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ABSTRACT
Osteoclasts (OCs), the main cause of bone resorption irregularities, may ultimately cause various 
bone diseases, including osteoarthritis. The objective of this study was to investigate the effect of 
interferon-induced protein with tetratricopeptide repeats 1 (IFIT1) on OC formation induced by 
receptor activator of nuclear factor κB (NF-κB) ligand (RANKL) and to further explore its underlying 
mechanism. IFIT1 expression in Raw264.7 cells treated with macrophage colony-stimulating factor 
(M-CSF) and RANKL was determined by qRT-PCR. OC formation was detected using tartrate- 
resistant acid phosphatase (TRAP) staining. The effect of IFIT1 on STAT3 activation was detected 
using Western blotting. Additionally, Western blotting was used to measure the change in the 
expression of OC-specific proteins. IFIT1 was highly expressed in Raw264.7 cells after stimulation 
with M-CSF and RANKL. IFIT1 overexpression accelerated the formation of OCs, as evidenced by 
the increased number and size of multinuclear cells, and the upregulation of OC-specific proteins, 
and activated the STAT3 pathway, by inducing phosphorylation of JAK1 and STAT3. However, 
silencing of IFIT1 inhibited the formation of OCs and a STAT3 inhibitor Stattic weakened the 
effects of IFIT1. In conclusion, IFIT1 accelerates the formation of OCs, which is caused by RANKL by 
STAT3 pathway regulation. This study provides a potential basis for further research and for 
development of drugs for treating bone resorption-related diseases.
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Introduction
Osteoclasts (OCs) are derived from bone marrow 
hematopoietic stem cells, and are multinucleated 
giant cells formed by fusion and highly differen
tiated OC precursor cells [1]. OCs are the only cell 

type in mammals with bone resorption activity 
in vivo [2]. The dynamic balance between bone 
resorption and bone formation plays a critical 
role in the process of bone remodeling in the 
body [3]. Changes in the number or activity of 
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OCs can cause an imbalance in bone metabolism, 
leading to bone diseases such as osteoporosis and 
osteoarthritis [4,5]. Two important cytokines 
involved in the differentiation and maturation of 
OCs are macrophage colony-stimulating factor 
(M-CSF) and receptor activator of nuclear factor 
κB (NF-κB) ligand (RANKL) [6,7] Exploring the 
regulatory mechanisms of OC differentiation and 
function and discovering novel drug targets can 
provide a potential basis for improving drug ther
apy of bone diseases caused by abnormal OCs.

In the event of OC differentiation, RANKL 
binds to its specific receptor RANK on the pre
cursor cell surface and activates nuclear factor of 
activated T cell cytoplasmic 1 (NFATc1) and 
c-Fos, which further increases the expression of 
OC-specific mediators, including DC-specific 
transmembrane protein (DC-STAMP) [8], 
v-ATPase V0 subunit d2 (ATP6V0D2) [9], cathe
psin K (CTSK) [10], matrix metalloproteinase-9 
(MMP-9) [11], ATPase H+ transporting vacuolar 
proton pump member I (ATP6i) [12], and tar
trate-resistant acid phosphatase (TRAP) [13]. 
These mediators are OC differentiation biomar
kers and are essential for cell–cell fusion, differen
tiation, bone matrix proteolysis, and bone 
resorption functions of OCs.

Interferon-induced protein with tetratrico
peptide repeats 1 (IFIT1) is a member of the 
IFIT family which is located on chromosome 
10q23.31 and contains two exons. Generally, 
IFIT1 is expressed at low levels in most cells 
in the absence of stimuli. However, in the pre
sence of stimuli, such as pathogens, IFIT1 pro
duction is increased by secreted interferon, and 
it is involved in cellular innate immune 
responses [14]. The biological function of 
IFIT1 in viral pathogenesis is well established, 
and inhibition of IFIT1 related immune evasion 
is considered a critical antiviral strategy [15,16]. 
Recently, its properties beyond antiviral effects 
have been demonstrated. For example, IFIT1 
was found to be expressed highly in head and 
neck squamous cell carcinomas and is asso
ciated with poor prognoses [17]. Additionally, 
IFIT1 regulates tumor cell growth and metasta
sis in oral squamous cell carcinoma [18]. 
Furthermore, IFIT1 promotes the expression 
of pro-inflammatory cytokines induced by 

lipopolysaccharide in human umbilical vein 
endothelial cells, indicating that IFIT1 is a key 
participant in the development of atherosclero
sis [19]. However, the role of IFIT1 in osteoar
thritis and OC formation has not been 
previously studied.

Signal transducer and activator of transcription 
3 (STAT3) is a main member of the STAT family, 
and its activation leads to the significant produc
tion of various cytokines and growth factors to 
regulate immune response [20]. STAT3 is also 
involved in the regulation of cell growth, differen
tiation, death, and tumorigenesis [21,22]. It was 
reported that, inhibition of STAT3 activation was 
effective in controlling osteoclast differentiation 
and formation [23]. Additionally, STAT3 signaling 
offers a protective function in mice against inter
leukin (IL)-6 induced osteoarthritis [24]. In this 
study, changes in IFIT1 expression and the role 
and pathway of IFIT1 on OC formation were 
investigated, to provide a novel potential basis for 
drug therapy of bone diseases caused by abnor
mal OCs.

Materials and methods

Bioinformatic analysis

By searching the Gene Expression Omnibus 
(GEO) database (http://www.ncbi.nlm.nih.gov/ 
geo), GSE51588, GSE1919, and GSE75181 datasets 
were screened for targeted chip research. The 
upregulated genes were analyzed using the 
‘limma’ package. The GSE51588 dataset was gen
erated from the knee lateral and medial tibial 
plateaus of 20 osteoarthritis patients and 5 non- 
osteoarthritis individuals. In the GSE1919 dataset, 
we selected GSM34393-GSM34397 as the osteoar
thritis samples, while GSM34379, GSM34383, 
GSM34385, GSM34388, and GSM34391 served as 
the normal samples. For the GSE75181 dataset, 
cartilage specimens were obtained from 12 
patients with knee osteoarthritis. Primary human 
chondrocytes were collected and treated with or 
without human IL-1β. Microarray gene expression 
profiling was performed between IL-1β-treated 
and control groups. Gene ontology annotation 
and KEGG pathway enrichment analyses were 
conducted using the Clusterprofiler package in 
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R language to investigate the potential signaling 
pathways.

Raw264.7 precursor cell culture

Raw264.7 cells (Chinese Academy of Sciences Cell 
Bank, Shanghai, China) were cultured in 
Dulbecco’s Modified Eagle’s Medium (Invitrogen, 
USA) containing 10% fetal bovine serum 
(HyClone, USA) and 1% streptomycin and peni
cillin (HyClone, USA) in an incubator at 37°C 
with 5% CO2 and maximum humidity.

Drug treatment

Raw264.7 cells were seeded into 48-well plates 
(5 × 103/cm2). Cells were then treated with 0, 1, 
5, 10, 50, and 100 ng/mL of RANKL (Sigma- 
Aldrich, USA) for 0–12 days in the presence of 
50 ng/mL M-CSF (Sigma-Aldrich, USA).

Cells transfection

The IFIT1 overexpression plasmid (PCMV6-IFIT1) 
and control cloning vectors were purchased from 
OriGene (Rockville, MD, USA). Small interfering 
RNAs (siRNAs) specifically targeting IFIT1 (si- 
IFIT1), and scrambled negative control siRNAs were 
synthesized and purified by RiboBio (Guangzhou, 
China). Transfection was performed using 
Lipofectamine 2000 (Invitrogen, Carlsbad, CA, 
USA) according to the manufacturer’s instructions.

TRAP staining

TRAP staining was performed according to the 
instructions of the TRAP staining kit (PMC-AK04F- 
COS, Whatman, USA). In brief, cells were washed 
with phosphate buffer saline (PBS), and fixed with 
TRAP fixative at 4°C for 30 s to 3 min. Subsequently, 
the cells were washed with PBS and incubated with 
TRAP solution at 37°C for 45–60 min. Finally, the 
cells were washed with water, re-stained with hema
toxylin for 3 min and observed at microscope. 
TRAP-positive cells with three or more nuclei were 
regarded as multinuclear OCs. The OC sizes were 

quantified using Image-Pro Plus software (version 
6.0; Media Cybernetics, USA).

Real-time quantitative RT-PCR

Total RNA content was isolated from the cells by 
homogenization using TRIzol (Invitrogen, Carlsbad, 
CA, USA). The FOTODYNE gel imaging analysis 
system (Fotodyne, Inc., Hartland, WI, USA) was 
used to determine the RNA quality and the 28S/18S 
ratio. cDNA synthesis was performed using a cDNA 
cycle kit (Thermo Fisher Scientific, Waltham, MA, 
USA). The primer sequences used for quantitative 
real-time PCR amplification were 5′- 
TTTACAGCAACCATGGGAGAGAA-3′ (forward), 
5′-CTACGCGATGTTTCCTACGG-3′ (reverse) for 
IFIT1 and 5′-CCAGCCTTCCTTCTTGGGTAT-3′ 
(forward), 5′-GGGTGTAAAACGCAGCTCA G-3′ 
(reverse) for β-actin. The expression level of β-actin 
was used to normalize the mRNA expression, and the 
fold change = 2-ΔΔCT was used for calculation.

Western blot

The proteins were extracted using RIPA Lysis 
Solution (P0013 C, Beyotime, Shanghai, China) 
and protein concentrations were measured 
using a bicinchoninic acid protein assay kit 
(KeyGen Biotech Co., Ltd, Nanjing, China). 
The proteins were separated by SDS-PAGE 
and transferred onto polyvinylidene fluoride 
membranes (Roche, Switzerland). The mem
branes were incubated with the following pri
mary antibodies: IFIT1 (ab236256, Abcam, 
USA), ATP6V0D2 (H00245972-M01A, Abnova, 
Shanghai, China), DC-STAMP (ab238151, 
Abcam), ATP6i (H00000525-M02, Abnova), 
CTSK (H00001513-M01, Abnova), TRAP 
(ab2721, Abcam), p-JAK1 (ab138005, Abcam), 
JAK1 (ab133666, Abcam), p-STAT3 (ab267373, 
Abcam), STAT3 (ab68153, Abcam), c-Fos 
(ab222699, Abcam), MMP9 (ab76003, Abcam), 
NFATc1 (GTX09510, GeneTex, USA), and β- 
actin (C1313, Applygen, Beijing, China). After 
a 12 h incubation, the membranes were incu
bated with the secondary antibody, and the 
intensity of protein expression was detected by 
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ChemiScope 3300 Mini (CLINX, Shanghai, 
China) using enhanced chemiluminescence 
(Beyotime, Beijing, China).

Statistical analysis

All experiments were performed in triplicate and 
data were presented as the mean ± standard devia
tion. Data were analyzed using SPSS 19.0 
(Chicago, IL, USA). One-way analysis of variance 
(ANOVA) was used to assess the differences 
between the groups. Statistical significance was 
set at P < 0.05.

Results

IFIT1 was highly expressed in OCs

Bioinformatic analysis was performed to screen for 
differentially expressed genes in osteoarthritis. Six 
overlapping genes (IFIT1, MMP1, CXCL10, 
WNT5A, RSAD2, and NDP) were found to be upre
gulated in the GSE51588, GSE1919, and GSE75181 
datasets (Figure 1(a)). IFIT1 was selected for further 
investigation. The IFIT1 expression during OC for
mation was detected in vitro. Raw264.7 cells were 
differentiated into OCs by treatment with 50 ng/mL 
M-CSF and different concentrations of RANKL for 
six days. IFIT1 expression at the gene and protein 
levels, following stimulation with RANKL, was 

significantly increased in a dose-dependent manner 
(P < 0.05, Figure 1(b,c)). In addition, Raw264.7 cells 
were treated with 50 ng/mL M-CSF and 50 ng/mL 
RANKL for 0–12 days. IFIT1 expression, at the gene 
and protein levels was significantly increased by 
RANKL in a time-dependent manner (P < 0.05, 
Figure 1(d,e)). Ultimately, IFIT1 was highly 
expressed during OC formation. Raw264.7 cells trea
ted with 50 ng/mL M-CSF and 50 ng/mL RANKL for 
six days to induce OC formation, were used in later 
experiments.

Overexpression of IFIT1 accelerated OC 
formation induced by RANKL

To study the role of IFIT1 in OC formation, 
Raw264.7 cells were transfected with PCMV6- 
IFIT1. Transfection of Raw264.7 cells with PCMV6- 
IFIT1 significantly increased IFIT1 expression at 
both the gene and protein levels, indicating the effi
ciency of transfection (P < 0.05, Figure 2(a,b)). TRAP 
staining results showed that overexpression of IFIT1 
significantly promoted the formation of OCs, as the 
number and size of multinuclear cells significantly 
increased (P < 0.05, Figure 2(c-e)). The effects of 
IFIT1 on OC-specific proteins were evaluated. As 
shown in Figure 2(f-n), levels of ATP6V0D2, DC- 
STAMP, ATP6i, CTSK, TRAP, NFATc1, c-Fos, and 
MMP9 were significantly increased in cells treated 
with RANKL (P < 0.05). Moreover, the levels of these 

Figure 1. IFIT1 was highly expressed in OCs. (a) Six overlapping genes, including IFIT1, were found to be upregulated in the 
GSE51588, GSE1919, and GSE75181 datasets. (b) Raw264.7 cells were treated with 50 ng/mL M-CSF and different concentrations of 
RANKL for six days. The gene expression of IFIT1 was determined using qRT-PCR. (c) The protein expression of IFIT1 was determined 
using Western blotting analysis. (d) Raw264.7 cells were treated with 50 ng/mL M-CSF and 50 ng/mL RANKL for 0–12 days. The gene 
expression of IFIT1 was determined using qRT-PCR. (e) The protein expression of IFIT1 was determined using Western blotting 
analysis. ns, no significance vs. control group or the indicated. *P < 0.05 vs. control group.
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proteins upregulated by RANKL were further ele
vated by IFIT1 overexpression (P < 0.05). These 
results suggest that IFIT1 accelerates the formation 
of OCs induced by RANKL.

Silence of IFIT1 inhibited OC formation induced 
by RANKL

The role of IFIT1 in OC formation was further 
assessed by siRNA transfection. As illustrated in 

Figure 2. Overexpression of IFIT1 accelerated OC formation induced by RANKL. (a) Raw264.7 cells were transfected with PCMV6-IFIT1 
or the empty vector. Expression level of IFIT1 gene was determined using qRT-PCR. (b) Protein expression level of IFIT1 was 
determined using Western blotting analysis. (c) The transfected Raw264.7 cells were treated with 50 ng/mL M-CSF and 50 ng/mL 
RANKL for six days. The representative image of TRAP staining. (d) The number of multinucleate cell (≥ 3 nuclei) from TRAP staining. 
(e) Cell size from TRAP staining. (f) The representative image of Western blotting analysis. Quantitative levels of (g) ATP6V0D2, (h) 
DC-STAMP, (i) ATP6i, (j) CTSK, (k) TRAP, (l) NFATc1, (m) c-Fos, and (n) MMP9 proteins. *P < 0.05 vs. control group. #P < 0.05 vs. RANKL 
+Vector group.
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Figure 3(a,b), IFIT1 gene and protein levels were 
significantly reduced by si-IFIT1 transfection in com
parison with the negative control (P < 0.05). TRAP 
staining results showed that the multinuclear cell 
number and size increased by RANKL were 
repressed by si-IFIT1 transfection (P < 0.05, 

Figure 3(c-e)). In addition, the levels of ATP6V0D2, 
DC-STAMP, ATP6i, CTSK, TRAP, NFATc1, c-Fos, 
and MMP9 upregulated by RANKL were decreased 
by si-IFIT1 transfection (P < 0.05, Figure 3(f-n)). 
Ultimately, silencing of IFIT1 inhibits the formation 
of OCs induced by RANKL.

Figure 3. Silence of IFIT1 inhibited OC formation induced by RANKL. (a) Raw264.7 cells were transfected with si-IFIT1 or the negative 
control (si-NC). Expression level of IFIT1 gene was determined using qRT-PCR. (b) Protein expression level of IFIT1 was determined 
using Western blotting analysis. (c) The transfected Raw264.7 cells were treated with 50 ng/mL M-CSF and 50 ng/mL RANKL for six 
days. The representative image of TRAP staining. (d) The number of multinucleate cell (≥ 3 nuclei) from TRAP staining. (e) Cell size 
from TRAP staining. (f) The representative image of Western blotting analysis. Quantitative levels of (g) ATP6V0D2, (h) DC-STAMP, (i) 
ATP6i, (j) CTSK, (k) TRAP, (l) NFATc1, (m) c-Fos, and (n) MMP9 proteins. *P < 0.05 vs. control group. #P < 0.05 vs. RANKL+si-NC group.

2290 Y. XUE ET AL.



STAT3 was a downstream pathway of IFIT1

GSEA software was used to analyze the GSE1919 
dataset, and pathways activated by IFIT1 were 
obtained. Considering the key role of STAT3 in 
OC formation and osteoarthritis progression, 
STAT3 signaling was selected for further investiga
tion (Figure 4(a)). Western blotting results 
(Figure 4(b,c)) showed that overexpression of 
IFIT1 promoted the phosphorylation of JAK1 
and STAT3 (P < 0.05). Conversely, IFIT1 silencing 
inhibited the phosphorylation of JAK1 and STAT3 
(P < 0.05). These data confirmed that STAT3 is 
a downstream pathway for IFIT1, and IFIT1 con
tributes to the phosphorylation of JAK1 and 
STAT3.

IFIT1 promoted OC formation by activating 
STAT3 signaling

To validate the involvement of STAT3 signaling in 
IFIT1-mediated osteoclastogenesis, Raw264.7 cells 
were treated with 3 μM Stattic, a STAT3 inhibitor, 
for 24 h [25]. TRAP staining results showed that 
IFIT1 significantly increased the multinuclear cell 
number and size, but this effect was eliminated by 
Stattic (P < 0.05, Figure 5(a-c)). Furthermore, 
IFIT1 increased the levels of ATP6V0D2, DC- 
STAMP, ATP6i, CTSK, TRAP, NFATc1, c-Fos, 
and MMP9, but this effect was weakened by 
Stattic (P < 0.05, Figure 5(d,e)). Collectively, 
IFIT1 promotes OC formation by activating the 
STAT3 signaling pathway.

Figure 4. STAT3 was a downstream pathway of IFIT1. (a) STAT3 signaling pathway activated by IFIT1 was obtained by GSEA analysis. 
(b) Raw264.7 cells were transfected with PCMV6-IFIT1, si-IFIT1 or the negative controls. After transfection, cells were treated with 
50 ng/mL M-CSF and 50 ng/mL RANKL for six days. Western blot was used to measure the expression of JAK1, STAT3 and the 
phosphorylated forms of the two proteins. (c) Fold change of phosphorylated JAK1 and STAT3 relative to total proteins. *P < 0.05 vs. 
control group. #P < 0.05 vs. the indicated group.
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Discussion

OCs play a critical role in mediating bone resorption. 
Additionally, OCs are involved in regulating hemato
poiesis, bone formation, intraosseous angiogenesis, 
and osteocalcin hormone action [26–28]. Hyper 
bone resorption can cause bone degenerative diseases 
including osteoporosis and osteoarthritis, and bone 
resorption dysfunction can cause bone diseases such 
as sclerosis and compact osteogenesis imperfecta [29]. 

Drugs used for bone-related diseases mainly affect the 
process of bone resorption through the differentia
tion, function, and apoptosis of OCs. At present, 
multiple genes have been found to be abnormally 
expressed in OCs, providing potential pharmacologi
cal targets for bone resorption-related diseases. For 
example, MYC induces miR-320a expression to pro
mote OC formation [7]. Methyltransferase 3 expres
sion is increased during OC differentiation, and 

Figure 5. IFIT1 promoted OC formation by activating STAT3 signaling. (a) Raw264.7 cells were transfected with PCMV6-IFIT1 or the 
empty vector. After transfection, cells were treated with 50 ng/mL M-CSF and 50 ng/mL RANKL for six days. Stattic with a dose of 
3 μM was used to treat cells for 24 h to inhibit STAT3 signaling. The representative image of TRAP staining. (b) The number of 
multinucleate cell (≥ 3 nuclei) from TRAP staining. (c) Cell size from TRAP staining. (d) The representative image of Western blotting. 
(e) Quantitative levels of ATP6V0D2, DC-STAMP, ATP6i, CTSK, TRAP, NFATc1, c-Fos, and MMP9 proteins obtained from Western 
blotting analysis. *P < 0.05 vs. RANKL+Vector group. #P < 0.05 vs. RANKL+IFIT1 group.
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consequently regulates OC differentiation and func
tion through different mechanisms [30]. Exploring 
more drug targets is conducive to drug research for 
bone resorption-related diseases.

IFIT1 is a well-known regulator of viral infec
tion-induced immune response and inflammation 
[14]. However, the role of IFIT1 and its mechan
ism of action, in bone-related diseases, are poorly 
understood. In the present study, Raw264.7 cells 
were treated with M-CSF and RANKL to induce 
OC differentiation as described previously [31]. 
The gene and protein expression of IFIT1 was 
significantly increased by RANKL in Raw264.7 
cells in a dose- and time-dependent manner. 
This, therefore, indicates the foundational involve
ment of IFIT1 in OC formation.

Furthermore, the in vitro results suggest that IFIT1 
significantly promotes OC formation, and silencing 
of IFIT1 exerts the opposite effect. ATP6V0D2 and 
ATP6i are essential molecules that mediate OC for
mation and bone resorption [32,33]. TRAP is an 
iron-containing metalloenzyme that mediates OC 
resorption by degrading the endocytic bone matrix 
[34]. CTSK and MMP-9 degrade organic bone 
matrix-like type I collagen in bone tissue and increase 
bone resorption activity [35–37]. DC-STAMP is an 
essential cytokine in monocyte fusion and giant cell 
formation [8,38]. These factors are commonly used 
as biomarkers for bone metabolism and OC forma
tion. In this study, IFIT1 positively regulated the 
expression of macrophage OC-related differentiation 
factors, promoting the fusion of single macrophages 
into multinucleated OC-like cells and improved OC 
function. These data suggest that IFIT1 may be 
a potential target to treat OC formation-related dis
eases. However, further studies are required, espe
cially pit formation assay, to better understand the 
role of IFIT1 in bone resorption.

The STAT3 pathway has been reported to be 
involved in OC formation and differentiation 
[23,39]. It has been demonstrated that, peroxire
doxin II protects against lipopolysaccharide- 
induced OC formation through the inhibition of 
STAT3 [40]. Inhibition of Shc1-dependent STAT3 
signaling suppressed OC formation and bone loss 
induced by oncostatin M [41]. In this study, the 
effect of IFIT1 on the STAT3 pathway was investi
gated. IFIT1 activated the STAT3 pathway by pro
moting the phosphorylation of JAK1 and STAT3. 

Furthermore, inhibition of STAT3 significantly 
reduced the effects of IFIT1 on multinucleated cells 
and OC formation-related proteins. These results 
suggest that IFIT1 promotes OC formation, at least 
partially, via regulation of STAT3 signaling. The 
production of RANKL has been recognized as 
a major output of STAT3 signaling [42,43]. It 
seems that IFIT1 acts as an accelerator in RANKL- 
induced OC formation. Specifically, RANKL 
induced the expression of IFIT1 in OC precursor 
cells, which further activated JAK1/STAT3 signaling 
to produce RANKL, ultimately leading to OC for
mation. To improve our understanding of OC for
mation, further studies are required to reveal other 
possible mechanisms used by IFIT1.

Conclusion

The expression of IFIT1 was significantly 
increased during the differentiation of Raw264.7 
cells into OCs induced by RANKL. 
Overexpression of IFIT1 promoted the formation 
of OCs and OC-specific proteins by regulating 
STAT3 signaling. The findings of this study pro
vide a potential basis for further research and 
development of novel drugs for treatment of 
bone resorption diseases, such as osteoarthritis.

Highlights

(1) IFIT1 is highly expressed in the event of 
osteoclastogenesis;

(2) IFIT1 accelerates the formation of osteo
clasts induced by RANKL;

(3) Silence of IFIT1 controlled the osteoclast 
formation;

(4) IFIT1 accelerates osteoclast formation by 
activating STAT3 signalling.
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