
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Jinbo Yue,
Shandong First Medical
University, China

REVIEWED BY

Xue Sha,
Institute of Radiation Medicine,
Shandong First Medical University
Shouliang Qi,
Northeastern University, China
Ning Mao,
Yantai Yuhuangding Hospital, China

*CORRESPONDENCE

Hongjie Hu
hongjiehu@zju.edu.cn

SPECIALTY SECTION

This article was submitted to
Thoracic Oncology,
a section of the journal
Frontiers in Oncology

RECEIVED 10 July 2022
ACCEPTED 22 September 2022

PUBLISHED 06 October 2022

CITATION

Xie D, Xu F, Zhu W, Pu C, Huang S,
Lou K, Wu Y, Huang D, He C and Hu H
(2022) Delta radiomics model for the
prediction of progression-free survival
time in advanced non-small-cell lung
cancer patients after immunotherapy.
Front. Oncol. 12:990608.
doi: 10.3389/fonc.2022.990608

COPYRIGHT

© 2022 Xie, Xu, Zhu, Pu, Huang, Lou,
Wu, Huang, He and Hu. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use,
distribution or reproduction is
permitted which does not comply with
these terms.

TYPE Original Research
PUBLISHED 06 October 2022

DOI 10.3389/fonc.2022.990608
Delta radiomics model for the
prediction of progression-free
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small-cell lung cancer patients
after immunotherapy
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Objective: To assess the validity of pre- and posttreatment computed

tomography (CT)-based radiomics signatures and delta radiomics signatures

for predicting progression-free survival (PFS) in stage III-IV non-small-cell lung

cancer (NSCLC) patients after immune checkpoint inhibitor (ICI) therapy.

Methods:Quantitative image features of the largest primary lung tumours were

extracted on CT-enhanced imaging at baseline (time point 0, TP0) and after the

2nd-3rd immunotherapy cycles (time point 1, TP1). The critical features were

selected to construct TP0, TP1 and delta radiomics signatures for the risk

stratification of patient survival after ICI treatment. In addition, a prediction

model integrating the clinicopathologic risk characteristics and phenotypic

signature was developed for the prediction of PFS.

Results: The C-index of TP0, TP1 and delta radiomics models in the training and

validation cohort were 0.64, 0.75, 0.80, and 0.61, 0.68, 0.78, respectively. The

delta radiomics score exhibited good accuracy for distinguishing patients with

slow and rapid progression to ICI treatment. The predictive accuracy of the

combined prediction model was higher than that of the clinical prediction model

in both training and validation sets (P<0.05), with a C-index of 0.83 and 0.70,

respectively. Additionally, the delta radiomicsmodel (C-index of 0.86) had a higher

predictive accuracy compared to PD-L1 expression (C-index of 0.50) (P<0.0001).

Conclusions: The combined prediction model including clinicopathologic

characteristics (tumour anatomical classification and brain metastasis) and

the delta radiomics signature could achieve the individualized prediction of

PFS in ICIs-treated NSCLC patients.
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Introduction

Non-small-cell lung cancer (NSCLC) is one of the most

prevalent malignancies with regards to incidence and mortality,

which accounts for 85% of all cases. Despite recent advances in

lung cancer treatment, the five-year survival rate of NSCLC

patients is still low, at 15% (1). During the last decade, the

recognition of the critical role of immune system evasion in

cancer pathogenesis has stimulated the development of immune

checkpoint inhibitors (ICIs) for treating various malignancies

and also changed the treatment outlook for patients with

advanced NSCLC without any targeted mutations. Compared

to chemotherapy, immune checkpoint blockade against

programmed death-1 (PD-1) or programmed death-ligand 1

(PD-L1) has prolonged the overall survival (OS) of advanced

NSCLC patients (2–6). Despite the successful application of

immunotherapy, only 15-30% patients showed improved OS

and/or progression-free survival (PFS) according to previous

studies (7, 8).

Although PD-L1 expression in tumour cells is widely used as

a biomarker to select patients for immunotherapy (6, 9, 10), the

association between PD-L1 expression and treatment efficacy of

ICIs remains inexact. It has been shown that atezolizumab

treatment improves survival in NSCLC independent of PD-L1

expression status (11, 12), and the results of several other studies

have shown that cases with PD-L1-negative tumours still obtain

a significant benefit from ICI treatment (3, 4, 10). In addition,

the heterogeneity of PD-L1 protein expression, nonstandardized

assays, instability of tissue specimens, PD-L1 copy number

status and other factors limit PD-L1 expression as a predictive

biomarker (13–15). Therefore, the inadequacy of current

biomarkers urgently requires the discovery of novel predictive

biomarkers for selecting patients who can benefit from

ICI therapy.

Radiomics is a noninvasive diagnostic tool that extracts

quantitative imaging features from traditional clinical images

for diagnosis and can generate imaging biomarkers to provide

guidance for clinical decision making (16). A computed

tomography (CT) image-based radiomics method has been

used to establish a prediction model for the differential

diagnosis (17, 18), clinical staging (19–21), evaluation of

treatment efficacy (22, 23), and gene mutation prediction (24–

27) of lung cancer. Although clinical staging remains the main

method for the prediction of survival time in NSCLC patients,

there are large differences in treatment response and prognosis

among patients with the same staging, showing that prognostic

stratification is crucial for individualized treatment. Several

authors have assessed the relationship between radiomics and

the OS of NSCLC patients and developed survival prediction

models for lung cancer patients based on radiomics approaches
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(28–33). The treatment-induced changes in radiomics features

(RFs) can be captured by delta RFs, allowing us to describe their

longitudinal changes, and are more suitable for monitoring the

therapeutic response (34, 35).

We designed a retrospective study to explore the potential

application of a CT image-based radiomics model (RM) for

predicting the probability of progression on individualized ICI

treatment. To deeply examine advanced NSCLC patients

receiving immunotherapy, we isolated thousands of pre- and

posttherapy CT features and built pretherapy, posttherapy and

delta RMs. The optimal RM was selected for the risk

stratification of PFS in advanced NSCLC patients. Finally, we

combined the radiomics signature and clinicopathological

features to build a new prediction model to provide reliable

individualized clinical recommendations for the probabilities of

PFS at 7 months and 1 year of treatment with ICIs.
Materials and methods

Patients

This was a retrospective analysis of 97 NSCLC patients

treated with ICIs in Run Run Shaw Hospital, Zhejiang

University School of Medicine, from January 2016 to

November 2021, including 88 males and 9 females. Tumour

staging was conducted in accordance with the eighth edition of

the American Joint Committee on Cancer TNM staging criteria

(36), and all patients had pathologically confirmed stage III-IV

NSCLC. Clinicopathological data, laboratory tests, and imaging

data were acquired from the patients, such as sex, age, smoking

history, tumour anatomical classification, pathological type,

tumour markers, TNM staging, line of treatment, and

treatment strategy. The patients were assigned randomly to a

training cohort of 68 patients and a validation cohort of 29

patients according to a ratio of 7:3. The training cohort and

validation cohort were employed to construct and verify the

prediction model, respectively. The study was approved by the

hospital ethics committee (Grant No.: Research 20220222-33),

and was carried out in compliance with the Declaration

of Helsinki.

The following inclusion criteria were used: (1) NSCLC with

histologic confirmation; (2) ICI therapy in a first- or later-line

setting; and (3) complete baseline demographics prior to

treatment. The exclusion criteria were as follows: (1) baseline

imaging or follow-up after 2-3 cycles of treatment without

contrast-enhanced CT; (2) the lesion boundaries could not be

accurately evaluated in contrast-enhanced CT images; and

(3) the interval between baseline imaging and the initial

immunotherapy exceeded 4 weeks.
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CT image acquisition and interpretation

The pretreatment and follow-up CT scans were obtained by

64-slice LightSpeed VCT (Supplementary Data). Two

radiologists (reader A and B, with 13 and 7 year’s experience

in chest CT interpretations, respectively) performed

independent evaluations. The observation indexes included the

selection of the target lesion, anatomical classification of the

tumour, tumour boundary, TNM stage, etc.

In this study, treatment efficacy was evaluated by detecting

PFS, defined as the time from the initiation of ICI therapy to the

confirmation of disease progression or disease-related death. To

assess whether the target lesion had progressed, the Response

Evaluation Criteria in Solid Tumours (RECIST, v1.1) (37)

was used.
Tumour segmentation

Reader A segmented the target lesions of all the patients

layer-by-layer on enhanced imaging at baseline (time point 0,

TP0) and after the 2nd-3rd immunotherapy cycles (time point 1,

TP1). The ITK-SNAP software (v3.6.0, www.itksnap.org) was

used to conduct three-dimensional (3D) manual segmentation.

Examples are shown in Figure 1A. To ensure accuracy and

reproducibility, 10 patients were randomly chosen one month

after the first segmentation, and readers A and B segmented the

region of interest (ROI) of the lesions at TP0 and TP1 and

extracted features. The inter- and intraclass correlation

coefficients (ICCs) were employed to assess the consistency of
Frontiers in Oncology 03
features, and the ICC of >0.75 was regarded as a marker of

good reliability.
Radiomics feature extraction and
data normalization

The PyRadiomics package was applied to analyse the

segmentation data and isolate phenotypic features from the

tumour regions after manual segmentation. To standardize all

voxel sizes among patients, the CT images were resampled to 2-

mm resolution in all 3 directions. RFs were extracted from each

3D ROI. Delta RFs were regarded as the net changes in RFs

between TP0 and TP1. Delta RFs = Feature (TP1)- Feature

(TP0). In addition, all features were z score normalized

using Excel.
Feature screening and
signature construction

In the training cohort, the most significant predictive

features were selected by the least absolute shrinkage and

selection operator (LASSO)-penalized Cox proportional

hazards regression model, and finally, a radiomics signature

containing critical features and their corresponding weight

coefficients was constructed. The radiomics score (Rad-score)

was estimated for all patients, and was utilized to construct the

RM. The optimal cut-off value of the Rad-score was assessed

according to X-tile software v3.6.1, and the patients were
FIGURE 1

(A) Tumour segmentation. The figure shows baseline CT images of target lesions and CT images after 2-3 cycles of treatment, tumour contours
and three-dimensional visualizations. (B) TP0, TP1 and delta RMs were established based on pretherapy, posttherapy and delta RFs. (C) The best
RM was selected for the risk stratification of drug resistance, while a nomogram was established for individualized prognosis prediction. (D) All
prediction models were validated in the validation cohort.
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assigned to Rad-score high and Rad-score low subgroups,

representing the rapid-progression (RP) and slow-progression

(SP) subgroups treated with ICIs, respectively. The relationships

between the RFs and PFS were determined by Kaplan–Meier

survival analysis in training and validation cohorts, and the log-

rank test was applied to examine whether there was statistical

difference in survival between the RP and SP subgroups.
Construction of predictive models

The TP0 RM, TP1 RM and delta RM were constructed to

determine the predictive accuracy for the efficacy of

immunotherapy in advanced lung cancer (Figure 1B). We also

constructed a clinical prediction model using significant

clinicopathological characteristics via univariate and

multivariate Cox regression analyses. To explore whether the

clinical characteristics combined with the RFs can further

enhance the model performance, a combined model was

established. The concordance index (C-index) was applied to

evaluate the model performance. The calibration curve was

applied to determine the agreement between the predicted PFS

of the prediction model and the actual observed PFS. Decision

curve analysis (DCA) was conducted to assess the applicability of

the prediction models by calculating the net benefits at various

threshold probabilities. See Figures 1C, D.
Statistical methods

Statistical tests were performed with SPSS v26.0 and R

(www.r-project.org, version 4.1.2). The Mann–Whitney test

was employed for continuous variables, which were expressed

as the median (interquartile range) [M (Q1, Q3)]. The Fisher’s

exact test or chi-square test was applied for categorical variables,

which were expressed as percentages [n (%)]. A multivariate Cox

regression analysis with the backwards elimination method was

used to develop the best model integrating clinical factors and

RFs. P-values of <0.05 were deemed as significant differences.
Results

Treatment, clinical characteristics
and PFS

The demographic and clinicopathological characteristics of

the 97 patients are indicated in Table 1. Fifty-three (54.6%) of all

patients received PD-1 ICIs (camrelizumab, sintilimab,

tislelizumab or nivolumab) or PD-L1 ICIs (atezolizumab)

monotherapy. The remaining 44 (45.4%) patients were treated
Frontiers in Oncology
 04
with the combination of immunotherapies, ICIs in combination

with chemotherapeutic agents (gemcitabine + cisplatin,

paclitaxel + carboplatin) and/or antiangiogenic agents (mainly

bevacizumab, Endo, anlotinib, and afatinib). The median time

between TP0 and the initiation of immunotherapy was 10 (5, 16)

days; the median time between TP0 and TP1 was 59 (51, 68)

days; and the follow-up periods for training and validation

cohorts were from January 19, 2016, to November 12, 2021,

and from January 21, 2016, to November 15, 2021, respectively.

A total of 82 (84.5%) patients showed PD, and 15 (15.5%)

patients were lost to follow-up. During the follow-up, the

median PFS of the training cohort was 6.9 (4.3, 19.7) months,

and that of the validation cohort was 7.3 (2.8, 14.7) months; but

no significant difference was found between two cohorts.

Furthermore , the di fferences in demographic and

clinicopathological characteristics between the training and

validation cohorts were not statistically significant (P>0.05)

(Supplementary Table S1).
Radiomics feature extraction
and screening

Among the four major categories (first order features, shape-

based features, textural features, algorithmically transformed

features) of the 1246 extracted RFs, the RFs with nonzero

coefficients associated with PFS were screened according to the

dimensionality reduction of LASSO Cox regression. Among

them, three optimal features were obtained after screening TP0

RFs (Supplementary Table S2). Six optimal features were

obtained after screening TP1 RFs (Supplementary Table S3).

Twelve optimal features were obtained after screening delta RFs

(Figure 2, Supplementary Table S4). The extracted RFs were all

reproducible, with ICCs >0.85 (P < 0.05) for the two radiologists.
Construction of the RM

The radiomics signatures were constructed according to the

screened RFs and the corresponding weights (Supplementary

Equations 1, 2, 3). Based on the radiomics signatures, the TP0

RM, TP1 RM, and delta RM were constructed. In the training

cohort, the C-indexes of the three models were 0.64 (95%

CI=0.57-0.71), 0.75 (95%CI=0.69-0.81), and 0.80 (95%

CI=0.75-0.85), respectively. The delta RM had statistically

significant differences compared with the TP0 RM and TP1

RM (P<0.0001). In the validation cohort, the C-indexes of the

three models were 0.61 (95%CI=0.48-0.74), 0.68 (95%CI=0.54-

0.82), and 0.78 (95%CI=0.68-0.88), respectively, and no obvious

difference was found between the delta RM and the TP0 RM or

the TP1 RM (P > 0.05).
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TABLE 1 Baseline data and PFS of the training and validation cohorts.

Demographic or clinicopathologic characteristic, PFS Training cohort (N=68) Validation cohort (N=29)

No. Rapid (N=20) Slow (N=48) No. Rapid (N=13) Slow (N=16)

Sex (%)

Male 62 17 (27) 45 (73) 26 11 (42) 15 (58)

Female 6 3 (50) 3 (50) 3 2 (67) 1 (33)

Age, years (%)

≤65 25 7 (28) 18 (72) 16 6 (38) 10 (62)

>65 43 13 (30) 30 (70) 13 7 (54) 6 (46)

Smoking history (%)

Smoker 35 13 (37) 22 (63) 15 8 (53) 7 (47)

Non-smoker 33 7 (21) 26 (79) 14 5 (36) 9 (64)

Anatomical classification (%)

Central type 36 15 (42) 21 (58) 17 8 (47) 9 (53)

Peripheral type 32 5 (16) 27 (84) 12 5 (42) 7 (58)

Pathological type (%)

Squamous cell 45 15 (33) 30 (67) 23 10 (43) 13 (57)

Adenocarcinoma 23 5 (22) 18 (78) 6 3 (50) 3 (50)

Lung metastasis (%)

Yes 20 9 (45) 11 (55) 13 6 (46) 7 (54)

No 48 11 (23) 37 (77) 16 7 (44) 9 (56)

Brain metastasis (%)

Yes 7 2 (29) 5 (71) 1 1 (100) 0 (0)

No 61 18 (30) 43 (70) 28 12 (43) 16 (57)

Liver metastasis (%)

Yes 6 3 (50) 3 (50) 4 1 (25) 3 (75)

No 62 17 (27) 45 (73) 25 12 (48) 13 (52)

Bone metastasis (%)

Yes 17 8 (47) 9 (53) 5 4 (80) 1 (20)

No 51 12 (24) 39 (76) 24 9 (38) 15 (62)

Elevated tumour markers (%)

CA125 24 9 (38) 15 (62) 10 5 (50) 5 (50)

CEA 18 6 (33) 12 (67) 11 4 (36) 7 (64)

NSE 23 6 (26) 17 (74) 12 8 (67) 4 (33)

Cyfra21-1 44 15 (34) 29 (66) 20 10 (50) 10 (50)

ProGRP 7 2 (29) 5 (71) 3 2 (67) 1 (33)

SCC 30 11 (37) 19 (63) 14 8 (57) 6 (43)

Pathologic T stage (%)

T1 3 1 (33) 2 (67) 2 1 (50) 1 (50)

T2 15 2 (13) 13 (87) 6 1 (17) 5 (83)

T3 14 5 (36) 9 (64) 11 4 (36) 7 (64)

T4 36 12 (33) 24 (67) 10 7 (70) 3 (30)

Pathologic N stage (%)

N0 5 1 (20) 4 (80) 1 1 (100) 0 (0)

N1 6 3 (50) 3 (50) 3 1 (33) 2 (67)

N2 14 5 (36) 9 (64) 12 5 (42) 7 (58)

N3 43 11 (26) 32 (74) 13 6 (46) 7 (54)

Line of treatment (%)

First line 35 2 (6) 33 (94) 13 2 (15) 11 (85)

Later line 33 18 (55) 15 (45) 16 11 (69) 5 (31)

(Continued)
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TABLE 1 Continued

Demographic or clinicopathologic characteristic, PFS Training cohort (N=68) Validation cohort (N=29)

No. Rapid (N=20) Slow (N=48) No. Rapid (N=13) Slow (N=16)

Treatment strategy (%)

Monotherapy 36 16 (44) 20 (56) 15 8 (53) 7 (47)

Combination therapy 32 4 (13) 28 (87) 14 5 (36) 9 (64)

PFS [M (Q1, Q3)] 3.3 (1.9, 4.7) 9.5 (6.5, 24.5) 2.8 (1.8, 14.4) 9.6 (7.3, 22.3)
Frontiers in Oncology
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Rapid and slow represent the RP and SP subgroups by delta radiomics scores. PFS, progression-free survival (months).
B

A

FIGURE 2

LASSO Cox regression model for delta radiomics feature screening. (A) The dashed line on the left side of the horizontal coordinate represents
the selection of the best log(l) = -1.8905 in the model by tenfold cross-validation. (B) Coefficient convergence plots of the screened features,
with black vertical lines corresponding to the best log(l) values, screened for 12 nonzero coefficients of delta RFs.
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Delta rad-score stratification

The optimal cut-off value of the Delta Rad-score was

determined to be 0.36 according to X-tile, and the patients

were divided into a RP subgroup (Delta Rad-score ≥ 0.36) and

a SP subgroup (Delta Rad-score < 0.36). An obvious difference

was found in the distribution of the Delta Rad-score per patient

in the training and validation cohorts (Figure 3). As expected

with treatment with ICIs, there were more SP patients (blue

bars) than RP patients (red bars) in the training and validation

cohorts. The proportions of RP patients in the training and

validation cohorts were 29% and 45%, respectively. The
Frontiers in Oncology 07
median PFS of the RP and SP subgroups in the training

cohort were 3.3 (1.9-4.7) months and 9.5 (6.5-24.5) months,

respectively. The median PFS of the RP and SP subgroups in

the validation cohort were 2.8 (1.8 to 14.4) and 9.6 (7.3 to 22.3)

months, respectively. The Kaplan–Meier survival curve proved

the remarkable difference of PFS between the stratified RP and

SP subgroups in the two cohorts, with a log-rank test of

P<0.0001 and a hazard ratio (HR) of 10.233 in the training

cohort and a log-rank test P < 0.05 and an HR of 2.633 in the

validation cohort (Figure 4). This finding implies that this

radiomics signature is effective in identifying patients at high

risk of rapid progression.
B

A

FIGURE 3

Distribution of delta radiomics scores in the training cohort (A) and validation cohort (B). Delta radiomics scores above the cut-off value were
categorized as the RP subgroup (red), and delta radiomics scores below the cut-off value were categorized as the SP subgroup (blue). There
was an obvious difference in the distribution of the Delta Rad-score between the RP and SP subgroups.
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Nomogram construction and evaluation

The univariate Cox analysis showed that smoking history,

tumour anatomical classification, brain metastasis, CA125, line

of treatment, treatment strategy, and delta radiomics signature

were associated factors affecting PFS in NSCLC patients treated

with ICIs (P<0.05) (Supplementary Table S5). Multivariate Cox

analysis demonstrated two clinicopathologic characteristics

(tumour anatomical classification and brain metastasis) and
Frontiers in Oncology 08
the delta radiomics signature as independent predictors of PFS

(P<0.05) (Table 2). A prediction model integrating these

variables was developed and displayed as a nomogram

(Figure 5). In the training cohort, Harrell’s C-indexes of the

nomogram were 0.83 (95%CI=0.78-0.88) for the training cohort

and 0.70 (95%CI=0.60-0.80) for the validation cohort. The C-

indexes dropped to 0.66 (95%CI=0.59-0.73) and 0.62 (95%

CI=0.53-0.72) in the training and validation cohorts,

respectively, if the signature was excluded from the nomogram
B

A

FIGURE 4

Kaplan–Meier survival analysis was performed in the training cohort (A) and validation cohort (B), and PFS was markedly lower in the RP
subgroup (yellow curve) than in the SP subgroup (blue curve). Statistical difference was assessed using the log-rank test.
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and retained only the significant cl inicopathologic

characteristics. There were statistically significant differences

between the combined prediction model and the clinical

prediction model (P<0.05) in the training and validation

cohorts (Supplementary Table S6). The integration of the delta

RFs into the nomogram significantly enhanced the

prediction accuracy.

In this study, the individualized nomogram calibration

curves revealed good agreement between the prediction and

observation results of the 7-month and 1-year NSCLC

progression probabilities in the training and validation cohorts

(Figure 6). DCA indicated that the combined prediction model

could provide better clinical utility than the delta radiomics

prediction model or the clinical prediction model within a

reasonable threshold probability range (Figure 7).
Comparison of the predictive efficacy of
PD-L1 expression and radiomics

In our study cohort, the expression of PD-L1 was examined

in 22 patients, which was positive in 12 of 22 patients (55%) and
Frontiers in Oncology 09
negative in the remaining patients. We used these 22 patients as

an independent cohort to compare the Delta Rad-score and PD-

L1 expression in predicting RP high-risk patients. The delta RM

[C-index of 0.86 (95%CI=0.78-0.94)] had higher predictive

accuracy than PD-L1 expression status [C-index of 0.50 (95%

CI=0.36-0.64)], and the difference was significant (P<0.0001).
Discussion

The survival of NSCLC patients varies greatly among

individuals, and survival prognosis is influenced by multiple

factors. We used a radiomics approach to analyse the CT

feature-based signature for monitoring the treatment efficacy

of ICIs in advanced NSCLC patients. Most previous studies (38–

40) constructed single time-point RMs from baseline CT scans

for predicting patient outcomes, but they did not contain

information about treatment response. Delta radiomics can

provide massive data on treatment-induced changes, contains

rich time-dependent information, dynamically assesses tumour

burden and is more consistent with the assessment of

immunotherapy efficacy in clinical practice. We used the
FIGURE 5

Nomogram to predict the 7-month and one-year PFS probabilities of NSCLC patients after ICI treatment.
TABLE 2 Results of multifactorial Cox regression analysis of clinical variables and RFs in the training cohort.

Variables Training cohort (N=68)

P value HR (95%CI)

Anatomical classification (Central vs. Peripheral) <0.01 2.515 (1.321, 4.786)

Brain metastasis (Yes vs. No) <0.001 5.115 (2.060, 12.699)

Signature (Rapid progression vs. Slow progression) <0.0001 10.982 (4.785, 25.206)
HR, hazard ratio; CI, confidence interval.
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LASSO Cox regression model to screen critical features with a

significant correlation with PFS based on pretreatment,

posttreatment and delta features, developed and compared

pretreatment, posttreatment and delta RMs. The delta RFs

were identified and compared to the single-time-point RFs at

TP0 and TP1. Interestingly, the delta RM exhibited a higher C-

index than the TP0 and TP1 RMs in both the training and

validation cohorts, which agrees with recent literatures (41, 42).
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The lower 95%CIs of the C-index (0.48 for TP0, 0.54 for TP1)

indicated insufficient diagnostic efficiency of TP0 and TP1 in the

validation cohort, although the C-index did not differ in the TP0,

TP1 and delta RM. We speculate that this is associated with the

small sample size of our study and that a larger patient

population is still required for validation. Our results show

that the delta RM could provide better predictive accuracy and

was the best model of the three RMs for predicting PFS in
B

A

FIGURE 6

Calibration curves showing an excellent agreement between the predictions and observations of the 7-month and 1-year NSCLC progression
probabilities in the training cohort (A) and validation cohort (B).
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NSCLC. Compared with a recent similar study, Zerunian et al.

(43) extracted texture features on baseline scan images to predict

PFS of IV stage NSCLC treated with an anti-PD-1 therapy, with

an AUC of 0.74, while in our study, the maximum predictive

accuracy of delta RM was 0.86 (C-index), which is encouraging.

Thus, it can be inferred that delta radiomics can give a better

predictive decision support. The delta radiomics signature was

used to assess the likelihood of patient survival risk stratification.

Finally, we successfully stratified the patients into RP and SP

subgroups using Kaplan–Meier survival curve analysis. For these

rapidly progressing patients, their treatment strategies and

follow-up need to be more thorough and careful.

The multivariable Cox analysis indicated two clinicopathologic

characteristics (tumour anatomical classification and brain

metastasis) and the signature as significant risk factors for

predicting PFS in patients treated with ICIs. The location of the

lung tumour is an important factor affecting treatment and survival,

but research focused on the prognostic values of primary tumour

location (central and peripheral types) in lung cancer is still in lack

(44). Our study identified tumour anatomical classification as a

significant risk factor for predicting PFS in NSCLC patients treated

with ICIs by multifactorial Cox analysis. Central lung cancer has a

higher rate of lymphatic metastasis and higher cytologic and

histologic grades than peripheral lung cancer (44, 45), which are

hypothesized to be related to the poor outcome of ICIs for central

lung cancer. In this study, our analysis of patients with central lung

cancer revealed that four (8%) patients with central lung cancer

with hilummacrovascular erosion were all in the RP group.We also

observed that 20 patients (38%) with central lung cancer had lobe or

unilateral complete atelectasis at TP0, and only 10 patients (all in

the SP group) showed significant improvement at TP1. In addition,
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we found 6 patients (11%) with mild or no obstructive pulmonary

lesions at TP0, which worsened to whole lobe atelectasis at TP1 (all

in the RP group). Another independent risk factor was brain

metastasis status. Brain metastases occur at a high rate in NSCLC

and are usually as a poor prognostic feature (46, 47). Remon et al.

(48) and Sun et al. (49) both reported OS times of 3-14.8 months

and 3-6 months, respectively, for NSCLC patients with brain

metastases. Due to the lack of effective treatments, patients have

decreased life quality and poor prognosis. To further clarify any

additional benefits we could gain for predicting individualized PFS

by combining radiomics signatures, we developed and compared

predictive nomograms with and without radiomics signatures. We

found that the combined prediction model was remarkably better

than the clinical prediction model in predicting the individual

prognosis of NSCLC patients in all cohorts. Thus, in this study,

the combined prediction model including clinicopathologic

characteristics (tumour anatomical classification and brain

metastasis) and the delta radiomics signature could provide a

better ability to predict prognosis.

Additionally, we compared the RM and PD-L1 expression

status in terms of their predictive ability for RP high-risk patients.

The results demonstrated that the delta RM was superior to PD-

L1 expression in predicting the therapeutic response of ICIs in

NSCLC patients, consistent with the results reported in the

literature (40). Researchers could further validate the PD-L1

expression characteristics combined with the delta RM in

prospective trials to better stratify patients for outcome prediction.

Our study has some limitations. First, in this work, we selected

the largest primary lung tumour to extract features without

including all target lesions (2 lesions per organ and 5 lesions per

patient) for analysis, which to some extent failed to reflect the total
FIGURE 7

Comparison of the net benefits of the combined prediction model (green), delta radiomics prediction model (blue) and clinical prediction model
(purple) using decision curve analysis.
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tumour load. Second, the sample size of the cohort was quite

small, and the robustness and validity of the model need to be

validated using a larger dataset. Third, the underlying biological

basis of the radiological features is not discussed in the current

study, as the 12 key features extracted already cover four major

categories of radiomics. Fourth, patients who received both anti-

PD-1 or anti-PD-L1 monotherapy and immunotherapy-based

combination therapy in our cohort were included in the dataset,

which led to heterogeneity in our cohort. By stratifying the

treatment modalities, although univariate analysis showed an

association with efficacy, the final results confirmed that it was

not a significant risk factor and that no obvious difference in

efficacy was observed between treatment strategy groups. Further

prospective study with larger datasets is warranted to ensure the

predictive efficacy of CT-based RMs in predicting ICI resistance.

In summary, we developed a noninvasive delta RM based on

CT imaging to stratify the survival risk of stage III-IV NSCLC

patients treated with ICIs. We then combined this feature with

clinicopathological features (tumour anatomical classification

and brain metastasis status) to construct a nomogram for PFS

prediction, which could help to clinically guide the development

of individualized treatment plans and increase the chances of

survival of these patients.
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