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Abstract

A retrospective meta-modeling analysis was performed to integrate previously reported data of glucocorticoid (GC) effects
on glucose regulation following a single intramuscular dose (50 mg/kg), single intravenous doses (10, 50 mg/kg), and
intravenous infusions (0.1, 0.2, 0.3 and 0.4 mg/kg/h) of methylprednisolone (MPL) in normal and adrenalectomized (ADX)
male Wistar rats. A mechanistic pharmacodynamic (PD) model was developed based on the receptor/gene/protein-
mediated GC effects on glucose regulation. Three major target organs (liver, white adipose tissue and skeletal muscle)
together with some selected intermediate controlling factors were designated as important regulators involved in the
pathogenesis of GC-induced glucose dysregulation. Assessed were dynamic changes of food intake and systemic factors
(plasma glucose, insulin, free fatty acids (FFA) and leptin) and tissue-specific biomarkers (cAMP, phosphoenolpyruvate
carboxykinase (PEPCK) mRNA and enzyme activity, leptin mRNA, interleukin 6 receptor type 1 (IL6R1) mRNA and Insulin
receptor substrate-1 (IRS-1) mRNA) after acute and chronic dosing with MPL along with the GC receptor (GR) dynamics in
each target organ. Upon binding to GR in liver, MPL dosing caused increased glucose production by stimulating hepatic
cAMP and PEPCK activity. In adipose tissue, the rise in leptin mRNA and plasma leptin caused reduction of food intake, the
exogenous source of glucose input. Down-regulation of IRS-1 mRNA expression in skeletal muscle inhibited the stimulatory
effect of insulin on glucose utilization further contributing to hyperglycemia. The nuclear drug-receptor complex served as
the driving force for stimulation or inhibition of downstream target gene expression within different tissues. Incorporating
information such as receptor dynamics, as well as the gene and protein induction, allowed us to describe the receptor-
mediated effects of MPL on glucose regulation in each important tissue. This advanced mechanistic model provides unique
insights into the contributions of major tissues and quantitative hypotheses for the multi-factor control of a complex
metabolic system.
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Introduction

Due to their well-known anti-inflammatory and immunosup-

pressive properties, synthetic glucocorticoids (GC) are frequently

prescribed for a broad spectrum of diseases such as allergic,

inflammatory and autoimmune disorders. A study done in the

United Kingdom reported that about 0.5% of the total population

(65786 registered patients in 1995) received continuous (for at least

three months) oral corticosteroid treatments [1]. However, many

complications and undesirable effects are associated with chronic

use of GC including muscle wasting, hyperglycemia, insulin

resistance and/or diabetes mellitus. Multiple organs are involved

in the pathogenesis of these disorders. In particular, GC-induced

whole body insulin resistance is strongly related to the metabolic

contributions of the most investigated tissues: liver, skeletal muscle

and adipose tissue.

Many pathophysiological effects of GC are attributed to their

transcriptional regulation of target genes. These effects are

predominantly dependent on the interaction between GC and

the glucocorticoid receptor (GR) [2]. As a ligand-activated

transcription factor, the inactive GR in cytoplasm is bound to

heat shock proteins (HSP), which prevents the nuclear localization

of the receptor. After binding of specific GC ligands, the activated

GR will dissociate from the HSP complex, undergo dimerization

and nuclear translocation where it binds to GC response elements

(GRE) in the promoter region of target genes. This process,

together with other regulatory proteins, will enhance or repress the

expression of these target genes. It is important to assess the role of

GC on glucose regulation at systemic as well as gene levels.

Normal blood glucose concentrations are sustained mainly

through the balance between hepatic glucose output (HGO) and

glucose uptake primarily by brain, muscle and adipose tissue. Liver

is a primary metabolic target of GC. The major sources of HGO

are from glycogenolysis and gluconeogenesis. The GC have a

major influence on gluconeogenesis by affecting the availability of

gluconeogenic precursors and the activity of several key gluco-

neogenic enzymes including phosphoenolpyruvate carboxykinase

(PEPCK) [3]. The GC increase the expression and activity of

PEPCK, thereby augmenting gluconeogenesis and increasing

HGO. In addition, cAMP in liver also plays an important role

in stimulating glucose production, either by enhancing PEPCK

activity or by stimulating glycogen breakdown [4]. Furthermore,
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GC stimulate protein breakdown and the release of amino acids

from skeletal muscle, as well as increase lipolysis and mobilization

of glycerol and fatty acids from adipose tissue [5]. Amino acid

carbon from skeletal muscle and glycerol from adipose tissue

provide substrates for hepatic gluconeogenesis.

White adipose tissue is a complex metabolic and endocrine

organ that is also an important GC target [6]. In addition to its

role as the reservoir of excess energy, the adipocytes also release

hormones, adipokines, to communicate with other organ systems.

The GC stimulate lipolysis, resulting in increased plasma FFA

concentrations [7,8]. The FFA serve as an energy source through

beta-oxidation and diminish glucose uptake and utilization by

skeletal muscle. Literature data suggest that FFA promote insulin

secretion upon acute exposure, however long-term oversupply of

FFA leads to impaired pancreatic insulin secretion [7,9]. Besides

FFA, some adipocyte-derived proteins have been shown to

regulate insulin sensitivity including leptin and adiponectin. Leptin

expression is regulated by GC both in vitro and in vivo

[10,11,12,13]. Rats had increased plasma leptin concentrations

after acute and chronic dosing of GC in a dose-dependent manner

[10]. Leptin suppresses feeding and regulates energy expenditure

and hence contributes to systemic energy homeostasis [14,15]. In

addition, leptin exerts its effects by interacting with specific leptin

receptors in the central nervous system, thus altering downstream

functional mediators [16,17].

Skeletal muscle is an important target for GC-induced insulin

resistance. Effects of GC on muscle carbohydrate and protein

metabolism are of importance owing to the fact that muscle

accounts for about 80% of insulin-stimulated glucose disposal and

represents a major source of gluconeogenic precursors. Dosing with

GC reduces insulin-stimulated glucose uptake and increases

proteolysis in skeletal muscle [18]. In addition, our microarray

studies have shown a significant decrease in muscle IRS-1 mRNA

expression following acute and chronic MPL in ADX rats [19],

which is in agreement with decreased muscle IRS-1 protein

concentrations after chronic GC use [20]. The IRS-1 transmits

signals from insulin to intracellular signaling pathways and plays a

key role in downstream gene regulation. As a central player in

insulin signaling pathways, the decline in IRS-1 will reduce insulin-

dependent glucose uptake in muscle, which may in part explain the

impaired peripheral glucose utilization after GC dosing.

Based on the accumulated clinical evidence linking GC in the

pathogenesis of diabetes, extensive studies have been conducted by

our laboratory to examine the mechanisms by which GC alter

glucose metabolism and induce insulin resistance in rats

[21,22,23]. The effects of acute and chronic MPL on glucose

homeostasis were investigated [4,24,25,26,27] and a series of

mechanistic PK/PD models were proposed to explain the time

course of systemic glucose changes. The important role of white

adipose tissue was appreciated [24]. However, as GC-induced

glucose dysregulation is a whole body metabolic syndrome, the

interplay of multiple target organs was not assessed simultaneously.

Multiple intermediary controlling factors may mediate GC action

and glucose regulation.

Therefore, a more ‘‘complete’’ mechanistic systems model was

sought to include essential biomarkers from multiple tissues.

Parallel analysis and measurements of multiple tissue-relevant

factors offers better understanding of drug action and pathophys-

iology, and helps identify more relevant controlling factors. This

model includes receptor binding components and target gene

mRNA in different organs to more fully account for the receptor/

gene-mediated GC effects. Our fifth-generation receptor/gene-

mediated GC PD model has been applied to numerous data sets

[3,28]. The effects of MPL on the dynamics of GR mRNA, free

cytosolic receptor, and drug-receptor complex as studied in several

target tissues [4,19,24] were incorporated into this systems model.

Due to the complexity in model fitting, piecewise fitting techniques

were applied with initially estimated parameters fixed for

subsequent data analysis. Previous knowledge and experimental

findings from short- and long-term dosing effects of MPL on

glucose regulation were integrated in a more generalized

mathematical meta-model.

The aim of quantitative and systems pharmacology is to

expedite the drug discovery process and to understand mecha-

nisms of drug actions by developing mathematical models. There

are two general approaches to modeling experimental data in

quantitative pharmacology. The traditional pharmacometrics

approach involves developing a quasi-mechanistic model and

using fitting procedures to capture model parameters and sources

of variability. Fundamental principles of target occupancy,

turnover and signal transduction are often incorporated into the

model building processes in mechanistic terms [29]. A trial-and-

error process is involved with employment of various fitting

justifications and qualification criteria. This is considered as a

‘‘top-down’’ approach. The other is a ‘‘bottom-up’’ approach

taken by systems biologists to assemble complex biochemical and

physiological schemes, and synthesize the acquired information

into a large mathematical model [30]. Model parameter values are

usually assigned based on judgments of best information from the

literature. Simulations are then made to test model predictions

against experimental data. It was pointed out at the first NIH-

sponsored meeting in 2008 on ‘Quantitative and Systems

Pharmacology’ that opportunities and challenges exist for devel-

oping small systems models using yet-to-be-devised intermediary

methods between model-fitting and simulations (http://www.

nigms.nih.gov/News/Reports/201110-syspharma.htm). This re-

port provides such a meta-modeling effort where data and models

from multiple studies are melded to determine how well an array

of hypotheses on how corticosteroids alter glucose metabolism

helps explain the overall experimental data.

Materials and Methods

Animals
This study involves five rat experiments performed in our

laboratory (Table 1). Extensive descriptions were published

[3,24,25,26,27]. Briefly, all animal experiments consisted of male

Wistar rats that were acclimatized for at least 1 week to a 12 h/

12 h light-dark cycle. Rats were housed at constant temperature

(22uC) with free access to water (intact rats) or saline (adrenalec-

tomized rats) along with standard rat chow. The research adhered

to the ‘Principles of Laboratory Animal Care’ and was approved

by the State University of New York at Buffalo Institutional

Animal Care and Use Committee. In the chronic infusion study

[25], 32 normal Wistar rats were randomly divided into 6 sub-

groups which received saline or MPL infusions at the rate of 0.03,

0.1, 0.2, 0.3, or 0.4 mg/kg/h via Alzet osmotic mini-pumps

(Model 2ML4, flow-rate 2.5 ml/h, Alza Corp., Palo Alto, CA).

Rats were sacrificed at various times over 21 days for low dose

groups (0.03 and 0.1 mg/kg/h), over 10 days for the medium dose

group (0.2 mg/kg/h), and 7 days for high dose groups (0.3 and

0.4 mg/kg/h). In the circadian-nadir study [24], 54 normal Wistar

rats received 50 mg/kg MPL IM at the nadir of the corticosterone

rhythm (1.5–3.5 h after lights on) and sacrificed at various

circadian time points after drug dosing. In the single IV injection

and short-term infusion studies [3,26,27], two different groups of

rats (normal and ADX) were given MPL IV at 10 or 50 mg/kg, or

7-day continuous infusions at the rate of 0.1 or 0.3 mg/kg/h via

Meta-Modeling of Methylprednisolone
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Alzet osmotic mini-pumps (Model 2001, flow-rate 1.0 ml/h, Alza

Corp.). In all studies, control rats were also sacrificed at various

time points.

Assays
Plasma MPL and corticosterone concentrations were deter-

mined by a normal-phase high-performance liquid chromatogra-

phy (HPLC) as previously described [31]. In the chronic infusion

study [25], plasma insulin was measured using the Rat/Mouse

Insulin ELISA kit (Millipore Corporation, Billerica, MA). Blood

glucose was measured using a BD Logic Blood Glucose Monitor

(BD, Franklin Lakes, NJ). The recommended blood/plasma

conversion: Plasma Glucose = 1.11 ? Blood Glucose [32] was

used. Plasma free fatty acids (FFA) were measured using a

commercial enzymatic colorimetric assay (Roche Applied Scienc-

es, Indianapolis, IN) adapted to a 96-well plate format with

standard curves prepared from a commercial standard solution

(WAKO NEFA; Wako Pure Chemicals, Richmond, VA). Plasma

leptin was measured at several time points in control, low dose

(0.03 mg/kg/h) and high dose (0.3 and 0.4 mg/kg/h) groups by

commercial enzyme-linked immunosorbent assay (Rat Leptin

EIA; Assay Designs, Ann Arbor, MI). In the circadian-nadir study

[24], plasma insulin was measured using a commercial radioim-

munoassay (RI-13K Rat Insulin RIA Kit; Millipore Corporation).

Plasma glucose was measured by the modified glucose oxidase

method (Sigma GAGO-20; Sigma-Aldrich, St. Louis, MO).

Plasma FFA was quantified using the nonesterified fatty acids

detection kit (Zen-Bio, Research Triangle Park, NC) and standard

curves were constructed from a commercial standard (WAKO

NEFA). Plasma leptin was measured by commercial enzyme-

linked immunosorbent assay (Rat Leptin TiterZyme EIA; Assay

Designs, Ann Arbor, MI). In the injection and short-term infusion

studies [3,26,27], plasma insulin was measured by a rat-specific

enzyme-linked immunosorbent assay (1-2-3 Rat Insulin ELISA,

ALPCO Diagnostics, Windham, NH). A modified glucose oxidase

method (Sigma Diagnostics) was used to determine plasma

glucose. Hepatic cAMP, PEPCK mRNA and hepatic PEPCK

activity were analyzed by real-time qRT-PCR with methodology

described previously [3].

Quantitative Real-Time Reverse Transcription-Polymerase
Chain Reaction Measurements

Hepatic cytosolic free glucocorticoid receptor (GR) density and

mRNA data were quantified as described previously [28].

Abdominal fat GR and leptin mRNA were determined by real-

time qRT-PCR using TaqMan-based probes in the circadian-

nadir study [24]. The GR density and its mRNA in gastrocnemius

muscles were also measured previously [33].

Pharmacokinetic/Pharmacodynamic Model
Pharmacokinetics. For IV injection and infusion studies

[25,26,27], the PK of MPL was described by a two-compartment

model with appropriate input functions [26]. For the IM study,

two absorption pathways from the injection site were added [34].

The PK symbols are listed in Table 2. The PK parameters were

fixed from our previous studies [26,34] and plasma drug

concentrations (CMPL) were used as the driving force in the

following dynamic analysis.

Pharmacodynamics. The extended glucose regulation mod-

el for receptor/gene/protein mediated GC effects is shown in

Fig 1. The GC effects in different tissues [4,24,33] are

incorporated and adaptations were applied to the effects of GC

on selected hepatic, white adipose tissue and skeletal muscle

biomarkers. In brief, the current systems model was constructed

based on previous study results and models developed in our lab:

the fifth-generation receptor/gene mediated GC PD model has

been applied to describe the effects of MPL on the dynamics of

GR mRNA, free cytosolic receptor and nuclear drug-receptor

complex in liver, skeletal muscle and white adipose tissue

[4,24,33]. For each of these target tissues, the mechanisms

underlying GC receptor dynamics are assumed to be similar.

The nuclear drug-receptor complex served as the driving force to

Table 1. Experimental designs and observations from different studies.

Experiments Measurements Not measured

Injection and short infusion studies

Glucose Food intake

Jin JY et al. [26,27] Insulin Leptin

Yao ZL et al. [19] cAMP, PEPCK mRNA, PEPCK, GR dynamics Glucose, Insulin, Leptin

IL6R1 mRNA and IRS-1 mRNA

Circadian-nadir

Glucose GR mRNA in adipose tissue Food intake

Sukumaran et al. [24] Insulin PEPCK mRNA loss rate constant

FFA Leptin Stimulation of PEPCK mRNA production

Leptin mRNA, Leptin

GR mRNA in adipose tissue

Chronic infusion

Glucose GR mRNA in adipose tissue GR dynamics

Fang et al. [25] Insulin PEPCK mRNA loss rate constant Leptin mRNA

FFA Leptin Stimulation of PEPCK mRNA production cAMP, PEPCK dynamics

Leptin

Food intake

doi:10.1371/journal.pone.0081679.t001
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regulate downstream target gene/protein expression in relation to

glycemic control. Upon acute and/or chronic dosing of MPL,

receptor/gene-mediated GC responses were assessed previously in

our lab including hepatic cAMP, PEPCK mRNA and hepatic

PEPCK activity [3], IL6R1 and IRS-1 mRNA in skeletal muscle

[19], adipocyte-derived cytokines such as leptin mRNA and

plasma leptin [24], and systemic biomarkers such as plasma

glucose, insulin, and FFA as well as food intake [4,24,25].

Therefore, previously generated experimental data and modeling

results provide a basis to inform and test our current systems

model. The basic glucose-insulin feedback model was selected [4]

and extended by including the FFA component with multiple

physiological interactions with glucose and insulin [24,25]. Leptin

and Food intake influences were incorporated to characterize the

effects of exogenous nutrient supply [25]. Various PD markers

aforementioned in those three target tissues were tested and

included in our current model. Partitioning the systems into

different sub-models is described in detail in the following sections.

Glucocorticoid Receptor Dynamics
The dynamics of GR were previously studied in liver, muscle

and white adipose tissue [4,24,33,34,35]. The receptor dynamic

parameters governing drug-receptor binding, translocation and

recycling obtained previously [4,24,33,34] were fixed. The GC

receptor/gene mechanisms are considered to be similar in

different tissues. Therefore, the differential equations and initial

conditions (IC) for GC receptor dynamics are the same for all

tissues as follows:

dGRm

dt
~ks Rm

:(1{
DRn

IC50 RmzDRn

){kd Rm
:GRm

IC~GRm 0ð Þ
ð1Þ

dR

dt
~ks R

:GRm{kd R
:R{kon

:Cmpl
:Rzkre

:Rf
:DRn

IC~R 0ð Þ
ð2Þ

dDR

dt
~kon

:Cmpl
:R{kT

:DR IC~DR 0ð Þ~0 ð3Þ

dDRn

dt
~kT

:DR{kre
:DRn IC~DRn 0ð Þ~0 ð4Þ

where symbols are the mRNA for GR (GRm), free cytosolic receptor

density (R), and cytosolic (DR) and nuclear (DRn) drug-receptor

complex concentrations. Symbols ks_Rm and kd_Rm are zero-order

synthesis rate and first-order degradation rate constants for GR

mRNA, ks_R and kd_R are first-order synthesis and degradation rate

constants for free receptor (R). Other symbols include: the drug-

receptor second-order association rate constant (kon), DR nuclear

translocation and recycling rate constants (kT and kre), fraction of

recycling receptors (Rf), and the concentration of DRn at which the

synthesis rate of GRm is reduced to 50% of its baseline (IC50_Rm).

Leptin Dynamics and Food Intake
An indirect response model was used previously to describe the

reduction of daily food consumption (Food, kilocalories per day)

during MPL infusions [25], assuming an inhibitory effect of

plasma MPL on the input rate for food (kin_Food). Keeping the basic

structure model for food intake, we extended the model by

incorporating the receptor dynamics, leptin mRNA, and plasma

leptin information from the circadian-nadir study [24] and

measurements of plasma leptin during MPL infusions. The

updated model for effects of MPL on food intake is depicted in

Fig. 1. Parameters from modeling the leptin data from two studies

[24,25] without incorporating circadian oscillations were obtained

and fixed as the driving force in the PD analysis of food intake.

The stimulatory effect of MPL on the production rate (ks,Lepm) of

leptin mRNA by the activated nuclear drug-receptor complex

(DRn) assumes a stimulatory constant S
Lepm
DRn . The symbol IC

Lep
50 is

the plasma leptin concentration causing 50% inhibition of input

rate of food. The equations and IC are:

dLepm

dt
~ks,Lepm

: 1zS
lepm
DRn

:DRn

� �
{kd,lepm

:Lepm

IC~Lepm 0ð Þ
ð5Þ

dLep

dt
~ks,Lep

:Lepm{kd,lep
:Lep IC~Lep 0ð Þ ð6Þ

kin Food~kin FoodSSz(kin Food0{kin FoodSS):e{kd
:t ð7Þ

dFB

dt
~kFB

:(
Food(0)

Food
){kFB

:FB IC~FB 0ð Þ~1 ð8Þ

dFood

dt
~kin Food

:FB: 1{
Lep

ICFood
50 zLep

 !
{kout Food

:Food

IC~Food 0ð Þ

ð9Þ

The stress effect on food intake and a feedback step (FB) were

modeled as previously [25] where the input rate of food (kin_Food)

Table 2. Pharmacokinetic parameters of methylprednisolone.

Parameter
(units) Definition Value CV%

CL (L/h/kg) Clearance 4.91a 10

Vp (L/kg) Central volume 1.17a,b 50

k12 (h21) Distribution rate
constant

0.39a,b 10

k21 (h21) Distribution rate
constant

0.78a,b 20

kel (h21) Elimination rate
constant

5.57b 27

F Bioavailability (IM) 0.214b 16

Fr Fraction absorbed by
ka1 (IM)

0.725b 11

ka1 (h21) Absorption rate
constant

1.255b 23

ka2 (h21) Absorption rate
constant

0.219b 54

aIV injection; b IM injection. Parameter values were obtained from Jin et al. [26]
and Hazra et al. [37]
doi:10.1371/journal.pone.0081679.t002
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was described by an exponential decline from kin_Food0 to a new

steady-state kin_FoodSS. The kin_Food0 = kout_Food N Foodmax, where

Foodmax indicates hypothetical maximal food consumption at

steady-state [25]. A first-order rate constant kd was used to capture

the delayed tolerance effect on kin_Food. Similarly, we used indirect

response model I (inhibition of input) to model the inhibitory effect

of leptin on the input rate of food intake kin_Food.

Cyclic AMP and PEPCK Dynamics
Detailed descriptions of the PD models used to describe hepatic

cAMP, PEPCK mRNA and PEPCK activity after MPL dosing are

available [3]. The receptor/gene/protein-mediated GC effects on

glucose regulation and selected liver biomarkers are depicted in

Fig.1. The dynamics of hepatic cAMP concentration (cAMP),

hypothetical biosignal (TC) produced by DRn, hepatic PEPCK

mRNA concentration (PEPCKm), and PEPCK activity (PEPCK) are

described by:

dcAMP

dt
~kC

s {kC
d
: 1{

DRn

ICC
50zDRn

� �
:cAMP

IC~cAMP 0ð Þ
ð10Þ

dTC

dt
~k1

:(DRn{TC) IC~0 ð11Þ

dPEPCKm

dt
~kPm

s
: 1zSPm

s
:DRn

� �
{kPm

d
: 1zSPm

d
:TC

� �
:

PEPCKm IC~PEPCKm 0ð Þ
ð12Þ

dPEPCK

dt
~kP

s
: 1z

SP
max

:(cAMP{cAMP(0)

SCP
50z(cAMP{cAMP(0)

� �
:

PEPCKl
m{kP

d
:PEPCK IC~PEPCK 0ð Þ

ð13Þ

where kC
s and kPm

s are the zero-order synthesis rates of cAMP and

PEPCK mRNA. Other rate constants include: the first-order

degradation of cAMP (kC
d ), PEPCK mRNA (kPm

d ), and PEPCK

(kP
d ), the first-order synthesis rate of PEPCK (kP

s ), and TC

transduction (k1). The ICC
50 is the concentration of DRn required to

inhibit cAMP degradation by 50%. The SPm
s and SPm

d are linear

efficiency factors for DRn and TC stimulating PEPCK mRNA

production and degradation. The SP
maxandSCP

50 describe the

maximum stimulation of PEPCK synthesis by the change of

cAMP and the increase of cAMP needed to produce half maximal

stimulation. The l is the amplification factor to account for the

translation from PEPCK mRNA to PEPCK protein. The PD

parameter values for cAMP and PEPCK dynamics were fixed

according to our previous report [3]. The time course changes of

Figure 1. Schematic representation of the receptor/gene/protein mediated PD model of MPL effects on glucose regulation with
different colored boxes indicating major target tissue-associated events (black: liver; blue: white adipose tissue; green: skeletal
muscle; and red: plasma). Differential equations for the model are defined in Eq. (5) – (24). The dotted lines and rectangles indicate inhibition
(closed bar) and stimulation (open bar) of the various processes. Symbols are defined in the text and tables.
doi:10.1371/journal.pone.0081679.g001
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cAMP and PEPCK were simulated after various dosing regimens

of MPL.

IRS-1m Dynamics
The effect of MPL on the mRNA expression of IRS-1 (IRS1m) in

rat skeletal muscle was modeled previously [19]. In addition to the

direct inhibitory effect of nuclear drug-receptor complex (DRn) on

the transcription of IRS-1, the model incorporated an interme-

diate controller of IL-6 receptor type 1 mRNA (IL6R1m) which

exerts long-term inhibitory effects on the production of IRS-1

mRNA. A series of transit compartments (TCn) with a first-order

rate constant (ke) were needed to explain the delayed effect of

IL6R1m on the synthesis rate (ks_m) of IRS1m. The model

equations are:

dIL6R1m

dt
~kIL6R1m

s
: 1z

SIL6R1m
max

:DRn

SCIL6R1m
50 zDRn

� �
{kIL6R1m

d
:

IL6R1m IC~IL6R1m 0ð Þ~1

ð14Þ

dTCIL1

dt
~ke

:(IL6R1m{TCIL1) IC~1 ð15Þ

dTCILn

dt
~ke|(TCILn{1{TCILn) all IC~1 ð16Þ

dIRS1m

dt
~kIRS1m

s
: 1{

DRn

ICDRn
50 zDRn

� �
: 1{

TCILn

ICIL6R1m
50 zTCILn

� �

{kIRS1m
d

:IRS1m IC~IRS1m 0ð Þ~1

ð17Þ

where kIL6R1m
s and kIRS1m

s are zero-order synthesis rates of IL6R1

and IRS-1 mRNA; kIL6R1m
d and kIRS1m

d are first-order degradation

rate constants for IL6R1 and IRS-1 mRNA; the SCIL6R1m
50 is the

DRn concentration required to exert 50% of maximum stimulation

(SIL6R1m
max ) of IL6R1 mRNA transcription; ICDRn

50 is the DRn

concentration at which the synthesis rate of IRS1m is reduced by

50%, and ICIL6R1m
50 reflects the TCn value that reduces the synthesis

rate of IRS1m by 50%. The PD parameters for IL6R1m and IRS1m

dynamics were fixed as reported [19].

Glucose-Insulin-FFA Dynamics
Based on mechanistic reasons, our PD model was developed

incorporating GC stimulation of FFA production via receptor-

mediated effects in white adipose tissue, the effects of hepatic

PEPCK and cAMP on glucose production [4], glucose-insulin-

FFA inter-regulation including glucose/FFA stimulation of insulin

secretion, insulin stimulation of glucose/FFA disposition, and the

negative feedback of IRS1m on insulin stimulation of glucose

utilization (Fig. 1). The effect of exogenous glucose input from food

intake utilized a linear efficiency constant SFood acting on the rate of

glucose synthesis [25]. In the circadian-nadir study [24], different

rats were sacrificed at each time point and food intake was not

monitored. Hence the parameter kG
s was a combined indicator for

both exogenous and endogenous glucose production. The basic

structure of the glucose-insulin-FFA feedback system was de-

scribed previously [25]. The following equations were used to fit

glucose (G), insulin (I) and FFA (FFA) data from all MPL doses

simultaneously:

dG

dt
~kG

s
:½1zSFood:Food�:S(t)PzC{

kG
d
:½1zSIG

:(
IRS1m

IRS10
m

)l1 :(I{I0)�:G IC~G0

ð18Þ

S(t)PzC~1zSPEPCK :(PEPCK{PEPCK0)z

ScAMP
max

:(cAMP{cAMP0)

SCcAMP
50 z(cAMP{cAMP0)

ð19Þ

dI

dt
~kI

s
:½1zSGI

:(G{G0)zSFI
:(FFA{FFA0):

exp ({kFI :t)�{kI
d
:I IC~I0

ð20Þ

dFFA

dt
~kF

s
: 1z

SF
max

:DRn

SCF
50zDRn

� �
{kF

d
:½1zSIF

:(I{I0)�:

FFA IC~FFA0

ð21Þ

Glucose turnover has production with a zero-order rate

constant kG
s and utilization with a first-order rate constant kG

d .

The PEPCK and cAMP increase glucose production presumably

by stimulating gluconeogenesis and glycogenolysis in liver. The

SPEPCK is the linear efficiency factor of PEPCK stimulation of

glucose production. The ScAMP
max and SCcAMP

50 reflect the nonlinear

stimulation of kG
s by changes in cAMP. Similar to previous models

[25], the increase of insulin from baseline (I0) regulates glucose by

stimulating its disposition with a linear efficiency constant SIG. The

ratio of IRS1m/IRS1m
0 together with a power coefficient l1 reflect

the impairing effect of IRS-1 mRNA on insulin stimulation of

glucose utilization [26].

In Eq. (20), insulin turnover is described by a zero-order

production process kI
s and first-order degradation rate constant

kI
d . The change of glucose from baseline (G0) is used to drive the

stimulation effect of glucose on insulin production with a linear

efficiency constant SGI. In the chronic infusion study, the effect of

FFA on insulin is incorporated as previously described [25] with

an empirical function exp(-kFI?t) modulating the time-dependent

stimulation effect of FFA on insulin secretion. In the circadian-

nadir and IV injection studies, the acute effects of FFA on insulin

production was modeled with a linear efficiency constant SFI and

the change of FFA from baseline (FFA0). In Eq. (21), FFA is

constantly produced at a zero-order rate constant kF
s and utilized

with a first-order rate constant kF
d . The stimulatory effect of MPL

on FFA production is presumed via the activated nuclear drug-

receptor complex (DRn) in white adipose tissue with a maximum

achievable stimulation constant SF
max and the sensitivity parameter

SCF
50. The change of insulin from baseline (I0) is used to control

FFA disposition with a linear efficiency constant (SIF).

The system was assumed to be at steady-state at time zero, and

Eq. 18, 20, 21 yield:

kG
s ~

kG
d
:G0

1zSFood:Food0
ð22Þ
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kI
s ~kI

d
:I0 ð23Þ

kF
s ~kF

d
:FFA0 ð24Þ

where initial values of G0, I0, and FFA0 were fixed as the mean

baseline values for each dose group.

Data Analysis
Data taken from five animal studies were pooled for simulta-

neous modeling [3,24,25,26,27]. Table 1 gives the summary of

measurements that were made in these studies. Due to the

complexity in model fitting, a piecewise approach was applied for

fitting the plasma glucose, insulin and FFA data. With this

approach the reported PK parameter values were fixed to serve as

a driving force for the PD effects after various MPL dosing

regimens [26,37]. GR dynamic parameters in liver and muscle

were fixed based on previously reported results [3,19] to permit

usage of time-course changes of nuclear drug-receptor complex

(DRn) as an input function for regulation of downstream target

gene/protein expression in each tissue. Additionally, MPL effects

on IL-6R1, IRS-1 in muscle, and cAMP/PEPCK dynamics in

liver were fixed with previously reported values [3,19]. Further,

sensitivity analysis for parameters describing GR dynamics in liver

and muscle were performed using the Berkeley Madonna program

(University of California at Berkeley, CA). In adipose tissue, GR

dynamics was first estimated separately utilizing the mRNA

expression data and the parameters were fixed for the subsequent

step in modeling the effects of drug dosing on leptin mRNA and

protein expression in adipose tissue. These estimated parameters

were further fixed for modeling the effects of leptin on food intake.

As the final step, previously resolved PD parameters governing

MPL effects on PEPCK, cAMP in liver, IRS-1 in muscle, food

intake and DRn in adipose tissue were fixed to provide time-course

input functions, which permit further estimations of some of the

key PD parameters linking those intermittent biomarkers to the

systemic changes of plasma glucose/FFA/insulin.

The ADAPT 5 software [36] was used for all model fittings with

the maximum likelihood method. The variance model was defined

as V(s,h,ti) = s1
2N Y(h,ti)

s2, where V(s,h,ti) is the variance for the ith

point, Y(h,ti) is the ith model-predicted value, h represents the

estimated structural parameters, and s1, s2 are the variance

parameters which were estimated. Replicate data at each time

point from multiple animals in different experiments were pooled

and modeled simultaneously. The goodness-of-fit criteria were

assessed by model convergence, visual inspection, precision of

parameter estimates, objective function values such as Akaike

Information Criterion (AIC), and examination of residuals.

Results

Simulation of MPL Pharmacokinetics
The pharmacokinetic profiles of MPL following IV drug

injection or infusion and IM injection were described previously

[26,27,33,34,37]. A two-compartment model with linear elimina-

tion from the central compartment was used for describing the

distribution and elimination of the drug. In the case of IM dosing

complex flip-flop kinetics was observed that were modeled using

two independent absorption rate processes [37]. Therefore,

plasma concentrations of MPL after various dosing regimens were

generated using the same model and reported parameters (Fig. 2).

The fixed parameters are summarized in Table 2.

Glucocorticoid Receptor Dynamics
Because receptor density and receptor mRNA data in white

adipose tissue and skeletal muscle are not available for the chronic

infusion study, the parameters for receptor dynamics in the single-

dose studies were used and simulations were performed to predict

the receptor dynamic profiles in both tissues after chronic dosing.

The observed GR mRNA expression profiles along with model

fittings in white adipose tissue in the control rats and the rats

following IM MPL dosing are shown in Fig. 3A. In response to

single MPL dosing, the GR mRNA was temporarily down-

regulated with a nadir at about 10 h followed by a slow return

back to the baseline. Free cytosolic GR quickly dropped to zero

Figure 2. Simulated pharmacokinetics of MPL for 50 mg/kg IM (dash-dotted line) injection, 10 mg IV (light solid line) and 50 mg IV
(heavy solid line) injection groups (A) and 0.03 (dotted line), 0.1 (light long dash line), 0.2 (heavy long dash line), 0.3 (light short
dash line) and 0.4 (heavy short dash line) mg/kg/h infusion groups (B). The PK parameters are listed in Table 2.
doi:10.1371/journal.pone.0081679.g002
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and recovered with two phases (data not shown). The dynamic

profiles were consistent with our measurements in liver, skeletal

muscle and adipose tissue [19,24,35,38]. However, during chronic

MPL infusion, similar to previous studies [39,40], the receptor

mRNA decreased first and then rose to a new steady-state (Fig. 3B),

indicating a tolerance phenomenon. While the free cytosolic

receptor stayed down-regulated during the study, the nuclear

drug-receptor complex (DRn) showed an early increment followed

by a decline to a new steady-state (Fig. 3D). Simulation results for

the infusion study indicated tolerance phenomena for both GR

mRNA and DRn. This was mainly due to GR mRNA down-

regulation as there was insufficient free receptor available during

continuous infusion. Because we seek to model all pooled data and

accommodate different study designs in this report, modest

circadian oscillations in GR mRNA expression were not

incorporated into the dynamic model. By keeping the basic model

structure for receptor dynamics, we obtained reasonable fittings

for the GR mRNA expression in white adipose tissue (Fig. 3A) and

parameter estimates similar to reported values when the circadian

rhythm was included (Table 3) [24]. For liver and skeletal muscle,

the GR receptor density and mRNA expression after MPL were

measured and modeled previously [19,27]. Therefore, receptor

dynamic parameters in these two tissues were fixed. Sensitivity

analysis indicated that the GR dynamic profiles are insensitive to

changing the kT value from 58.2 h21 [34,37] to 90 h21 [19], so kT

was fixed to the value of 58.2 h21. We previously demonstrated

the apparent insensitivity of GR mRNA and GR density to higher

values of kT beyond 15 h21 [41]. The estimated and fixed

parameters for receptor dynamics in the three target tissues are

listed in Table 3.

Leptin and Food Intake
The observed leptin mRNA expression and plasma leptin

concentrations along with the model fittings in the circadian-nadir

study [24] and chronic infusion study [25] are shown in Fig. 4.

Table 4 lists the fixed and estimated parameters for leptin

dynamics. Assuming DRn as the controlling factor for up-

regulating leptin mRNA expression, the dynamic model (Fig. 1)

well captured the changes of leptin dynamics (Fig. 4) after various

MPL dosing regimens. Estimated leptin dynamic parameters are

Figure 3. The time course of changes of GR mRNA expression (A, B) and DRn (C, D) in white adipose tissue for MPL infusions (B, D),
control (#), and 50 mg/kg MPL IM (N) injection (A, C). Symbols are observed data. Lines depict both the fitting results for the control (light
dash-dotted line) and 50 mg/kg (heavy dash-dotted line) injection groups with Eq. (1) – (4) and simulation results for 0.03 (dotted line), 0.1 (light long
dash line), 0.2 (heavy long dash line), 0.3 (light short dash line) and 0.4 (heavy short dash line) mg/kg/h infusion groups. The model parameter values
are listed in Table 3.
doi:10.1371/journal.pone.0081679.g003
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similar to previously reported values [24] except for the lower

value of S
Lepm
DRn (0.0989 nM21). In the circadian-nadir study,

variability in leptin mRNA expression is apparent due to rich

sampling within the 24 h period and circadian rhythms. Since no

circadian oscillations were incorporated into the current model,

stable concentrations of leptin mRNA and plasma leptin were

predicted. This might also be the reason for lower estimates of

S
Lepm
DRn and somewhat under-predictions of peak leptin mRNA and

plasma leptin as well. MPL up-regulated leptin mRNA expression

as well as plasma leptin with the peak time around 12 h after drug

dosing, as previously reported [24]. The chronic dosing effect of

MPL on plasma leptin is shown in Fig. 4C. Compared to the

profiles after acute dosing, a later up-regulation of plasma leptin

was predicted followed by a slight decline to a new steady-state

during the study period. The simulated profiles of DRn served as

driving forces for stimulating leptin transcription. Due to the

relatively low estimate of S
Lepm
DRn , the tolerance effect of plasma

leptin was only observed in the high dose groups.

In the present study, plasma leptin served as the driving force

for inhibition of food intake. In agreement with this, we observed

that food consumption decreased to its nadir at about 40 h after

drug dosing followed by a slow return to a new steady-state. The

general model (Fig. 1) well captured the changes of food intake

(Fig. 5) after chronic MPL dosing. Similar to previous modeling

[25], an exponential decay function for the food input rate kin_Food

was used to describe the reduction of food consumption in control

rats, and the negative feedback remained the same, as we see a

slow increase of food intake during drug dosing. The feedback

transduction rate kFB of 0.0426 day21 is similar to our previous

estimate [25] and indicates a slow tolerance effect. The estimated

ICFood
50 of 11550 pg/ml indicates the high potency of leptin to

inhibit food consumption, which is consistent with the strong MPL

effect on reduction of food intake [25]. The estimated maximal

food intake (57.9 kcal/day) is in good agreement with our previous

value (54.4 kcal/day) [25].

Cyclic AMP, PEPCK and IRS-1m Dynamics
The dynamic profiles of cAMP, PEPCK and IRS1m were

described previously [3,19]. The parameters regulating the

dynamic changes of these components were obtained from those

studies and fixed to avoid over-parameterization. Table 5 lists the

parameter values used in the model. After chronic dosing of MPL,

tolerance phenomena were seen for all of these key elements (data

not shown), which was mainly due to receptor saturation during

continuous drug exposure.

Glucose-Insulin-FFA Dynamics
Fig. 6–8 provide the fitting results for the circadian-nadir,

chronic infusion, injection, and short infusion studies and Table 6

lists the parameter estimates. In general, our model adequately

captures the time-course profiles of plasma glucose/insulin/FFA

after various doses of MPL. After single doses of MPL marked

changes in the concentrations of plasma insulin and FFA were

observed (Fig. 6). We did not use the plasma glucose data from this

acute dosing group for the modeling effort because of the strong

influence of stress effects on plasma glucose caused by IM dosing

as discussed by Sukumaran et al. [24]. In the chronic infusion

study (Fig. 8), relatively stable plasma glucose, insulin, and FFA

concentrations were observed for the control rats, indicating little

contribution of food effects on overall glucose regulation. For most

drug dosing groups, a slight decrease in plasma glucose followed

by a gradual increase to reach a steady-state throughout the 7–21

day study period was observed. This slight decrease of glucose

could be mainly explained by the initial spike of insulin at about

6 h. After the initial rapid increase during the infusion study,

plasma insulin slowly increased to a new steady-state. A

remarkable increase of plasma FFA was observed after various

doses of MPL with a peak time about 30 h followed by a decrease

to a steady-state. This tolerance effect was mainly driven by the

down-regulation of GR and its mRNA. In the injection and short-

term infusion studies [26], a gradual increase of glucose as well as

an early peak for plasma insulin, declining thereafter followed by a

gradual increase were observed (Fig. 7). Due to the 3-5-fold lower

baseline insulin concentrations compared to the chronic infusion

study, over-predictions of the initial insulin spike were observed.

When MPL infusion ceased, plasma glucose and insulin started

returning to baseline. The decline of plasma insulin was

underestimated and hence the model over-predicted the decline

of plasma glucose accordingly.

Table 3. Receptor dynamic parameters of methylprednisolone.

Parameter (units) Definition Value CV%

kRm
s (fmol/g/h) Synthesis rate constant for GR mRNA 0.416 f/2.90g fixed

ICRm
50 (fmol/mg protein) DRn required for 50% inhibition of GR mRNA production 15.6 f/26.2g/0.911h fixed

kRm
d (h21) Degradation rate constant for GR mRNA 0.427 f/0.139h 14.9 b

kon (nM21?h21) Association rate constant 0.016f/0.0033g/0.0027h fixed

kre (h21) DRn loss rate constant 1.31 f/0.57g/0.618h fixed

Rf Recycling factor 0.93 f/0.49 g/0.72h fixed

kT (h21) Translocation rate constant 58.2 f,h/0.63g fixed

kR
s (fmol/mg protein/fmol mRNA/g/h) Synthesis rate constant for GR 0.00196 f/0.777h fixed

kR
d (h21) Degradation rate constant for GR 0.05 f,g/0.035h fixed

R(0) (fmol/mg protein) GR baseline: white adipose liver skeletal muscle 77.7f 420c,g/540.7b,d,g/328.7e,g 65.3h 13.3b

GRm(0) i (mol/ng RNA) GR mRNA baseline: white adipose 2050a,f/2200b-e,f fixed

GRm(0) (fmol/g) GR mRNA baseline: liver skeletal muscle 18.6c,g/25.8b-d,g/3.65e,g 2.99h fixed

aIM injection control; b IM 50 mg injection; c IV 10 mg/kg injection; d IV 50 mg/kg injection;
eIV infusion; f White adipose tissue; g Liver; h Skeletal muscle; i Different normalization for adipose tissue than for liver and skeletal muscle requires different units.
doi:10.1371/journal.pone.0081679.t003
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Figure 4. The time course of changes in leptin mRNA expression in white adipose tissue (A), plasma leptin concentrations in the
circadian (B) and chronic infusion studies (C) for control (#) and 50 mg IM injection (N), and 0.03 (.), 0.3 (&) and 0.4 (%) mg/kg/h
subcutaneous infusion groups. Symbols are observed leptin mRNA or plasma leptin concentrations. Lines are fitting results for the control (light
dash-dotted line), 50 mg IM (heavy dash-dotted line) and 0.03 (dotted line), 0.3 (light short dash line) and 0.4 (heavy short dash line) mg/kg/h infusion
groups. The PD parameters are listed in Table 4.
doi:10.1371/journal.pone.0081679.g004

Meta-Modeling of Methylprednisolone

PLOS ONE | www.plosone.org 10 December 2013 | Volume 8 | Issue 12 | e81679



Physiological parameters kG
d , SGI,k

I
d , SIG, SIF, kF

d , and SFI were

used to describe the glucose-insulin-FFA regulation system in

plasma. Different SIF values for single and chronic dosing were

necessary to fit the plasma glucose/insulin/FFA profiles. A lower

SIF value (13.3 mM21) for single dosing was estimated compared

to the value of 28.9 mM21 for chronic dosing, which indicates a

complex and different capacity of FFA for modulating b-cell

function and insulin secretion. An empirical function exp(2kFI?t)

Table 4. Pharmacodynamic parameters for leptin dynamics and food intake.

Parameter (units) Definition Value CV%

Leptin dynamics

k
Lepm
d (h21) Leptin mRNA loss rate constant 0.0427 18.3

S
Lepm
DRn (nM21) Stimulation of leptin mRNA production 0.0989 19.4

k
Lep
d (h21) Leptin loss rate constant 4.952 244.5

Lepm(0) (mol/ng) Baseline leptin mRNA concentration 135600 a/155100 b/170000 c-h 3.23a/4.88 b/fixed c-h

Lep(0) (pg/mL) Baseline leptin concentration in plasma 23650 a/25000 b/5170c-h 3.21a/fixedb-h

Food intake

kin_Food0 (kcal/day22) Initial food input rate 171 Fixed

kin_FoodSS (kcal/day22) Steady-state food input rate 147 Fixed

Foodmax(kcal/day) Maximal food intake 57.9 9.35

ICFood
50 (pg/mL) Inhibition constant of leptin on kin_Food 11550 22.4

kFB (day21) Transduction rate constant 0.0426 67.4

kd (day21) Loss rate constant for food input 1.21 Fixed

Food0 (kcal/day) Food intake at start of study 91.7c/80.3d/88.1e/88.5f/94.9g/88.6h (fixed) Fixed

aIM injection control; b IM 50 mg injection; cSaline infusion; d 0.03 mg/kg/h; e 0.1 mg/kg/h; f 0.2 mg/kg/h; g0.3 mg/kg/h; h0.4 mg/kg/h.
doi:10.1371/journal.pone.0081679.t004

Figure 5. Time course of food intake (kilocalories per day) for saline (#), and 0.03 (.), 0.1 (=), 0.2 (D), 0.3 (&) and 0.4 (%) mg/kg/h
MPL infusions. Lines depict the fitting results for the food intake of saline (light dash-dotted line), 0.03 (dotted line), 0.1 (light long dash line), 0.2
(heavy long dash line), 0.3 (light short dash line) and 0.4 (heavy short dash line) mg/kg/h infusion groups. The PD parameters are listed in Table 4.
doi:10.1371/journal.pone.0081679.g005
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was not used for the single dosing study as the initial spike of

insulin was not observed. Instead of using plasma MPL as the

driving force for GC action on FFA, the drug-receptor complex in

nucleus (DRn) in adipose tissue was used. The estimate of

SCF
50(2.23 fmol/mg protein) indicates the high potency of DRn

to stimulate FFA production. In the normal glucose-insulin

regulation system, increased glucose concentrations stimulate

insulin secretion, and the parameter SGI of 0.0305 mg/dl21

represents the glucose sensitivity, which is close to our previous

estimate of 0.0178 mg/dl21 [25]. However, elevated insulin

stimulates glucose disposition, and a higher estimate of insulin

sensitivity of 2.87 ng/ml21 was fitted in our current model when

both modulators were considered: the stimulation effects of FFA

on insulin secretion and the enhanced peripheral insulin sensitivity

effects of IRS1m in skeletal muscle. This indicates that, in order to

produce the same magnitude increase of glucose production, more

pronounced changes in insulin are needed. Owing to the model

complexity, we were not able to include the negative feedback of

FFA on this stimulation effect of insulin on glucose disposition and

for insulin stimulating FFA disposition. A lower value of kF
d

(0.096 h21) compared to a previous estimate of 0.29 h21 [24] was

fixed according to the best fitting results. The current model

yielded a lower estimate of kG
d compared to our previous model

which lacked multiple intermediate factors [25]. Given the low

CV% associated with the parameter and rich information

included in the current study, this is a more reliable estimate.

Discussion

Glycemic control is a complex and highly integrated process

where normal blood glucose is maintained by the balance between

glucose production and utilization. Development of a mechanistic

small systems model integrating major regulatory organs and

relevant controlling factors to characterize MPL effects on glucose

regulation is of importance to facilitate understanding of the

complex roles and interactions of diverse factors. In developing

mechanistic models of GC effects, identifying major contributing

factors governing various rate-limiting processes is of primary

importance. Diabetes is a multi-faceted disease involving a variety

of organ systems with numerous associated biomarkers. Their

inclusion and interrelationships represent challenges in model

building. Our current model provides insights into GC action on

glucose regulation via parallel analysis of the three most relevant

target organs (liver, muscle and adipose tissue). MPL was chosen as

the model drug because of its favorable PK properties and our

extensive data. We have utilized well-established biomarkers and

considered the importance of their contributions to glucose

regulation. Earlier work demonstrated that MPL induces liver-

specific cAMP and PEPCK [3] and IRS-1 in skeletal muscle [33].

In liver, PEPCK is the rate-limiting enzyme for gluconeogenesis

and cAMP plays an important role in glucose regulation [42].

Skeletal muscle is a major target tissue for GC-induced insulin

resistance and is responsible for about 80% of insulin-stimulated

total glucose disposal. IRS-1 mRNA in skeletal muscle is down-

regulated after acute and chronic MPL [19]. It is involved in signal

transduction for mediating insulin effects, thus affecting glucose

metabolism [43]. Furthermore, white adipose tissue is an

additional target organ related to adverse metabolic effects of

GC [44]. Leptin and FFA, two bioactive molecules mainly

produced in adipocytes, contribute to insulin resistance and are

important regulators between tissues [7]. In addition, leptin is an

important adipokine responsible for energy metabolism by

suppressing appetite [6]. Therefore, both serve as intermediate

factors contributing to GC-induced hyperglycemia. Our selections

of potential biomarkers were mainly based on currently known

mechanisms and literature data; however, this does not exclude

the possibility of additional relevant factors.

Table 5. Pharmacodynamic parameters for cAMP, PEPCK and
IRS-1m.

Parameter (units) Definition Value

Hepatic cAMP dynamics

kC
d (h21) cAMP loss rate constant 0.27

ICC
50 (fmol/mg protein) Inhibition constant of

DRn on kd
C

433 a-f/17.8g-k

cAMP0 (pmol/g liver) Baseline cAMP
concentration

806a-f/654g,h/656i-k

Hepatic PEPCK mRNA
Dynamics

k1 (h21) Transduction rate
constant

0.75

kPm
d (h21) PEPCK mRNA loss

rate constant
0.017

Ss
Pm (fmol/mg protein)21 Stimulation of PEPCK

mRNA production
2.11

Sd
Pm (fmol/mg protein)21 Stimulation of PEPCK

mRNA degration
2.90

PEPCKm(0) (fmol/g liver) Baseline PEPCK mRNA
concentration

430a-f/383g,h/209i-k

Hepatic PEPCK Dynamics

kP
d (h21) PEPCK mRNA loss rate

constant
0.017

l Amplification factor 0.004

Smax
P Maximum stimulation

of PEPCK production
2.11

SCP
50 (fmol/g liver) Stimulation constant of

cAMP on ks
P

0.0055

PEPCK(0) Baseline PEPCK
concentration in plasma

1.83a-f/1.4 g-k

(mmol ATP/min/g liver)

Muscle IL-6R1 and IRS-1

kd IL6R1m (h21) IL6R-1 mRNA loss rate
constant

0.306

Smax_IL6R1m Maximum stimulation by
DRn

3.05

SC50_IL6R1m (fmol/mg
protein)

Stimulation constant by
DRn

1.09

ke (h21) Transduction rate
constant

0.144

kIRS{1m
d (h21) IRS-1 mRNA loss rate

constant
0.313

IC50_DRn (fmol/mg protein) Inhibition constant by
DRn

5.95

IC50_IL6R1 Inhibition constant by
IL6R-1

0.196

N Number of transit
compartments

5

aSaline infusion; b0.03 mg/kg/h; c 0.1 mg/kg/h; d 0.2 mg/kg/h; e 0.3 mg/kg/h; f

0.4 mg/kg/h;
gSaline IV injection; h10 mg/kg injection; i50 mg/kg injection; jSaline IM
injection; k50 mg/kg IM injection. Parameter values were fixed from Jin et al. [3]
and Yao et al. [19]
doi:10.1371/journal.pone.0081679.t005
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One important function of the liver is to maintain normal blood

glucose concentrations. Glucose originates from dietary carbohy-

drates and via glycogenolysis and gluconeogenesis in liver. Liver is

also a major site for glycogen storage via glycogenesis. In our

model, parameter SFood reflects the efficiency of food intake in

controlling the exogenous source of glucose input. The value of

0.000346 (kcal/h)21 was fixed for SFood to a previous estimate [25],

indicating that a 0.2% increase in kG
s occurs when food consump-

tion is 120 kcal/day. Furthermore, the parameters SPEPCK

(0.013 mmol ATP/min/g liver), ScAMP
max (3.45) and

SCcAMP
50 (1.82 pmol/g liver) represent the efficiency of endogenous

glucose arising from hepatic glucose output. Considering the

magnitude of change of PEPCK (1-2-fold after single doses and

chronic infusion) and cAMP (100’s for injection and 1000’s for

chronic infusion), hepatic glucose output represents the major

pathway for glucose production and GC regulate glucose

production mainly by affecting this source.

White adipose tissue is the other important target of GC [6] and

serves to store excess energy as well as maintain energy

homeostasis. Previous studies have shown that MPL elevated

circulating plasma leptin and FFA along with up-regulated leptin

mRNA expression in white adipose tissue [24,25]. In the current

study, because of limited data availability for receptor dynamics in

white adipose tissue [24], parameters from single MPL dosing [24]

were used to simulate the receptor dynamic profiles after chronic

dosing. The DRn was used as the driving force for the

transcriptional regulation of leptin expression in white adipose

tissue, and our model in general well captured the profiles of leptin

mRNA and plasma leptin after both single and chronic MPL

(Fig. 4). However, our model under-predicted plasma leptin

concentration for the first time point in the high dose group

(0.4 mg/kg/h) of the chronic infusion. This may be due to

insufficient data sampling as we only have few data points with

appreciable variability and needed the assumption of similar GR

dynamics in acute and chronic infusion studies. The misfit also

Figure 6. The time course of changes in plasma insulin (A) and FFA (B) for saline (#), and 50 mg/kg IM (N) MPL injections. Lines depict
the simultaneous fitting results with Eq. (18) – (21) for saline (light dash-dotted line) and 50 mg/kg IM (heavy dash-dotted line) MPL injections. The PD
parameters are listed in Table 6.
doi:10.1371/journal.pone.0081679.g006
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indicated that the experimental data for GR mRNA expression

and DRn in white adipose tissue of the chronic infusion study may

be needed in order to validate the assumption. Based on the

physiological role of leptin to suppress appetite, assuming an

inhibitory effect of leptin on food input rate adequately fitted the

food intake data after chronic infusion of MPL (Fig. 5). However,

in comparison with hepatic glucose output, the food consumption

effect on exogenous glucose input seemed to be modest. The GC

directly stimulated lipolysis in adipocytes by increasing hormone-

sensitive lipase and triglyceride lipase and use of antagonists for

GR blocks these effects [45]. Therefore, DRn was used as the

driving force to stimulate the production of FFA. During chronic

infusion of MPL, our model predicts a quick increase of DRn,

which peaks within 6 h followed by a relatively slow decline to a

new steady-state at about 40 h. Correspondingly, plasma FFA

peaks about 32 h and then returns to a new steady-state higher

than the baseline, indicating a tolerance effect after chronic MPL

dosing. In contrast, after single MPL doses, the model predicted an

initial faster increase of DRn to a peak value at 30 min, followed by

a rapid decline to baseline [24]. Plasma FFA was stimulated to

peak at about 5 h after dosing and return back to baseline. Our

model captured the up-regulation of FFA by MPL generally well,

but overestimated the plasma FFA and the return to baseline

(Fig. 6). This discrepancy might be caused by the different assay

methods used which resulted in different baseline values (0.12 mM

in circadian study vs 0.05 mM in chronic infusion study). We tried

to factor in a scaling parameter to differentiate the assay methods

used between the two studies [24,25]; however, due to lack of

relevant information, additional parameter estimates could not be

obtained with reasonable precision. The antilipolytic effect of

insulin was not included owing to model complexity, which may

contribute to the underestimation of the rate of decline of plasma

FFA in our current model.

A major target for GC-induced insulin resistance is skeletal

muscle. After GC treatment, a shift in energy metabolism from

glucose to FFA, impaired insulin signaling transduction, and

reduced glucose uptake into skeletal muscle have been associated

with insulin resistance [43,46]. Our extensive microarray analysis

provided a transcriptional basis for the development of insulin

resistance in rat skeletal muscle in response to GC challenge [43].

Notably, the decline in IRS-1 in skeletal muscle may inhibit

insulin-stimulated glucose uptake in type II diabetic patients and

insulin-resistant animals [47,48,49]. Consistent with this, down-

regulation of IRS-1 mRNA, a central factor in insulin signaling,

was observed after GC dosing [19,43]. In our model, the decline in

IRS-1 mRNA was proposed to account for GC-induced insulin

resistance in skeletal muscle, and the time course changes of

IRS1m/IRS1m0 was used to modify the sensitivity factor SIG. As

concentrations of IRS1m decline, more insulin would be needed to

account for the decrease in SIG in order to exert the same effect for

stimulating glucose disposition, thus leading to the development of

insulin resistance. The detailed profiles of IRS1m after single and

chronic dosing of MPL were described previously [19]. After bolus

MPL, the decline of IRS1m may account for the predicted glucose

profile (Fig. 7A) with two different phases. During the infusion

study, IRS1m decreases to lower than baseline, which may in part

explain the increased plasma glucose in association with hyper-

insulinemia. Due to lack of information for the temporal profile of

IRS-1 proteins in skeletal muscle, IRS-1 mRNA was built into the

current model. Future measurements of protein concentrations

will be helpful in upgrading the current model and improving our

understanding of disease progression during long-term MPL

dosing.

The glucose-insulin feedback system seems to play a central role

in maintaining glucose homeostasis by coordinating multiple

organs, including the functions of b-cells, liver, muscle, and

adipose tissue. Elevated insulin secretion from pancreatic b-cells

counterbalances the increased plasma glucose with a major effect

in increasing peripheral glucose utilization. In order to maintain

normal plasma glucose, appropriate adaptive responses from

different tissues provide the key for proper co-ordination of

peripheral insulin sensitivity and insulin secretion. In response to

the diabetogenic action of GC, some major systemic effects

include: increased gluconeogenesis and hence greater hepatic

glucose output from liver; increased protein breakdown from

skeletal muscle which increases the supply of substrates for hepatic

gluconeogenesis; lipolysis and differential production of adipokines

Table 6. Pharmacodynamic parameters for MPL effects on
glucose/insulin/FFA regulation.

Parameter (units) Definition Value (CV%)

Glucose Dynamics

kG
d (h21) Glucose utilization

rate constant
0.00521 (48.2)

SGI (mg/dL)21 Glucose sensitivity 0.0305 (13.3)

SPEPCK (mmol ATP/min/g

liver)

Stimulation constant 0.013 (---h)

ScAMP
max

Maximal stimulation 3.45 (41.9)

SCcAMP
50 (pmol/g liver) Stimulation constant 1.82 (55.8)

SFood (kcal/hr)21 Food sensitivity 0.000346 (---h)

l1 Power coefficient 1.55 (---h)

G0 (mg/dL) Baseline glucose 197a/184b/183c/174d/
192e/211f

119g/117h/113i/86 j/70k/
80l/190m,n (fixed)

Insulin Dynamics

kI
d (h21) Insulin degradation

rate constant
0.224 (---h)

SIG (ng/mL)21 Insulin sensitivity 2.87 (53.0)

SIF (ng/mL)21 Insulin sensitivity 0.315 (---h)

I0 (ng/mL) Baseline insulin 3.73a/3.45b/3.57c/3.97d/
4.90e/3.89f/1.36g

1.00h/1.10i/0.88 j/1.00k/
1.00l/2.9m/1.5n (fixed)

FFA Dynamics

kF
d (h21) FFA degradation rate

constant
0.096 (---h)

SFI (mM)21 FFA sensitivity 13.3 a-f, j-l (31.2)/28.9 g-i m-

n (43.9)

kFI (h21) Degradation rate
constant

0.183 (---h)

SF
max

Maximal stimulation 15.0 (---h)

SCF
50 (ng/mL) Stimulation constant 2.23 (77.3)

F0 (mM) Baseline FFA 0.053a/0.052b/0.071c/
0.041d/0.053e

0.062f/0.055g-l/0.12m/
0.12n (fixed)

Parameter values were obtained from Fang et al. [25]: aSaline infusion;
b0.03 mg/kg/h; c 0.1 mg/kg/h; d 0.2 mg/kg/h; e 0.3 mg/kg/h; f 0.4 mg/kg/h; Jin
at al. [26]: gSaline i.v. injection; h10 mg/kg injection; i50 mg/kg injection; jSaline
infusion; k0.1 mg/kg/h; l0.3 mg/kg/h; Sukumaran et al. [24]: mSaline IM injection;
n50 mg/kg injection; h Not estimated.
doi:10.1371/journal.pone.0081679.t006
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from adipose tissue, and peripheral insulin resistance. Among

these, appropriate insulin secretion from pancreatic b-cells seems

to play a major role in compensating for GC-induced hypergly-

cemia. Rapid elevations of insulin were observed in response to

both single and chronic MPL dosing; however, different dynamic

patterns necessitated the utilization of two different sensitivity

parameter values of SIF. A relatively lower value of SIF

(13.3 mM21) was found for single dosing in comparison with a

higher estimate of 28.9 mM21 for chronic dosing, indicating that

the rapid increase in plasma FFA could impair the capability of

insulin secretion from b-cells [50]. This difference in SIF could also

indicate some incompatibility in the data, possibly the different

assays used for measuring insulin. As reported previously [25], an

empirical function exp(2kFI?t) was needed to account for the

biphasic patterns of plasma insulin during the infusion study. Some

discrepancies were seen after simultaneous modeling of different

data sets from chronic [25,26] and acute studies [24]. In the single

acute dose study [24], in general, our model captured the trend of

up-regulation of insulin by MPL, but the initial rise of plasma

insulin was over-predicted (Fig. 6). In one of the chronic studies

[26] (Fig.7), the initial spike of insulin and the rate of decline of

plasma glucose were overestimated and the model under-predicted

the rate of insulin decline accordingly. One reason for the

observed deviations could be the differences in baseline plasma

insulin; additionally, previous research indicated that stress could

reduce plasma insulin [51], and this might contribute to the over-

prediction of the initial spike as well, since stress differences may

occur among studies. Because skeletal muscle is responsible for the

majority of insulin-stimulated glucose disposition and IRS-1 is a

key element in regulating metabolic actions of insulin, a decline in

IRS-1 transcription in skeletal muscle was used to explain the

development of insulin resistance in peripheral tissue. Other

mechanisms contributing to insulin resistance such as the role of

FFA and decreased glucose transport were not included. These

factors might account for discrepancies in model predictions.

The GC can induce insulin resistance, depending on the dose

and duration of treatment [23]. As a diabetogenic hormone, it is

generally thought that the risk of development or aggravating

diabetes increases as GC doses increase. Consistent from our

model predictions, modest changes in plasma glucose were noticed

after acute MPL, even though large increases in plasma FFA and

insulin were observed. Furthermore, during chronic infusion,

Figure 7. Plasma glucose (A, B) and insulin (C, D) versus time profiles during 7-day infusions (B and D) of saline (#), 0.03 (.) and 0.1
(=) mg/kg/h of MPL, and IV injections (A and C) of saline (D), 10 (&) and 50 (%) mg/kg of MPL. Lines depict simultaneous fittings of
glucose, insulin, and FFA with Eq. (18) – (21) for saline infusion (light dotted line), 0.03 mg/kg/h (heavy dotted line), 0.1 mg/kg/h (light long dash line),
saline injection (light dash-dotted line), 10 mg IV (light solid line), and 50 mg IV (heavy solid line). The PD parameters are listed in Table 6.
doi:10.1371/journal.pone.0081679.g007
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larger increments in plasma glucose were observed. As doses

increased, plasma glucose increased as well. An adaptive response

of the decline in IRS-1m impaired the ability of insulin to promote

glucose utilization, hence leading to the development of insulin

resistance. Different capacities of plasma FFA to stimulate insulin

secretion under acute and chronic regimens, together with the

tolerance phenomena for plasma FFA dynamics during chronic

MPL infusion further exacerbated the overall system response.

Therefore, successful adaptation to GC treatment resides in the

proper co-regulations of peripheral insulin sensitivity and insulin

secretion. In our study, quantitative modeling of the dynamic

changes of some key elements in the three major target tissues not

only provided a mechanistic basis to assess the inter-regulations

among those entities, but also suggested important roles of

different target tissues in both b-cell function and insulin

sensitivity.

Various challenges were faced in developing this complex

systems model. The integration of fundamental PD principles and

knowledge of pharmacological and physiological processes provide

the basis for development of our meta-model. The diversity of the

data, the complexity of the model, the limited capability of current

computer software, and need for assumptions derived from current

literature make it difficult to fit all data simultaneously. Therefore

a piecewise approach and partial simulations were applied. The

mathematical model was developed based on our understanding of

multiple cellular and tissue-level factors influencing MPL effects.

Difficulty in collective fittings necessitate partitioning this inte-

grated dynamic system into different sub-models: drug-receptor

dynamics in three target tissues were fixed according to our

previous results, and the DRn of each was used to model GC-

driven effects on some tissue factors (liver: PEPCK and cAMP;

muscle: IRS-1; fat: FFA and leptin). Parameters from previous

results were fixed for analysis of the glucose-insulin-FFA dynamic

system. Breaking the integrated system into parts greatly simplifies

the computational process with fewer uncertainties in parameter

estimates. However, incompleteness in the model components and

structure might exist and the present simplification may not be

optimal. The developed model was based on our existing

information from pharmacology and disease pathophysiology

and relied upon our accumulated, recently generated, quantitative

experimental data. Nevertheless, this modeling effort provides an

advancement in understanding of an important metabolic system

as perturbed by a frequently employed therapeutic agent. During

the model fitting process, multiple indirect mechanisms and

reciprocal interactions among different components cause iden-

tifiability problems in parameter estimates. Several unidentifiable

parameters had to be fixed either according to the best fitting

results or previous literature values. Parameters SPEPCK, SIF, kFI and

kI
dwere fixed to previous values [3,25] and l1, kF

d and SF
maxwere

fixed to the best model fitting results. As indicated in a recent

review [52], with the growing knowledge about other substances

potentially important for glucose regulation, the inclusion and

selection of more key components may be necessary in future

models. Lastly, further inclusions of relevant genes/proteins in

different tissues are needed to fully understand drug actions at

receptor/gene as well as systemic levels [19,43,53,54,55].

Some limitations of the current model exist. This report collated

data from different studies. Doses, sampling times, and assay

methods varied. Parameters reflecting the gene/receptor-mediated

GC effects on hepatic cAMP, PEPCK mRNA, PEPCK and IRS-1

mRNA were obtained from ADX rats, and were fixed in our

current model to mainly account for sources of glucose output

from liver. Our system is complex with appreciable biomarker

response variability and interactions, and our model is built upon

extensions of previous models with inclusions of available

measurements. Additional sensitivity analysis would be helpful in

building confidence about the model by studying the uncertainties

that are associated with each parameter. Our current report

focuses on judicious use of best previous estimates of some model

components (PK, receptor binding, and turnover) and joint

refitting of key response measures where different study designs

add improved perspectives on the behavior of the system. Not all

data profiles were successfully recaptured. Such deviations are

informative on how one might explore additional determinants of

the system and design future studies. Because of the well-known

effects of adrenalectomy on glucose regulation, including both

actions of GC and adrenal medulla hormones such as catechol-

amines were not taken into account. Hence the resulting

parameters from ADX rats might somewhat underestimate the

influence of hepatic output in normal rats. Circadian oscillations in

plasma glucose, insulin, and FFA were not considered. Different

baseline values were used in part to differentiate the assay methods

among studies and account for each study condition. In addition,

the experimental procedures and animal handling could result in

varied animal stress, which would contribute to different food

intake profiles and glucose/insulin responses. Other physiological

factors were not included such as adiponectin, which is regulated

by GC [24] and relates to insulin resistance by augmenting insulin

sensitivity in various target tissues [44]. Such inclusion of

adiponectin caused problems with parameter estimates. However,

the overall impact of other adipokines is yet to be completely

understood. Other mechanistic actions of MPL omitted from the

model include insulin stimulation of FFA utilization and increased

FFA promoting peripheral insulin resistance.

In conclusion, a mechanistic meta-model was developed to

retrospectively integrate several intensive data sets from studies in

our laboratory. The model provides broader insights for various

intermediate controlling processes governing MPL actions on

glucose regulation. The receptor/gene/protein-mediated GC

effects in liver, adipose tissue and skeletal muscle were incorpo-

rated into the model to explain physiological factors controlling

various processes. Joint assessments of key elements in each target

tissue suggested important roles of those entities in glucose

regulation.
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Figure 8. Plasma glucose (A), insulin (B) and FFA (C) versus time profiles during infusion of saline (#), 0.03 (.) and 0.1 (=) mg/kg/h
MPL (Low doses), 0.2 (D) mg/kg/h MPL (Medium dose), and 0.3 (&) and 0.4 (%) mg/kg/h MPL (High doses). Lines depict simultaneous
fittings of glucose, insulin, and FFA with Eq. (18) – (21) for saline (light dotted line), 0.03 (heavy dotted line) and 0.1 mg/kg/h (light long dash line),
0.2 mg/kg/h (heavy long dash line) and 0.3 (light short dash line) and 0.4 mg/kg/h (heavy short dash line). The PD parameters are listed in Table 6.
doi:10.1371/journal.pone.0081679.g008
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