX1. B 3D and 2D presentation of COX1-Aspirin complex after covalent reaction

Table 1  Lists of FDA-approved 
covalent drugs in recent years

No. Covalent drugs Targeted disease Warhead group Date of approval

1 Acalabrutinib Cancer α,β-Unsaturated proparglycamide 10/31/2017
2 Neratinib Cancer α,β-Unsaturated carbonyl 7/17/2017
3 Dacomitinib Cancer α,β-Unsaturated carbonyl 9/27/2018
4 Selinexor Cancer α,β-Unsaturated carbonyl 7/3/2019
5 Zanubrutinib Cancer α,β-Unsaturated carbonyl 11/14/2019
6 Remdesivir COVID-19 Aldehyde 10/22/2020
7 Sotorasib Cancer α,β-Unsaturated carbonyl 5/28/2021
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from M to mM) is identified and its binding manner and 
interactions are elucidated. This inhibitor may be derived 
from previously developed inhibitors for related enzymes. 
Lastly, an electrophilic 'warhead' is placed in a reversible 
inhibitor of interest to react precisely with the enzyme tar-
get's chosen nucleophile. Typically, isosteric substitution and 
analog synthesis are used to generate candidates of active 
covalent inhibitors [32].

Targeted covalent inhibitors and “warhead” 
reactivity

Despite the widespread use of covalent inhibitors in 
therapeutics, medicinal chemists have typically avoided 
developing compounds that permanently alter their target 
receptors [2, 33]. The introduction of a reactive electro-
philic species necessitates the possibility of indiscriminate 
alteration and idiosyncratic toxicity, as has been estab-
lished with some routinely used covalent medicines such 
as acetaminophen [27, 28]. However, these effects are fre-
quently caused by highly reactive metabolites, and with a 
better knowledge of the reactivity requirements for covalent 
inhibitors, interest in the topic has resurged [1]. Indeed, the 
recent establishment of the covalent database (COVPDB) 
from the protein data bank (PDB) has been hailed as a para-
digm shift in the covalent drug development paradigm [30]. 
Unlike prior covalent databases, which lacked covalent 
complexes, the CovPDB has a large number of high-reso-
lution co-crystal structures of biologically relevant covalent 
inhibitors attached to their protein targets. For the curated 
protein–ligand complexes, Gao and his colleagues manu-
ally annotated the covalent inhibitors' chemical structures, 
defined their pre-reactive electrophilic warhead groups, and 
covalent-binding mechanisms with their targets [30].

When compared to typical reversible ligands, covalent 
inhibitors offer various advantages, including extended resi-
dence duration, greater potency, and, when the target residue 
is poorly conserved across the proteome, enhanced selectiv-
ity. Notably, these improvements have been proved to be 
clinically meaningful, and highly specific-targeted covalent 
inhibitors (TCIs) are now being introduced into the market 
[34, 35]. These molecules are invariably dependent on the 
accessibility of oxygen or sulfur atom in residues such as 
serine, threonine, or cysteine found within a small-mole-
cule-binding site. It should be highlighted, however that the 
mere presence of a reactive residue near a ligand-binding 
site does not necessarily justify a covalent method; the tar-
get residue's local chemical environment must be carefully 
assessed to establish its suitability [36, 37]. While cysteine's 
strong nucleophilicity makes it an attractive candidate for the 
development of TCIs, its rarity in proteins limits its potential 
applications; this is exacerbated further by the fact that many Ta
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cysteines are located behind disulfide bridges and, therefore, 
inaccessible for covalent modification [38]. As a result, vari-
ous research groups have lately investigated the design of 
novel warheads capable of interacting with additional nucle-
ophilic amino acid side chains in order to generate irrevers-
ible inhibitors. While this concept is not novel [39, 40], it is 
now possible to evaluate these approaches in the context of 
commercially available covalent medicines. When evaluat-
ing a typical two-stage covalent-binding event, acrylamides 
(the common warhead used for cysteine modification) typi-
cally benefit from relatively quick rates of cysteine modifica-
tion  (kinact) and very low (or non-existent) rates of warhead 
hydrolysis/decomposition  (khyd). As a result, including an 
appropriately placed acrylamide into ligands with poor 
 kon or  koff rates may nevertheless result in functional target 
inhibition. In comparison, non-cysteine residues generally 
exhibit lower  kinact rates, necessitating the use of more reac-
tive warheads. However, increasing reactivity often results 
in increased  khyd rates, necessitating careful tuning of both 
reactivity and noncovalent-binding interactions (thereby 
optimizing  kon and/or  koff) in order to achieve the optimal 
target inhibitory profile [36, 41].

The intrinsic reactivity of warheads can be determined 
experimentally or computationally by employing a nonspe-
cific covalent modifier (glutathione) and a specific covalent 
modifier (cysteine) [37, 42–44]. Additionally, there was 
a report devoted to deciphering the reactivity of a single 
covalent warhead [45]. However, by examining a variety of 
covalent warheads (Table 2 represents 24 common warhead 
groups found with covalent inhibitors) and aminoacids, one 
can have a greater understanding of their relative reactivity. 
To this end, Martin and his colleagues developed an NMR-
based assay for determining the rate of reactivity of amino 
acids with possible covalent warhead formation property 
[37]. The researchers determined the reactivity of a variety 
of commonly known covalent warheads against cysteine and 
serine, the most commonly targeted amino acids. Addition-
ally, a number of other possibly reactive amino acids were 
explored. Interestingly, it was discovered that a covalent 
modifier's reactivity was largely dependent on the amino 
acid residue. When the researchers compared the reactiv-
ity of several covalent compounds (including electrophilic 
warhead benzoxaborole, sulfonyl halide, and acrylamide/
vinyl carbonyl) with cysteine and serine, they discovered 
that the reactivity of the various warheads with both amino 
acid residues followed a very distinct pattern. This is largely 
explained by the fact that serine is a considerably “harder” 
nucleophile than cysteine (as the oxygen nucleophile in Ser 
has a smaller atomic radius than sulfur in Cys and there-
fore its electron cloud is less susceptible to distortion) 
and hence reacts more quickly with “harder” electrophiles 
(benzoxaborole and sulfonyl fluoride). In comparison, it 
was discovered that the acrylamides (12, 15, and 16) are 

softer electrophiles and react more swiftly with the “softer” 
cysteine. Intriguingly, cysteine reacts with these Michael 
acrylamides at a rate that is at least two orders of magnitude 
faster than serine. In the majority of situations, the “hard” or 
“soft” character of the electrophiles was sufficient to deter-
mine the relative reactivity of cysteine and serine. Addition-
ally, it demonstrates how a drug having a covalent warhead 
can be tailored to a specific project. A less reactive chemical 
entity can be used if a covalent chemical entity is found to 
be excessively reactive and exhibits adverse side effects. On 
the other hand, if the covalent warhead is not sufficiently 
reactive to create a covalent bond with the target, a more 
reactive warhead can be chosen [37].

Given the stringent nature of targeted covalent inhibi-
tors, identifying drug leads or candidates is contingent on 
the library being screened. On one side, the choice of the 
appropriate warheads determines the selectivity and gives 
the molecule's fundamental inherent reactivity. On the other 
hand, ultimate reactivity is also influenced by the chemical 
characteristics of nonreactive components, which can be dis-
tinguished prior to the reaction conditions being satisfied [46].

Irreversible warheads can serve as a starting point for 
developing temporary binders; by providing appropriate 
chemical modifications, irreversible warheads' reactivity 
can be altered to make them reversible [47]. Bonatto et al. 
predicted the binding-free energies of reversible covalent 
inhibitors using free energy perturbation procedures and 
evaluated their binding affinity [48]. Fanfrlk and colleagues 
demonstrated the principle of rational design of reversible 
covalent vinylsulfone inhibitors using an enhanced quan-
tum mechanics-based scoring function (QM) [49], whereas 
Schirmeister and co-workers used a hybrid approach combin-
ing quantum mechanics and molecular mechanics (QM/MM) 
for the design of covalent vinyl sulfone-based inhibitors [50].

Covalent docking with covalent‑docking 
programs: methods and drug discovery 
applications

CovDock

A commercially available tool based on the Schrodinger pro-
grams Glide [51] and Prime was introduced by Zhu et al. and 
is referred to as CovDock [52]. The CovDock-VS virtual-
screening mode, which was developed specifically for this 
application, was also implemented [13]. Pre-reactive species 
are docked to a mutant receptor in which the reactive residue 
has been changed to an alanine, and the covalent attach-
ment site is formed, followed by structural refinement of the 
resultant complex in accordance with typical noncovalent-
docking techniques. It does not necessitate any parameter fit-
ting for the investigation of new covalent reaction types but 
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rather depends on a force field that is appropriate for dealing 
with the covalent bond. In contrast, the bond formation is 
heuristic, which means that the reacting atoms are prede-
fined and simply joined after traditional noncovalent docking 
of the pre-reactive species, and selection of relevant poses is 
performed. The resulting complexes are structurally refined, 
and the poses are grouped and scored. Different compounds 
are ranked based on their apparent binding affinity score, 
which is defined as the average Glide score of the binding 
mode of the pre-reactive ligand species and the approximate 
Glide score obtained in the covalent complex. According 
to the logical assumption, an optimum covalent inhibitor 
should have favorable noncovalent interactions with the 
protein both before and after the process. This conclusion 
can be reached. Because the reactivity of the warhead is not 
taken into consideration in this strategy, it works best when 
a specific warhead is provided and the emphasis is placed on 
optimizing the remaining portion of the covalent inhibitor in 
order to increase the apparent binding affinity.

The research of Alamri and colleagues was focused on 
developing a pharmacophore model based on the X-ray 
crystallographic  structures of MERS-CoV 3CLpro in a 
complex with two covalently bound antagonists, which was 
then tested in mice [53]. Following an in silico screening of 
a covalent chemical library including 31,642 compounds, 
378 compounds were identified, which satisfied the phar-
macophore searches. After that, the Lipinski rule of five 
was employed in order to select only small-molecule com-
pounds with the best physiochemical properties for use as 
orally bioavailable therapeutics. In order to assess their bind-
ing energy scores, 260 compounds were generated and sub-
jected to covalent-based virtual screening using the COV-
DOCK-VS software. The top three candidate compounds, 
which were demonstrated to adopt binding modes that 
were similar to those of the previously described covalent 
ligands, were chosen. The binding mechanism and stability 
of these compounds were validated using a 100 ns molecular 
dynamic simulation followed by a computation of the bind-
ing-free energy using the MM/PBSA. It was concluded that 
the hits discovered could aid in the rational design of novel 
covalent inhibitors of the MERS-CoV 3CLpro enzyme.

The CovDock-VS was used in a virtual-screening proto-
col to find covalent inhibitors of the immunoproteasome's 
5i subunit [54]. A commercial library of 100,000 boronic 
acids with desirable characteristics was screened in a multi-
step procedure. First, Glide noncovalent docking was used 
to constrain the boronic acid group at the reactive site. Simi-
larly to CovDock, the targeted catalytic Thr1 was altered to 
alanine to provide room for the ligand warhead model. The 
top 10% of compounds were then covalent docked by Cov-
Dock-VS while reverting the mutation of the nucleophilic 
residue. The final phase of the procedure uses Cov-Dock-
LO to covalently dock the top 10% scoring compounds. A 

total of 32 commercially accessible hits were chosen for 
experimental testing after visual assessment, clustering, 
and the implementation of diversity filters. Five substances 
with IC50s in the micromolar range (best IC50 = 34 mM) 
block the immunoproteasome's functional activity. The 
time-dependent inhibition of two hits validated their cova-
lent binding.

Paul et al. used Autodock Vina to virtually screen around 
1400 cysteine-focused ligands in order to identify the top 
candidates that can act as effective inhibitors of Mpro [55]. 
According to the authors' findings, the selected ligands 
exhibit strong interactions with the critical Cys145 and 
His41 residues. Covalent docking with the Schrodinger 
software suite (COVDOCK) was used to explore the mode 
and mechanism of inhibition of the selected candidates hav-
ing the acrylonitrile group, which can establish a covalent 
connection with Cys145. To validate the docking contacts, 
an all-atom molecular dynamics (MD) simulation was per-
formed on the four inhibitors L1, L2, L3, and L4. Addition-
ally, the authors' results were compared to those obtained 
using a control ligand, a-ketoamide (11r). Principal com-
ponent analysis of the structure and energy data from the 
MD trajectories reveals that L1, L3, L4, and a-ketoamide 
(11r) are structurally comparable to the Mpro apo-form. For 
pattern recognition of the best ligands, a quantitative struc-
ture–activity relationship method was used, which revealed 
that ligands comprising acrylonitrile and amide warheads 
can exhibit superior performance. According to the ADMET 
analysis, the identified drug candidates appeared to be safer 
compounds.

In another example, Chowdhury and colleagues employed 
COVDOCK to identify new covalent inhibitors of cathepsin 
L, identifying its catalytic Cys25 [56]. A library of 1648 
chemical fragments was constructed by filtering the ZINC-
purchasable database for carboxylic acids with desirable 
physicochemical characteristics. A vinylsulfone warhead 
was then attached to the acids and the library was tested 
against the target by COVDOCK, but the selected module 
was not stated explicitly in this case. Among the 33 com-
pounds having good scores and docking positions, five 
compounds were identified and purchased for experimental 
investigation. Finally, one vinylsulfone fragment displayed 
time and dose-dependent inhibition (Ki = 146 μM), whereas 
others could not be evaluated due to solubility challenges. 
Further exploration of various analogs resulted in specific 
and effective covalent cathepsin L inhibitors.

In another research, Al-Khafaji and colleagues used COV-
DOCK (MMGBSA module in Schrodinger suite 2020-1) to 
evaluate the efficacy of FDA-approved medications that can 
form a covalent bond with Cys145 inside the SARS-CoV-2 
main protease (Mpro) binding site utilizing a covalent-dock-
ing-based screening technique [57]. Saquinavir, ritonavir, 
remdesivir, delavirdine, cefuroxime axetil, oseltamivir, and 
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prevacid all had the highest MMGBSA binding energies 
of − 72.17, − 72.02, − 65.19, − 57.65, − 54.25, − 51.8, and 
− 51.14 kcal/mol, respectively. For saquinavir, ritonavir, and 
remdesivir, a 50 ns molecular dynamics simulation was per-
formed to determine their stability inside the binding pocket 
of the SARS-CoV-2 Mpro. The work delivers compelling in 
silico results that can be utilized in conjunction with or in 
place of conventional therapy to treat SARS-CoV-2.

FLEXX

FLEXX [58] is a commercial software that can perform 
covalent docking only if the covalent link between the ligand 
and the receptor is defined manually. On the receptor side, 
the ligand structure input file is extended to include the two 
atoms nearest to the covalent linkage. The first placement is 
accomplished by superimposing these atoms on their recep-
tor structure sites. According to a stepwise evaluation by the 
software's empirical scoring function, the software's stand-
ard incremental construction method results in the ultimate 
placement in the most suitable parts of the pocket. To our 
knowledge, we have found no report of the usage of this 
software for covalent virtual-screening studies.

GOLD

GOLD is an automated commercial docking tool based on 
genetic algorithms developed at the Cambridge Crystallo-
graphic Data Centre (CCDC) [59–61]. Its covalent imple-
mentation relies on the superposition of a "link-atom" in 
both the ligand and protein structures to utilize post-dock-
ing ligand conformations. Manual modification of the input 
files is required to bind the reactive sulfur or oxygen atom 
type of the targeted amino acid residue (Cys, Ser, or Thr) 
to the ligand's electrophilic atom. The ligand's link-atom 
is forced to fit onto the protein's link-atom, and a bending 
energy term is generated from the associated parameter file 
[62]. Finally, this energy term is added to the fitness dock-
ing score to verify that the covalent linkage geometry is 
appropriate. Other factors that contribute to the final score 
are the typical noncovalent interactions created by sampling 
the ligand's torsional degrees of freedom within the bind-
ing pocket. The GOLD Fitness Score is used to rank ligand 
docking conformations. The simulation's best docking result 
is given the highest score.

The GOLD software has been used to conduct various 
covalent-docking research in the past. For example, Schröder 
and his colleagues embarked on a virtual-screening campaign 
by employing the use of the GOLD program to identify novel 
inhibitors of cathepsin K. To accomplish this, the authors 
applied an automated substructure searching and warhead 
preparation method for compounds containing electrophilic 
chemical groups of interest found in a pool of commercial 

databases in order to construct a targeted library. Following 
the covalent docking of the targeted library into the crystal 
structure of human cathepsin K, a group of 44 compounds 
was identified as potential inhibitors of cathepsin K. After 
being subjected to experimental investigation, 21 chemical 
entities were shown to be covalent reversible binding inhibi-
tors. Three of these inhibitors were found to have nanomolar 
efficacy against cathepsin K and were therefore certified as 
lead structures. This study's findings support the successful 
deployment of a high-throughput covalent-docking method 
in lead discovery, according to the researchers [63].

In another work, Li et al. conducted a study to identify 
novel covalent inhibitors of the 20S proteasome. The struc-
tures of proteasome inhibitors were manually split between a 
noncovalent-binding portion coming from virtual screening 
and a covalent-binding portion consisting of an epoxyke-
tone group that was pre-selected. Noncovalent docking and 
a pharmacophore model based on the 20S proteasome were 
used to screen the SPECS database. After confirming the 
covalent conjugation, 88 epoxyketone hits were covalently 
docked (with GOLD) into the 20S proteasome to study the 
intermolecular interactions. Four compounds were chosen 
following extensive filtration and validation. Molecular 
dynamics simulations were used to determine the stabil-
ity of noncovalently and covalently docked ligand-enzyme 
complexes and to characterize the interaction patterns of 
the tested inhibitors. Finally, two compounds with unique 
aromatic backbones were kept due to their appropriate inter-
actions and stable covalent-binding mechanisms. These 
compounds could be used as lead compounds for additional 
biological evaluation [64].

Using GOLD [65], Zhang et  al. identified covalent 
inhibitors of the NEDD8-activating enzyme (NAE), a tar-
get implicated in the degradation of cancer-related proteins. 
Covalent docking was used as a component of a hierarchi-
cal pharmacophore-based virtual-screening protocol. To 
begin, two pharmacophore (ph4) models were constructed: 
a ligand-based ph4 (LBP) and a structure-based ph4 (SBP) 
(SBP). GOLD covalently docked a training set of seven 
known NAE inhibitors with sulfamoyl groups as warheads to 
build an LBP model, which was enriched further by integrat-
ing a shape constraint from a crystalline covalent inhibitor 
(MLN4924, PDB: 3GZN). By mapping the interactions that 
occurred during the MD simulation of the target in complex 
with the unbound form of MLN4924, a dynamic SBP model 
was generated. Following validation, the two ph4 models 
were used to screen a focused library of 28,000 sulfamoyl 
chemicals obtained from the ZINC database. Then, a total of 
256 distinct hits were submitted to covalent docking, result-
ing in the selection of eight compounds based on the scaf-
fold's score and uniqueness relative to the warhead. Experi-
ments verified the existence of three novel NAE covalent 
inhibitors, the most effective of which had an IC50 of 1 M.
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Sgrignani et al. used GOLD to screen a virtual library 
of 1385 boronic acids against the AmpC-lactamase-binding 
site in Escherichia coli [66]. The authors used a previously 
validated and optimized covalent-docking protocol against 
the same target, which included three conserved water mol-
ecules, to select six compounds that were experimentally 
found to inhibit AmpC β‐lactamase of various species at 
low micromolar concentrations (best Ki = 0.11 M against E. 
coli AmpC β‐lactamase). Additionally, by evaluating these 
compounds against a panel of eight lactamases, a nanomolar 
inhibitor of KPC-2 was identified (Ki = 25 nM), along with 
another that exhibited broad-spectrum activity by inhibiting 
multiple β‐lactamase classes.

DOCKTITE

DOCKTITE entails the deployment of a highly adaptable 
covalent-docking procedure within the Molecular Operating 
Environment (MOE) via SVL-scripts [67], which is capable 
of visually screening enormous databases of possible lead 
structures. The innovative step-by-step procedure enables the 
user to maintain control over and customize each phase of 
a docking project [68]. Because the procedure is guided by 
an intuitive graphical user interface, DOCKTITE is equally 
suited to beginners and advanced users. The screening stage 
for warheads is searching a ligand database for user-defined 
covalent warheads that are then tagged and transformed 
to the bound state. A pharmacophore-based docking with 
optional force field refinement is performed after connect-
ing the possible ligands to the covalently bonded residue of 
the receptor. Following that, the chimeric poses are cleaved 
and rescored using a new consensus-scoring approach that 
employs MOE-internal empirical scoring functions in con-
junction with the external knowledge-based scoring function 
DSX [69].

DOCKTITE was used in a virtual-screening process 
to identify permanent inhibitors of the FMS-like tyrosine 
kinase 3 (FLT3), a protein known to possess drug-resistant 
mutations associated with acute myeloid leukemia (AML) 
[70]. By coupling four distinct warhead classes to known 
reversible scaffolds at favorable sites, a targeted library of 
128 compounds was developed. Although the promising 
hits were not validated experimentally, the authors selected 
two scaffolds for further development, which resulted in the 
generation of many covalent inhibitors with enhanced cyto-
toxicity in FLT3-driven cell lines.

Omar et al. reported in silico screening for possible acti-
vators of G245S-mp53. The ZINC15 (13 million chemical 
entities) database was filtered to include only drug-like mole-
cules with moderate to high reactivity [71]. The DOCKTITE 
protocol in the MOE program was used to screen the filtered 
database of 130,000 chemicals. Covalent docking of G245S-
mp53 at Cys124 was used to identify putative activators of 

the mutant protein. A consensus-scoring approach was used 
to rank the docked compounds. The ADMET Predictor™ 
was utilized to evaluate the compounds' pharmacokinetics 
and potential toxicity. The virtual-screening approach high-
lighted compounds predominantly belonging to the warhead 
class of thiosemicarbazones and halo-carbonyls as showing 
the highest potential as G245S-mp53 activators. Compound 
2 was determined to have the greatest potential as a G245S-
mp53 activator based on its binding affinity and ADMET 
risk score when compared to the other top hits.

ICM‑Pro

Molsoft LLC developed the commercially available docking 
code ICM-Pro [72], which incorporates a novel covalent-
docking protocol [12]. ICM-Pro automatically turns the 
prereaction ligand into a "pseudo-ligand" based on the reac-
tion type by covalently connecting the cysteine side chain 
to the electrophilic warhead in all stereoisomers formed 
upon addition. The protein's sidechain atom coordinates are 
used to constrain the placement of the pseudo-ligand and 
then deleted to avoid unfavorable collisions during docking. 
Monte Carlo simulations are used to sample ligand confor-
mations in a set of pocket-specific grid maps [73]. Finally, 
a modified version of the usual ICM-Pro scoring function is 
utilized to evaluate docking conformations by disregarding 
pairwise interactions between atoms immediately connected 
to the new covalent bond.

Katritch and colleagues used iCM-pro to conduct a vir-
tual-screening experiment using covalent docking on a com-
prehensive library of around 230,000 accessible ketone and 
aldehyde compounds [12]. After converting the warheads to 
sp3-hybridized post-reaction states, the database was docked 
against an I7L homology model. Out of 456 determined hits, 
97 inhibitors of I7L proteinase activity were confirmed in 
biochemical experiments (approximately 20% overall hit 
rate). These experimental results both verify the I7L ligand-
binding model and suggest a strategy for rationally optimiz-
ing poxvirus I7L proteinase inhibitors.

Molecular operating environment (MOE)

The MOE [67] suite has a built-in covalent-docking mod-
ule which is only available commercially. Docking postures 
are created using a technique known as reaction transforma-
tion placement. At this point, the covalent link between the 
protein and ligand atoms is formed, and the produced poses 
are scored. It should be stressed that the user may import 
bespoke reaction schemes as RDF files if they are not cur-
rently included in the predefined list. The default covalent-
docking technique refines the docking solutions obtained dur-
ing the placement step using MOE's rigid receptor scheme 
and then rescored using the force field-based GBVI/WSA 
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scoring function to determine the free binding energy asso-
ciated with the given pose [74]. Despite the incorporation 
of covalent-docking functionality in this software, till date 
we have found no virtual-screening experiment that directly 
employs MOE for covalent docking of receptors. However, 
it should be noted that DOCKTITE, which has been used 
for a couple of covalent-docking-based virtual screening [70, 
71], involves the deployment of a highly adaptable covalent-
docking procedure within the MOE program via SVL-scripts.

MacDOCK

MacDOCK [75, 76] combines DOCK 4.0 [77] with MIMIC 
[78, 79]. An incremental building approach is guided toward 
favorable binding modes by MacDOCK. MacDOCK com-
pares the similarity between anchoring locations on the ligand 
and protein to favor those orientations that generate a good 
geometry for the covalent binding. The attached structure 
requires the initial alteration of the ligand warhead into its 
post-reaction form. Once the reactive functionality of the 
ligand is identified, the approach allows for automated proce-
dures. MacDOCK scores ligand conformations using a modi-
fied version of its usual scoring method that excludes intermo-
lecular interactions involving the covalent bonding atoms and 
those related to them. Finally, the final score incorporates a 
similarity weight that optimizes the initial anchor placement.

CovalentDock

In 2013, Ouyang et al. devised a model to account for the 
energy contribution of covalent binding as a term compatible 
with the noncovalent-docking scoring function. This approach 
was implemented as CovalentDock (available as a free web-
server) using the Autodock source code. Inspired by both 
Autodock and GOLD, a method was developed that employs 
a dummy atom to perform the same function as the "link atom" 
in GOLD, by incorporating the proposed energy term into the 
Autodock scoring function and searching for docking results 
using the built-in grid map calculation and Genetic Algorithm. 
Meanwhile, a process for automatically recognizing and pre-
paring covalently bondable chemical groups (limited to ligands 
reacting via Beta-lactam ring-opening and Michael addition) 
has been devised, enabling automated covalent docking and 
covalent virtual screening on a large scale [80].

In 2014, Blake and Soliman aimed to uncover and charac-
terize novel potential inhibitors capable of irreversibly inhib-
iting the RecA intein splicing domain of Mycobacterium 
tuberculosis via the establishment of a covalent linkage with 
its active site cys1 [81]. Their hunt for novel leads as poten-
tial protein splicing inhibitors is centered on Michael accep-
tor-like compounds, which are powerful electrophiles that 
react covalently with the enzyme's active site's nucleophilic 
cysteine SH group. Autodock Vina and CovalentDock were 

used to accomplish structure-based virtual screening using a 
hybrid of noncovalent and covalent docking. Ten interesting 
covalent inhibitors were identified following the covalent-
docking process using the CovalentDock software. Addi-
tionally, molecular dynamic simulations (MD) and thorough 
post-dynamic analysis were used to assure the stability of 
docked ligand-enzyme complexes and to provide insight 
into the inhibitors' binding affinities and interaction patterns. 
Interestingly, three unique hits demonstrated increased bind-
ing affinity when compared to experimentally determined 
drugs known to hinder protein splicing. Additionally, MD 
simulations demonstrated that the docked compounds are 
fairly stable in the active region of the protein.

DOCKovalent

DOCKovalent developed by London and colleagues in 
2014, is a website that facilitates covalent docking [82]. 
A modified version of the noncovalent-docking method 
DOCK 3.6 [83] was created in order to enable large-scale 
virtual screens of electrophilic chemical libraries. DOCK-
ovalent allows users to choose the preferred warhead-spe-
cific screening set from a list of options available on the 
web platform. These sets were compiled from commer-
cially accessible compounds in the ZINC database at the 
time of the database's initial release. DOCKovalent makes 
use of a number of different programs to process input 
ligand structures prior to running docking simulations. Ini-
tially, compounds are converted in the post-reaction form 
according to the warhead chemistry utilizing OpenEye 
tools, which are initially converted in the SMILES form. 
AMSOL calculates partial charges and solvation energies 
[84], Epik evaluates protonation and tautomeric states 
[85, 86], and OMEGA generates low-energy conforma-
tions [87]. Corina is used to generate 3D conformations 
and stereoisomers [87, 88]. The calculations for ligand 
preparation are fully automated in web server applica-
tions, but conducting the ligand preparation workflow on 
a local system necessitates manual intervention in addition 
to license tokens for proprietary methods. As part of the 
docking procedure, several ligand postures are routinely 
sampled around the freshly formed covalent bond, with 
limitations applied to guarantee that the bond length and 
angles are optimal. The DOCK scoring function is then 
used to score and rank docking solutions after the energy 
contributions involving the electrophilic atom have been 
ignored. However, it should be noted that DOCKovalent 
docks the compounds in either their entire post-reaction 
form or the high-energy intermediate formed after cova-
lent bond formation, depending on the warhead used to 
dock the compounds (e.g., aldehydes or carbamates).

Shraga et al. used Dockovalent to screen a virtual library 
of 117,667 acrylamides against Cys218 in the protein's 
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active region in order to identify selective covalent inhibitors 
of MKK7 [89]. Ten compounds were chosen for synthesis 
and testing after manually inspecting the top 500 predic-
tions from each sub-library. Three compounds inhibited 
MKK7 (one of two direct MAP2Ks that activate JNK) in an 
in vitro kinase activity assay, with IC50 values of 11, 502, 
and 873 nM. These chemicals were designed to be effective 
inhibitors of JNK phosphorylation in cells at low micromo-
lar concentrations. The crystal structure of a lead compound 
bound to MKK7 established that docking correctly recapitu-
lated the binding mode. The authors established the inhibi-
tors' selectivity at the proteome level and against a panel of 
76 kinases, as well as their on-target activity using knock-
out cell lines. Finally, they demonstrated that the inhibitors 
suppress lipopolysaccharide-induced activation of primary 
mouse B cells. It was then proposed that MKK7 tool com-
pounds would facilitate JNK signaling research and could 
serve as a starting point for therapeutics.

DOCKovalent was used by London et al. to screen huge 
virtual libraries of electrophilic small compounds [82]. They 
used the software prospectively to identify reversible cova-
lent fragments directed against a variety of different pro-
tein nucleophiles, including the catalytic serine of AmpC-
lactamase and noncatalytic cysteines in RSK2, MSK1, and 
JAK3 kinases. The authors identified submicromolar to 
low-nanomolar hits with excellent ligand efficiency, cellular 
activity, and selectivity, including the first covalent inhibi-
tors of JAK3 described to date. The crystal structures of 
inhibitor complexes with AmpC and RSK2 validate docking 
predictions and provide guidance for further development.

DOCKovalent was also used to screen a library of 
60,300 acrylamide-based compounds for irreversible KRAS 
G12C covalent antagonists. The researchers tested cova-
lent docking and empirical electrophile screening against 
the extremely dynamic KRAS G12C target. While both 
approaches achieved a similar overall hit rate, they were 
able to rapidly advance a docking hit to a powerful irre-
versible covalent binder capable of modifiying the inactive, 
GDP-bound state of KRAS G12C. The protein kinetics of 
chemical binding to the switch-II pocket and subsequent 
destabilization of the nucleotide-binding region were inves-
tigated using hydrogen–deuterium exchange mass spectrom-
etry. Contrary to previous switch-II pocket inhibitors, these 
novel chemicals seemed to accelerate nucleotide exchange 
via SOS. This work demonstrates the efficacy of covalent 
docking as a technique for identifying chemically unique 
hits against difficult therapeutic targets [90].

AutoDock 4

AutoDock4 [91] is a docking tool developed at the Scripps 
Research Institute that is available as an open-source 
project. The two kinds of covalent-docking methods 

supported in AutoDock4 are the two-point attractor and 
the flexible side chain approaches [14]. Both utilize grid 
maps that have been precalculated with atom probes in 
order to speed up the scoring operation, but they differ 
in how they mimic ligand conformations during the scor-
ing method. The two-point attractor approach converts 
ligands in the post-reaction state by attaching two dummy 
atoms to the two terminal atoms of the nucleophilic side 
chain, which correspond to the two terminal atoms of the 
nucleophilic side chain. In this step, side chain atoms 
are removed from the protein, and an attractive Gaussian 
potential is used to drive the insertion of the dummy atoms 
into their original positions in the protein structure during 
the untethered docking step, which is performed in the 
absence of the protein. The flexible side chain technique, 
on the other hand, makes advantage of tethered docking 
to mimic the bound form of covalent ligands within the 
pocket. The electrophilic core of the ligand must be linked 
to the two terminal nucleophilic protein atoms in order for 
this approach to work. By defining the relevant SMARTS 
pattern, these two atoms are subsequently superposed to 
the respective residue atoms in the protein, resulting in 
the desired structure. The bound ligand is then considered 
as a completely flexible residue, and its conformations in 
the pocket are sampled using the conventional AutoDock4 
technique for flexible residues.

Amendola and colleagues recently launched a virtual-
screening campaign against the severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2) Mpro chymot-
rypsin-like cysteine protease using an in-house database of 
peptide and non-peptide ligands characterized by various 
types of Michael acceptors [92]. The scientists predicted 
the creation of a covalent compound with the target protein 
using the AutoDock4 docking software. In vitro validation 
of the most promising candidates' inhibitory capabilities 
resulted in the identification of two novel lead inhibitors 
that merit further development. From a computational 
standpoint, this work illustrates AutoDock4's predictive 
capability and suggests its use for in silico screening 
of huge chemical libraries of putative covalent binders 
against the SARS-CoV-2 Mpro enzyme (Fig. 3).

Selecting an ideal covalent‑docking 
program for virtual‑screening campaign 
of covalent targets

It has been suggested that for an ideal covalent-docking tool, 
the success rate should not be dependent on protein classes, 
ligand warhead classes, residue types, and reaction mecha-
nisms [93]. However, the performance of the present cova-
lent-docking tools is largely dependent on these aforemen-
tioned criteria. Nonetheless, in a covalent virtual-screening 
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study, a researcher may select a covalent-docking program 
that has been reported to achieve a high success rate for 
his specific receptor/residue target, ligand warhead or reac-
tion types. Hence, as a guideline to aid the docking com-
munity in choosing an ideal covalent-docking program for 
their virtual-screening experiments, we survey studies that 
are focused on comparative evaluation of the "front runner" 
covalent-docking tools [94].

Currently, there are three research works that have bench-
marked the performance of the available covalent-docking 
tools. First was the study of Keserű and colleagues, which 
evaluated six covalent-docking tools (FITTED, Auto-
dock4, MOE, GOLD, COVDOCK, and ICM-Pro) against 

a dataset consisting of 207 protein–ligand complexes with 
diverse electrophilic warhead groups and receptor types 
[95]. Secondly, Wen et al. assessed the performance of four 
covalent-docking programs (COVDOCK, MOE, ICM-Pro, 
and GOLD) by employing a dataset from the BCDE set, 
which consists of 330 diverse ligand scaffolds and 104 
receptor targets [93]. Lastly, Wei and co-workers developed 
a hybrid covalent-docking method known as COV_DOX 
and compared its performance to the previously identified 
covalent-docking tools (MOE, ICM-Pro, COVDOCK, and 
GOLD) [94]. Although, COV_DOX was validated to have 
a higher performance rate than all other covalent-docking 
tools (MOE, GOLD, ICM-Pro, and COVDOCK), the hybrid 

Fig. 3  Typical workflow for conducting covalent-docking simulation
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method is considered "not feasible" for a virtual-screening 
experiment because of its very high computing time, which 
is as a result of its GSA (Generalized simulated annealing) 
quantum mechanical calculation method [94]. Therefore, the 
comparative studies by Keserű et al.  [95] and Wen et al. [93] 
on covalent-docking tools are the only focus of this review 
section.

Based on the original RMSD data reported by Keserű 
et al. and Wen et al., we formulated some results (as shown 
in Tables 3 and 4) for the identification of ideal covalent-
docking tools for protein types and ligand warhead chemistry 
that may be useful in a virtual-screening experiment. While 
Keserű and co-workers used Top1 (best scoring pose) and 
Top10 (best RMSD among top10 scoring poses) as a metric 
for determining the best covalent-docking program, Wen 
et al. utilized best scored pose (top-ranked binding mode) 
and best sampled pose (the conformation with the minimum 

root-mean-square deviation values with the crystal pose 
among all docked ligand poses) as a determinant for ranking 
the best performing docking software. According to our own 
statistics of the Table S1 RMSD data of Keserű et al. (https:// 
pubs. acs. org/ doi/ suppl/ 10. 1021/ acs. jcim. 8b002 28/ suppl_ 
file/ ci8b0 0228_ si_ 001. pdf), ICM-Pro was ranked as the 
best performing covalent-docking program (both TOP1 and 
TOP10) for receptor types that belong to the hydrolase and 
transferase families (Table 3). In contrast, the study of Wen 
et al. revealed that CovDock is the docking program with 
the best scored pose and best sampled pose for both recep-
tor types. Overall, the comparative analysis of the data of 
both groups of scientists for hydrolase, transferase, and other 
protein types (Table 3) showed inconsistency and a high 
discrepancy of results, which may be due to the preference 
of test sets considered while conducting their benchmarking 
studies [94]. Similarly, this is also the case for the common 

Table 3  Identifying ideal covalent-docking program for various receptor types through comparative studies from benchmark studies

S/N Receptor types (Wen et al.) Number of 
test sets

Software with best scored pose 
(Average RMSD)

Software with best sampled pose 
(Average RMSD)

Reference

1 Hydrolase 204 COVDOCK (1.71 Å) COVDOCK (1.39 Å) [93]
2 Transferase 83 COVDOCK (1.3 Å) COVDOCK (1.06 Å) [93]
3 Ligase 3 COVDOCK (1.08 Å) COVDOCK (0.84 Å) [93]
4 Metal binding protein 5 MOE (1.72 Å) MOE (1.04 Å) [93]
5 Oxidoreductase 6 ICM-Pro (1.13 Å) GOLD (1.06 Å) [93]
6 Transcription 18 COVDOCK (2.15 Å) MOE (1.6 Å) [93]

S/N Receptor types (Keserű et al.) Number of 
test sets

Top 1 pose (average RMSD) Top 10 pose (average RMSD) Reference

1 Hydrolase 126 ICM-Pro (2.65 Å) ICM-Pro (1.32 Å) [95]
2 Transferase 53 ICM-Pro (1.28 Å) ICM-Pro (1.03 Å) [95]
3 Ligase 4 FITTED (1.46 Å) FITTED (0.96 Å) [95]
4 Metal binding protein 3 Autodock 4 (1.91 Å) COVDOCK (1.15 Å) [95]
5 Oxidoreductase 3 Autodock 4 (0.87 Å) Autodock 4 (0.73 Å) [95]
6 Transcription 4 MOE (1.39 Å) FITTED (0.58 Å) [95]

Table 4  Rationalizing the selection of an ideal covalent-docking program for ligand warhead chemistry through comparative studies of Keserű 
and Wen et al.

S/N Common reaction types Keserű 
et al.’s result 
[95]

Wen et al.’s result
[93]

Rational opinion

1 Nucleophilic substitution ICM-Pro ICM-Pro The agreement of both group’s results makes ICM-Pro suitable
2 Addition to nitrite Autodock 4 GOLD (Cys) and 

COVDOCK 
(Ser)

Autodock4 (because of larger dataset tested). However GOLD and COV-
DOCK can still be used for Cys and Ser targets respectively

3 Ring opening GOLD MOE MOE should be considered because of larger data set tested. However 
authors may also choose GOLD

4 Disulfide formation GOLD MOE With larger test set, MOE may be more suitable than GOLD
5 Michael addition COVDOCK ICM-Pro COVDOCK may be considered because of larger dataset but ICM-Pro can 

also be used (also tested with large dataset)

https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.8b00228/suppl_file/ci8b00228_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.8b00228/suppl_file/ci8b00228_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.8b00228/suppl_file/ci8b00228_si_001.pdf


 Molecular Diversity

1 3

reaction types found with ligand warhead chemistry groups, 
with the exception of nucleophilic substitution (Table 4). For 
instance, in the study of Keserű et al., GOLD was ranked 
as the best performing software for disulfide formation and 
ring-opening reaction types, while MOE emerged as the best 
performing tool considering the same reaction types in the 
work of Wen et al.

However, considering the larger and more diverse BCDE 
test set of Wen et al. (covering both Cys and Ser targeting war-
heads) when compared to Keserű’s test set (covering only Cys 
targeting warheads), it may be rational to consider the results 
of Wen and colleagues for the selection of covalent-docking 
program in a virtual-screening study involving both receptor 
types and ligand warhead chemistry (Tables 3 and 4). For 
example, the front runner in Wen et al.’s work (COVDOCK) 
for hydrolase should be prioritized than Keserű’s front runner 
tool (ICM-Pro) in covalent-docking research due to the larger 
and more diverse test set (as shown in Table 3). On the other 
hand, since the vast majority of Keserű’s ligand datasets were 
made in favor of addition reaction mechanisms, their result of 
the comparative assessment of the existing covalent-docking 
tool should be considered more during a covalent-docking-
based virtual-screening experiment involving ligand warhead 
groups with only addition reaction (Table 4). In spite of the 
discrepancy, both research investigations found that docking 
programs had varied accuracy when dealing with diverse 
receptors and ligand warhead chemistries, indicating that this 
is a prevalent flaw in empirical models.

Challenges of covalent docking

Modeling covalent bond

One of the major problems encountered for covalent-
docking simulations is how to deal with the creation of 
covalent bonds between the protein nucleophile and the 
ligand electrophile. This covalent reaction cannot be 
explained using the traditional intermolecular potentials 
commonly utilized in docking but rather through physics-
based quantum mechanics. Quantum mechanics (QM) 
enables the modeling of the electronic rearrangements 
that occur during a covalent chemical reaction between 
an electrophilic ligand warhead and a nucleophilic protein 
residue [96]. Bond formation, breakage, and rearrange-
ment all require an explicit treatment of electronic degrees 
of freedom and, hence, the need for a QM calculation. 
While energetic effects from QM methods are increasingly 
being incorporated into docking programs, such as in QM/
MM on-the-fly docking [97], a full QM treatment is still 
impractical in routine applications due to the size of the 
molecular systems and the large number of configurations 
and ligands to be taken into consideration [98].

Deficient scoring function

A robust covalent-docking method should be capable of 
weighing all important contributions to binding interactions, 
including those resulting from covalent bond formation. 
Unfortunately, a significant disadvantage is the inability to 
efficiently score the energy involved in bond formation. As 
described by Scarpino et al., modeling the chemical reaction 
needs time-consuming quantum mechanical (QM) calcula-
tions that are not yet suited for fast docking techniques [99]. 
The scoring function of covalent-docking systems is defi-
cient in terms of bond formation, preventing the evaluation 
of ligands with varying degrees of reactivity and hence could 
have a negative impact on the success rate of virtual-screen-
ing campaigns in the identification of covalent inhibitors [92, 
99]. Till date, the only covalent-docking program with more 
accurate scoring function with very high quantum mechanical 
calculation is COV_DOX (81% success rate) and it is not sur-
prising that the hybrid method performed better than all other 
covalent-docking front runners 40–60% in performance) [94].

Higher computing time

Unlike conventional-docking programs that typically require 
a lower time scale, covalent-docking software/webservers 
generally require higher computing time due to the quantum 
mechanical and free energy calculations required to evaluate 
a covalent bond formation between the electrophilic ligand 
warhead and the nucleophilic center of the residue. Exam-
ples of this could be found in the Schrödinger COVDOCK 
program (COVDOCK-LO) and COV_DOX, which are con-
sidered not fast and unfeasible for structure-based virtual-
screening studies, respectively [13, 94]. However, Toledo 
and colleagues have successfully addressed the longer time 
scale associated with the latter program by modifying the 
default Covdock workflow to suit the requirements of con-
ducting covalent-docking-based virtual-screening campaigns 
in a shorter time period (COVDOCK-VS) [13].

Can covalent docking be achieved using 
conventional‑docking programs?

Theoretically and experimentally, it has been proposed 
that covalent systems with no direct covalent bonds could 
have the potential to induce covalent linkage if the electro-
philic warhead group and the side chain of the nucleophilic 
receptor target are found in close proximity (Fig. 4) [32, 
100–102]. While there have been developments of cova-
lent-docking protocols to simulate a covalent biomolecular 
system, some conventional noncovalent-docking programs/
protocols have also been employed in the modeling of 
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covalent binders that involves assessing the bond distance 
between the pre-reactive covalent warhead of the compound 
and the nucleophilic protein group. This approach involves 
examining the distance between the electrophilic moiety 
of the ligand and the nucleophilic center of the amino acid 
side chain to determine whether they are in close proximity 
to potentially form a covalent linkage. Undoubtedly, this 
is a rational strategy to predict the chances of the ligand 
warhead group forming a covalent adduct with its targeted 
nucleophilic reactive residue. A typical example of this 
could be found in the work of Soulère and co-workers [103]. 
The researchers conducted a docking-based virtual screen-
ing of covalent inhibitors with the use of the Arguslab pro-
gram. To investigate the possibility of covalently inhibiting 
SARS-CoV-2 MPro, docking of the covalently co-crystal-
lized inhibitors within the protease was examined in order 
to establish the structural basis for covalent inhibition. The 
distance between the electrophilic moiety and the thiol of 
Cys145 was examined in particular. Thus, docking tests on 
these three molecules were performed. This investigation 
corroborated the crystallographic results since the electro-
philic core of the compounds, namely the methylene group 
of the chloro-acetamide functional group, is positioned near 
Cys145 with distances between the carbon and thiol atoms 

varying from 2.83 to 3.19 Å. Based on docking investiga-
tions, the structural foundation for covalent inhibition of 
Mpro was characterized as the ligands binding the protein 
with a high affinity and having an electrophilic moiety ori-
ented appropriately toward Cys145 at a distance less than 
4 Å from the sulfur. Following that, flexible docking inves-
tigations were conducted on a targeted approved covalent 
drug library consisting of 32 compounds with a variety of 
electrophilic functional groups. Among them, the calcula-
tions identified four compounds capable of interacting with 
the protein's binding site and, secondly, their potential to 
act as covalent inhibitors, as the distance between the sul-
fur and the electrophilic center varied between 2.98 and 
3.78 Å (values less than 4 Å indicating a complex capable 
of forming a covalent bond) [101].

In another study, Ai and colleagues described a method 
called steric-clashes alleviating receptor (SCAR), in which 
the covalently bound residue is altered to a sterically smaller 
residue, such as serine or glycine [104]. This enables the 
ligand to dock in a conformation comparable to that observed 
in the covalently modified form without encountering steric 
clashes. These poses are classified according to the strength 
of their noncovalent bonds. The generated pose was compared 
to the experimental crystallographic structures of covalently 

Fig. 4  Proposing covalent 
inhibition with distance analysis 
between warhead group and 
nucleophilic reactive protein 
residue
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inhibited "AdoMetDC" to assess this approach. This technique 
predicted the binding pose with an RMSD of 3 Å, which is 
similar to that of other covalent-docking techniques. The 
ensemble of docked complexes was screened throughout their 
workflow to identify those in which the warhead was within 
1 Å of the targeted residue. After imposing this limitation, 
the mean RMSD of the top-ranked structures was lowered to 
1.9. This strategy was then effectively used to identify new 
covalent inhibitors of S-adenosylmethionine decarboxylase.

Finally, a virtual-screening strategy to detect covalent bind-
ers using cysteine reactivity data was introduced as WIDOCK 
[99]. The approach was inspired by Backus et al.'s reactive 
docking approach for identifying ligandable cysteines in 
the proteome [105]. In order to overcome one of the pri-
mary intrinsic constraints of covalent-docking technologies, 
WIDOCK was developed. WIDOCK focuses on the noncova-
lent interactions that occur in the binding site and includes a 
reactivity-scaled reward for compounds that may position the 
warhead near to the targeted cysteine. The reward is a pseudo-
Lennard–Jones potential added to the noncovalent AutoDock4 

scoring system. WIDOCK allows screening of chemical sets 
with a variety of warhead types and reactivities, prioritizing 
the most promising discoveries for experimental validation. 
WIDOCK was first tested against three targets, each represent-
ing a different warhead class and reaction pattern. Oncogenic 
mutant KRASG12C was screened against a collection of 20 
chemicals equipped with multiple warheads and a shared scaf-
fold. WIDOCK correctly predicted ten of the twelve known 
actives, outperforming AutoDock4's flexible side chain method 
(TPR = 75%).

Erroneous drug discovery docking pursuits 
involving covalent targets in the last few 
years

As discussed earlier in this review, there are two rational 
approaches to docking covalent proteins. First is the appli-
cation of covalent docking programs/protocols for pre-
dicting the ability of a ligand warhead to form a covalent 

Fig. 5  A workflow depicting the rational (green box) and irrational (red box) drug discovery stages
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linkage with the nucleophilic side chain of the receptor 
target. Secondly, the evaluation of the distance analysis 
between the electrophilic warhead group and the nucleo-
philic moiety of the protein also represents a rational strat-
egy for modeling covalent systems when a conventional-
docking program is employed. Hence, studies that involve 
docking covalent compounds with covalent targets without 
consideration of these approaches could be considered irra-
tional and, therefore, may be an erroneous drug discovery 

practice resulting in false-positive results (Fig. 5 depicts 
the rational and irrational drug discovery steps). For exam-
ple, the x-ray crystallographic experiment revealed by Jin 
et al. showed that the SARS-CoV2 Mpro (PDB ID: 6LU7) 
is a covalent target of the peptidomimetic inhibitor N3 
[106]. It was reported that the co-crystal compound binds 
covalently with the thiol group of the protein’s Cys145 
sidechain, representing a crucial mechanism of inhibi-
tion of the peptidomimetic compound (Fig. 6). Therefore, 

Fig. 6  Covalent binding of N3 with Cys145 residue of Mpro
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docking research that considers N3 as a standard for vali-
dating their docking protocols prior to a virtual-screening 
campaign should make use of one of the two approaches 
to docking covalent systems. Unfortunately, this has not 
been the case for several retrospective computational stud-
ies where noncovalent interactions of N3 with the Mpro 
target (6LU7) have been reported [107–116].

There have also been studies that have noncovalently 
docked covalent entities whose X-ray crystallography 
structure with the targeted receptor has never been elu-
cidated [117–124]. A typical example is the docking and 
drug repurposing of remdesivir (a clinically approved 
anti-Ebola and anti-COVID-19 drug) against SARS-CoV2 
main protease (Mpro). The nucleotide analog prodrug, 
which has a broad spectrum of activity against viruses 
of different families, was also found to be potent against 
SARS-CoV2 and subsequently got wide approval for the 
emergency treatment of COVID-19 in 2020 [125]. At 
the molecular level, remdesivir was shown to inhibit the 
SARS-CoV2 RdRp enzyme (RNA-dependent RNA poly-
merase), while x-ray crystallographic experiment revealed 
a covalent mechanism of inhibition of the drug with the 
protein target [126]. On the other hand, no structural basis 
for inhibition of remdesivir has been proposed with the 
SARS-CoV2 main protease till date. Hence, computational 
drug discovery studies that have focused on repurposing 
this drug against the nucleophilic cysteine-like protease 
without careful consideration of the nucleotide analog 
(remdesivir) as a covalent agent and consequently pro-
posing only a noncovalent mechanism of inhibition (with 
the Cys145 crucial residue of Mpro) after their docking 
experiments may be irrational and erroneous.

In another study with different covalent targets (other than 
Mpro), Kaliamurthi et al. aimed to repurpose known BTK 
covalent inhibitors such as ibrutinib and zanubritinib against 
SARS-CoV2 [127]. However, the group failed to consider 
the potential covalent inhibitory strategy of the warhead 
group (α,β-Unsaturated carbonyl) of these covalent agents in 
their computational study as this was pivotal in their potency 
against the Cys481 residue of the BTK receptor (PDB ID: 
5P9J and 6J6M). Hence, they went ahead to noncovalently 
dock the compounds against SARS-COV2 proteins such as 
Mpro, which could be covalently explored. Surprisingly and 
disappointingly, the authors also noncovalently docked the 
inhibitors against their known therapeutic target (BTK) and 
yet failed to report the covalent and even noncovalent binding 
of these covalent agents with BTK’s Cys481. Apparently, this 
study represents an irrational drug discovery approach involv-
ing covalent targets and could be classified as erroneous.

Finally, Ezat and colleagues proposed analogs of 
boceprevir as potential inhibitors of both the wild-type HCV 
(Hepatitis-C virus) NS3 protease and 19-mutated HCV NS3 
proteases using molecular docking screening [128]. It is 

important to mention that boceprevir is a clinically approved 
drug against the HCV NS3 target and its α-ketoamide war-
head group is known to form a covalent bond with Ser139 of 
the protease (PDB ID: 3LOX). In an attempt to compare the 
potency of boceprevir’s modified compounds, the authors 
noncovalently docked the clinically approved boceprevir 
to the binding pocket of HCV NS3 protease. The group of 
researchers' docking experiments also failed to capture the 
binding interaction (covalent and noncovalent) of boceprevir 
(including its analogs) with Ser139 reactive residue of HCV 
protein, thus, representing another irrational and erroneous 
drug discovery practice involving covalent targets.

Conclusion/future perspectives

Improved potency is one of the major advantages that cova-
lent inhibitors have over reversible inhibitors. This prop-
erty is presumed to have clinical application in terms of the 
reduction of the drug dosage. Although there are still res-
ervations as to the usage of this class of drug but the recent 
trend in the field such as the approval of sotorasib for KRAS 
G12C is changing the paradigm and writing a good story in 
favor of this drug class. The search for more covalent agents 
for the treatment of diseases is a raging pursuit and the use 
of computational methodologies like molecular docking 
is promising in that regard. With the increasing report of 
covalent docking software and tools, it is believed that the 
percentage of true positives would increase from virtual-
screening studies if these tools are utilized when docking 
covalent targets. However, deficiency in scoring function is 
a major concern with these softwares after high computing 
time. While the latter is a general problem to all docking 
software class, software developers are already in the pursuit 
of reporting scoring function that would perfectly model 
covalent systems, the former could be addressed by introduc-
ing covalent docking cloud-computing facilities which will 
be of great help to scientists in the developing part of the 
world. It is important to state that although covalent docking 
could be achieved using conventional-docking programs by 
taking cognizance of the distance between the ligand elec-
trophilic warhead and the target nucleophilic center. It is, 
however, logical to dock a covalent target using the cova-
lent-bond-recognizing tools. With the growing amount of 
irrational and erroneous computational studies on targeting 
covalent receptors, we hope our comprehensive review do 
not only help reduce the rate of false-positive results but also 
aid the identification of ideal covalent-docking programs for 
virtual drug discovery campaigns.
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