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Abstract

Identifying biomarkers associated with disease progression and drug resistance are

important for personalized care.We investigated the expression of 121 curated genes,

related to immunomodulatory drugs (IMiDs) and proteasome inhibitors (PIs) respon-

siveness. We analyzed 28 human multiple myeloma (MM) cell lines with known drug

sensitivities and130primaryMMpatient samples collected at different disease stages,

including newly diagnosed (ND), on therapy (OT), and relapsed and refractory (RR, col-

lected within 12 months before the patients’ death) timepoints. Our findings led to

the identification of a subset of genes linked to clinical drug resistance, poor survival,

anddisease progression following combination treatment containing IMIDs and/orPIs.

Finally, we built a seven-genemodel (MM-IMiD and PI sensitivity-7 genes [IP-7]) using

digital gene expression profiling data that significantly separates ND patients from

IMiD- and PI-refractory RR patients. Using this model, we retrospectively analyzed

RNA sequcencing (RNAseq) data from the Mulltiple Myeloma Research Foundation

(MMRF) CoMMpass (n= 578) andMayo ClinicMMpatient registry (n= 487) to divide

patients into probabilities of responder and nonresponder, which subsequently corre-

latedwith overall survival, disease stage, and number of prior treatments. Our findings

suggest that this model may be useful in predicting acquired resistance to treatments

containing IMiDs and/or PIs.
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1 INTRODUCTION

The introduction of immunomodulatory drugs (IMiDs) and protea-

some inhibitors (PIs) changed the therapeutic paradigm for treat-

ment of multiple myeloma (MM) due to their specific antimyeloma

mechanisms. While the majority of patients receiving combination
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chemotherapy including IMiD and/or PI initially respond, most of them

eventually develop resistance. Understanding the underlying mech-

anisms of nonresponsiveness and identifying biomarkers associated

with drug resistance and disease progression have become critical

for personalized medicine and development of novel therapeutic

strategies.
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IMiDs mediate anti-MM effects by binding to the E3 ubiquitin

ligase cereblon (CRBN) [1–3], which subsequently increases degra-

dation of the transcription factors Ikaros (IKZF1) and Aiolos (IKZF3),

culminating in downregulation of IRF4 andMYC expression leading to

inhibition of MM cell growth [4, 5]. IMiD resistance in MM has been

linked to deletion, functional mutation, or dysregulation of CRBN

and the proteins directly and indirectly associated with CRBN or

IMiD-mediated signaling [2, 6–14]. Resistance to PIs in MM has also

been extensively studied [15–21] and attributed to mutation and

dysregulation of proteasome subunits [15] .

In clinical practice, IMiDs and PIs are usually given in combination

with each other as well other classes of drugs (such as dexamethasone)

as standard of care. Developing a method to monitor both IMiD and

PI drug sensitivity and detect disease progression during treatment

is important for precision medicine. In the present study, we sought

to identify transcriptional changes associated with treatment nonre-

sponse by studying the candidate genes previously associated with

IMID and/or PI sensitivity to determinewhethermeasuring expression

levels of such genes could serve as a biomarker for disease progression.

NanoString nCounter technology, a direct multiplexed measure-

ment of gene expression based on digital color-barcoding technology

[22], is a flexible, reproducible, and robust method when used for

molecular subtyping of diffuse large B-cell lymphoma [23–25]. In

this study, we employed this technology to investigate the transcrip-

tional expression of 121 genes potentially associated with IMiD or PI

response, in both human myeloma cell lines (HMCLs) and primaryMM

patient samples collected at different times of the disease.

2 MATERIAL AND METHODS

2.1 Study design

We investigated the transcriptional expression of 121 genes selected

from published literature [2, 4, 7, 14, 26–33] and an in-house database

linked to IMiD and PI response and resistance (Figure 1A). We

screened 28 HMCLs with known drug sensitivities to IMiDs and

PIs and 156 primary MM patient samples, including 41 patients

with paired samples, collected at various stages of disease evolu-

tion, including newly diagnosed and untreated (ND), collected on

therapy (OT), and late relapsed and refractory (RR, bone marrow

samples from treated patients taken within the 12 months preced-

ing their death) (Figure 1B, Supporting Information Data 1). Differ-

ential gene expression between sample groups with expected dis-

tinct drug response profiles and disease stages (sensitive vs. resistant

HMCLs and ND vs. during treatment or vs. RR patient samples) were

analyzed.

2.2 MM cell lines and human MM cells

All HMCLs used in this study were provided by the Bergsagel lab-

oratory and fingerprinted to confirm their identity [34]. The cells

were cultured in RPMI1640 medium with 5% fetal calf serum. Iso-

genic IMID and PI-sensitive and -resistant cell lines were previously

generated in our laboratory [7, 33]. The generation of OCIMY5/Vec

and OCIMY5/CRBN by coculture with drug was also previously

described [28].

Primary human MM cells were recovered from bone marrow aspi-

rates collected from all Mayo Clinic sites. Informed consent was given

in writing for collection and research use under Institutional Review

Board approval (IRBs 919-04, 15–009436, 18–003198, 2207-02) in

accordance with the Declaration of Helsinki. After collection, CD138+

cells were isolated by immunomagnetic bead selection (RoboSep;

Stemcell Technologies).

2.3 Sample preparation and RNA extraction

Total RNA from HMCLs and CD138-selected plasma cells from MM

patient bone marrows were isolated using RNeasy Mini kit and the

AllPrep DNA/RNA Kit (Qiagen), respectively. After spectrophotomet-

ric quantification (NanoDrop2000, Thermo-Fisher Scientific), RNAwas

stored at−80◦C until use.

2.4 Collated gene list

A unique list including 121 gene candidates was selected for NanoS-

tring profiling (Figure 1A).We first selected 26 probes targeting CRBN,

genes with altered transcription in cell lines with low versus nor-

mal CRBN expression, genes encoding proteins associated with CRBN

activity [26], or additional genes linked to IMiDs activity and sensitivity

(such as IKZF1, IKZF3, IRF4, andMYC). Since CRBN isoforms, including

the isoform lacking exon 10, have been associated with IMiD sensitiv-

ity [35], four probes targeting different exon junctions of CRBN were

included, with one (CRBN 3) designed to span the exon 10/11 junction.

Twenty-one genes were selected by analyzing baseline gene expres-

sion levels associated with drug response in a cohort of 44 refractory

MM patients before initiation of pomalidomide and dexamethasone

therapy on a phase 2 clinical trial [28, 36, 37] (Supporting Information

Data 2) and from the isogenic lenalidomide-sensitive/resistant HMCL

XG1pair (XG1/XG1LenRes)withnormalCRBN levels [7] (Geo123506).

Twenty of these gene targets were identified between the responders

and nonresponders in both data sets.

An additional 10 genes included in the exploratory panel were

selected based on data from 59 MM patients that exhibited dif-

ferential responses to a first line of treatment containing IMiDs

in the CoMMpass data (Supporting Information Data 3, generated

as part of the Multiple Myeloma Research Foundation Personalized

Medicine Initiatives). These 10 genes were differentially expressed

in samples that showed complete response, partial response or sta-

ble disease; five of which were also identified in the XG1/XG1LenRes

analysis. Additional previously reported 24 genes noted as pre-

dictive markers of response to IMiDs and/or PIs in MM were

included [30–32]. Since a recent study in our laboratory identified
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F IGURE 1 Collated gene list and primarymultiple myeloma (MM) samples or humanmultiple myeloma (MM) cell lines (HMCLs) for
NanoString profiling. (A) Genes comprising the CodeSet were selected based on previous studies. (B) Patient materials were selected and grouped
based on the stage of disease activity when samples were collected. Numbers in brackets indicate the number of probes for each gene or number
of patients in each group

an upregulation of proteasome subunit genes in PI-resistant cell

lines when compared with their isogenic-sensitive cell lines [33], 40

probes for genes encoding the multiple proteasome subunits were

included.

2.5 NanoString CodeSet design and expression
quantification

The 121informative genes potentially associated with IMiD and PI

response, along with 11 housekeeping genes (Supporting Information

Data 4), were combined to generate the exploratory CodeSet for this

study. The experiments were performed with nCounter Elements XT

reagents in accordance with the manufacture’s recommendations.

An input of 100 ng total RNA was used for all lines and samples. The

collected data were first evaluated for quality control, followed by

technical normalization using synthetic controls and biological nor-

malization via housekeeping genes. Data were initially analyzed using

nSolver 4.0 software and an advanced analysis software plugin (ver-

sion 2.0, R-based statistical tool) to detect and visualize differentially

expressed genes.

2.6 Ranking predictive probes and development
of models for predicting drug sensitivity and disease
progression

Differentially expressed genes between ND (n = 51) and RR sam-

ples (n = 57) were selected using edgeR [38]. The expression cor-

relations between the differentially expressed genes were shown by

Pvclust [39]. Each gene was then individually analyzed using a general-

ized linear model [40] to filter the top q-associated probes with differ-

ent response outcomes. To build a multivariate ordinal model for pre-

diction, with the 121 gene probes and annotated ND or RR for each

patient sample, a linear logistic regression model was built by using

R package bhGLM [40], followed by step Akaike information criterion

(AIC) [41] for optimization. The resulting prediction model was based

on gene expression from seven genes using following calculation:



ZHU ET AL. 807

F IGURE 2 Demonstrating NanoString technology as a sensitive, reliable and reproducible method to quantitate gene expression changes in
myeloma cells. (A) Correlation of two biological repeats generated from the NanoString profiling of multiple myeloma1 (MM1).S cell lines. (B and
C) NanoString profiling detected the downregulation of CRBNmRNA and upregulation of IL6mRNA in two different lenalidomide
isogenic-resistant cell lines, consistent with the previous RNA sequencing (RNAseq) data. (D) Heatmap view of the normalized data from four pairs
of isogenic introduction of immunomodulatory drugs (IMiDs)-sensitive/resistant cell lines. (E) Detection of lenalidomide-mediated transcriptional
response in lenalidomide-sensitive cell line, OCIMY5/Cereblon (CRBN)

1. Z = −32.1129 + 0.3773DIRAS1 + 2.2558CRBN_2 + 0.8810CD53

+ 1.6225PSMD14 – 0.6304CEP55+ 0.9362SK2 - 1.7078PSMA7

2. Based on the value Z, the probability of “responder” is calculated by

sigmoid function

Probability of responder =
1

1 + e−z

The predicted probability from themodel ranges from 0 to 1, where

a higher valuemeant a higher chance of being a responder.

2.7 Assessment of the performance of
established model

We first evaluated the performance of seven-genemodel (namedMM-

IP-7, stands for multiple myeloma-IMiD and PI sensitivity -7 genes)

by five-fold cross-validation as described (https://rdrr.io/cran/cvAUC/

man/ci.cvAUC.html). Using this model, we retrospectively analyzed

existing RNA sequencing (RNAseq) data from the primary samples

of the Multiple Myeloma Research Foundation (MMRF) coMMpass

(n = 578, ND patients) and Mayo Clinic MM registry (n = 487, col-

lected from patients at different disease stages) datasets to corre-

late the MM-IP-7 results with other clinical data such as survival,

disease stage, and number of treatment protocols. Briefly, we submit-

ted RNAseq data to MM-IP-7 to calculate probabilities (by ranking

scores) and then compared estimated results with other clinical data

in each dataset. Since the RNAseq data are highly correlated but have

different scales when compared to NanoString, the probability of esti-

mate from this analysis is based on rank order rather than actual cut

point criteria.

3 RESULTS

3.1 Validation and quality control of NanoString
expression profiling in MM

We first confirmed performance by the nCounter instrument by profil-

ing ofMMcells using testing a CodeSet of 43 of the 121 selected genes

(Supporting Information Data 5). We demonstrated that nCounter

https://rdrr.io/cran/cvAUC/man/ci.cvAUC.html
https://rdrr.io/cran/cvAUC/man/ci.cvAUC.html
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F IGURE 3 Detection of the differentially expressed genes between newly diagnosed and late stage, relapsed/refractory samples. Volcano plot
displaying each gene’s -log10 (p-value) and log2 fold changewith the selected covariate. Highly statistically significant genes fall at the top of the
plot above the horizontal lines, and highly differentially expressed genes fall to either side. Horizontal lines indicate various p-value thresholds. The
20most statistically significant genes are labeled in the plot. Top 16 differentially expressed genes are shown in the table beside each plot. (A) Fifty
late/ relapsed and refractory (RR) samples (bonemarrow samples taken from treated patients within the 12months preceding their death) were
comparedwith 52 newly diagnosed samples. (B) Eleven paired late/RR samples and newly diagnosed (ND) samples were compared

technology was able to generate reproducible results from two biolog-

ical repeats (MM1.S, Figure 2A). As expected, the NanoString platform

also detected CRBN downregulation and IL6 upregulation in two

established lenalidomide-resistant HMCLs, when compared with their

isogenic-sensitive cell lines (Figure 2B,C), consistent with previous

observations [7]. A gene expression heatmap of normalized data from

four pairs of lenalidomide isogenic HMCLs showed that each isogenic

cell line pair clustered together as expected. Further analysis of the

expression data using the nSolver 4.0 software (NanoString, Seattle,

WA) identified downregulation ofCRBN as a significant change in three

resistant cell lines (Figure 2D, Figure S1), consistent with previously

published data [7].

Then, using the complete CodeSet, we measured the relative

expression levels of the 121 selected genes in untreated and

lenolidomide-treated OCIMY5/vec, which expresses a very small

amount of CRBN and is resistant to IMiDs and OCIMY5/CRBN, which

has forced CRBN expression and is sensitive to IMiDs. We were able

to accurately detect known lenalidomide-regulated gene expression

changes (Figure 2E) inOCIMY5/CRBN. Therefore, NanoString technol-

ogy was confirmed as a sensitive and reproducible method to quanti-

tate gene expression changes inMM cells.

3.2 Identification of differentially expressed
genes in MM patients with samples collected at
different time

We next measured the differential expression of the 121 genes in all

primary MM samples and HMLCs, grouped by known or likely drug

sensitivity and resistance profiles. Forty-three genes were identified
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F IGURE 4 Detection of differentially expressed genes between newly diagnosedmultiplemyeloma (MM) and samples harvested during active
treatment volcano plot displaying each gene’s -log10 (p-value) and log2 fold changewith the selected covariate. Highly statistically significant
genes fall at the top of the plot above the horizontal lines, and highly differentially expressed genes fall to either side. Horizontal lines indicate
various p-value thresholds. The 20most statistically significant genes are labeled in the plot. Top 16 differentially expressed genes are shown in
the table. (A) Eight paired samples harvested at the time of diagnosis and during or after treatment with introduction of immunomodulatory drugs
(IMiDs)-based therapy (no proteasome inhibitors [PIs] were used) were compared. (B) Fourteen paired samples harvested at the time of diagnosis
and during or after treatment with IMiDs and PIs were compared

that had significantly different expression (p ≤ 0.05) between 52 ND

and 57 RR samples (Supporting Information Data 6). In addition to

the expected CRBN, we identified six genes (TMEM107, DIRAS1, CD53,

TNFRSF13C, LTBP1, and FOS) as most significantly downregulated in

RR samples; meanwhile another seven genes (PRR11, CEP55, BIRC5,

KPNA2, DEPDC1, PSMB4, and ETV4) were shown as most significantly

upregulated (Figure 3A, Supporting Information Data 6). We noticed

that all probes against the different CRBN isoforms detected CRBN

downregulation in RR samples, but no upregulation of the isoformwith

exon 10 deletion was identified.

We then analyzed 22 paired samples from 11 patients, which

were collected at both ND and RR stages, identifying 45 genes as

differentially expressed between ND and RR stages (p ≤ 0.05, Sup-

porting Information Data 7). In addition to confirming most changes

above, the RR samples also showed downregulation of IFITM1 and

PSMC4 and upregulation of ITPRIPL2, PBK, PSMD4, and CTAG1B as

their most differentially expressed genes (Figure 3B, Supporting

Information Data 7). These changes were not detected, or detected

at a lower significance, when comparing paired samples at ND with

a secondary sample collected during treatment but before disease

progression; this dataset included samples from patients treated with

IMiDs (eight pairs, Figure 4A and Supporting Information Data 8),

IMiDs + PI (14 pairs, Figure 4B and Supporting Information Data 9),

and solely PIs (three pairs, Figure S2). When comparing ND samples



810 ZHU ET AL.

F IGURE 5 Hierarchical clustering of 45 differentially expressed genes between newly diagnosed (ND) and late/ relapsed and refractory (RR)
samples and identification of predictive probes. (A) The expression pattern of 45 differentially expressed genes between the ND and late/RR
samples (p≤ 0.01) were analyzed by pvclust. Values at branches are approximately unbiased (AU) p-values (red) and bootstrap probability (BP)
values (green). Clusters with AU≥ 90 are indicated by the rectangles. (B) Predictive genes were identified by analysis of 45 differentially expressed
genes between the ND and late/RR samples (p≤ 0.01) using single gene GLMmodel regression with coefficient p-value≤ 0.05

with paired “on active treatment” samples, downregulation of CRBN,

CD53, IFITM1 and upregulation of PRR11, CEP55, and BIRC5 was

demonstrated (Figure 4B). A similar trend of upregulation of PRR11,

ETV4, and BIRC5 was also identified in later relapsed samples com-

paredwith early samples collected during treatment from five patients

(Figure S3).

We next explored HMCLs with known response to IMiDs and

PIs [42]. By comparing gene expression of six IMiD-sensitive and

nine IMiD-resistant HMCLs, 22 genes were identified as differ-

entially expressed (Supporting Information Data 10, Figure S4A).

Six changes in IMiD-resistant HMCLs were consistent with those

identified in RR samples from MM patients, including upregula-

tion of PRR11, HN1, RFC3, PSMB2, PSMD14, and downregulation

of SKA2. When five paired PI-sensitive and -resistant isogenic cells

lines were compared, we identified changes in the expression of

seven proteasome subunit genes, including upregulation of PSMB5

in resistant cell lines (Figure S4B), consistent with our previous

observations [33].

3.3 Identifying predictive probes and establishing
a predictive model

Using the NanoString profiling data obtained from all ND (n = 52)

and RR patients (n = 57), we further evaluated the predictive value of

each differentially expressed gene for correlation with drug resistance

and disease progression. Using edgeR software, we identified 45/121

differentially expressed genes between ND and RR samples (p ≤ 0.01)

(Supporting Information Data 11). The correlation between those

differentially expressed genes was identified by clustering analysis, for

example, the expression of PRR11 was found to cluster together with

the expression of BIRC5, CEP55, PBK, and DEPDC1 (Figure 5A). We

identified 31/45 genes as significant predictors for separatingND from

RR patients (p < 0.05, Figure 5B), with CRBN, PRR11, CD53, BIRC5,

DIRAS1, DEPDC1, and CEP55 being the most differentially expressed.

Finally, using R-package BhGLM, we built a multivariable ordinal

model (MM-IP-7) that contained seven-associated predictors, CRBN,

CEP55, DIRAS1, SKA2, CD53, PSMA7, and PSMD14 (Figure 6A). The



ZHU ET AL. 811

F IGURE 6 Establishing the predictivemodel based on the differentiated expressed genes between newly diagnosed (ND) and Late/relapsed
and refractory (RR) samples. (A) A seven-gene predictivemodel (multiple myeloma [MM]-IMiD and PI sensitivity-7 genes [IP]-7) was built based on
a linear logistic regression with R package BhGLM. (B) Area under curve (AUC) plot with 95% confidence interval resulted from five-fold
cross-validation of establishedmodel. (C) The establishedmodel was employed on RNA sequencing (RNAseq) data fromCoMMpass dataset for
responder/nonresponder prediction. The scores based on this seven-gene expression in each sample were calculated and ranked. The survival data
from 20% samples that ranked at each side of probability of response were compared; the samples on the “nonresponder” probability side have a
shorter survival comparedwith the samples on the “responder” probability side. (D and E) The establishedmodel was also employed onmRNAseq
data from theMayo ClinicMMprimary patient dataset. The scores were calculated in the samples that grouped by different stage and treatment
protocols. (D) Analysis demonstrated that newly diagnosed (ND) patients’ samples more frequently have “responder” probabilities as compared to
samples taken during therapy (other) or at refractory and end stages (ES). (E) Compared the patients with treatments (1 or 2 or>3 prior treatment
protocols), the patients with no treatment or less treatment havemore “responders” probabilities

performance of MM-IP-7 was evaluated by five-fold cross-validation

resulting in an area under curve (AUC) = 0.91 (Figure 6B). Using

MM-IP-7, we also analyzed RNAseq data from MMRF CoMM-

pass (n = 578) and Mayo Clinic MM patient registry (n = 487),

found that model prediction correlated with OS (CoMMpass

data, Figure 6C), disease stage, and treatment (Mayo Clinic MM

patient data, Figure 6D,E). As expected, patient samples that clas-

sified as “responders” through the MM-IP-7 were enriched for

longer OS, ND samples, samples without treatment, and fewer prior

therapies.

4 DISCUSSION

We investigated the expression of 121 selected candidate genes

that were previously demonstrated to associate with IMID and/or

PI response to determine whether such genes could be combined

into a biomarker assay of disease progression following combination

chemotherapy regimens.We identified a subset of genes with changes

in transcriptional expression during treatment and disease progres-

sion. The top downregulated gene in refractory and late stage disease

was CRBN. We not only identified downregulation of CRBN in samples

harvested during or after treatment with an IMiD-based therapy, but

also observed that downregulation became increasingly prominent in

the relapsed and end stages samples. These results are consistent with

both our own and other’s prior reports, which demonstrated that with

progressive IMiDs exposure, CRBN copy number and expression was

reduced in MM cell lines and patient samples [7, 43]. Although sev-

eral CRBN probes were designed to detect various isoforms of CRBN

including the one with exon 10 deletion (associated with IMID resis-

tance), no increased expression of this CRBN isoform was identified in

resistant samples.
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In addition to CRBN, in RR samples we also detected non-CRBN-

related transcriptional changes identified in patient samples classified

as nonresponders to pomalidomide (Supplemental Data 2) and in

the XG1LenRes IMiD-resistant isogenic HMCL, including downreg-

ulation of IFITM1 and upregulation of PRR11, BIRC5, PBK, DEPDC1,

RNFT2, and CEP55. IFITM1 is one of the interferon-stimulated genes

upregulated by IMiD treatment and suggested to be involved in

IMID-mediated antimyeloma activity [44, 45]. Upregulation of BIRC5,

PRR11, PBK, DEPDC1, RNFT2, and CEP55 appeared subsequent to

drug exposure in our study. BIRC5 and CEP55 are genes incorpo-

rated within the gene expression-based proliferation indices [46],

which is associated with poor prognosis. In the MMRF CoMMpass

dataset, we found that high expression of PRR11, PBK, and DEPDC1,

like BIRC5, correlated with short survival and poor drug response

(Figure S5), implying upregulation of this group of genes may associate

with disease progression and reduced drug response. Indeed, we

demonstrated that inhibition of PBK reduced myeloma cell growth

and enhanced lenalidomide and bortezomib activity in the IMiD-

resistant cell lines JJN3 and XG1LenRes (Figure S6). This result

agrees with a recent study, demonstrating that inhibition of PBK

overcame lenalidomide resistance [47]. Other upregulated genes

identified in RR samples include ETV4. Upregulation of ETV4 has been

demonstrated in MM patient samples at the time of acquire IMiD

resistance [14].

Basedon theNanoString profiling data fromNDandRR samples,we

identified a subset of genes (Figure 5B) whose transcriptional expres-

sion may serve as predictive biomarkers for treatment nonresponse

and disease progression, including several known genes involved in

IMiD and PI sensitivity, including CRBN [11], CD53 [32], and PSMD4

[48]. We also built a multivariate ordinal model, MM-IP-7, for predict-

ing drug resistance and disease progression. We demonstrated that

classification into responder or nonresponder from this model corre-

lated well with treatment and disease stage from a clinical dataset

encompassing over 400 patients, suggesting that this model may have

potential to monitor the emergence of drug resistance and disease

progression. Interestingly, we also found that the MM-IP-7 predic-

tion, in ND patients, is associated with OS, suggesting it may be used

to identify patients that will be less responsive with faster progres-

sion. We recognize that a potential limitation of our study is that

end stage patients were treated with combinations of multiple drugs,

rather thanauniformly treated cohort; therefore someof our observed

geneexpression changesmaybealso linked tomultiple-drug resistance

during disease progression. It will be important to extend our study to

test more samples harvested at early relapse, especially from uniform

therapy.

In the current study, we also demonstrated that NanoString

nCounter technology is a reliablemethod for accurately detecting gene

expression in MM samples. As described in non-Hodgkin’s lymphoma

[23–25, 49], this method requires a small amount of RNA, is reason-

ably fast, and adaptable to a clinical diagnostic laboratory suggesting

its potential application inMMbio-marker development.

In summary, we developed a NanoString gene expression profiling-

based prediction model, which may serve as a useful tool for clinical

investigation and therapy selection. This is the first study to build a

multivariate ordinal model to predict clinical drug resistance, poor sur-

vival, and disease progression following treatment with IMIDs and PI,

by using a comprehensive gene list generated frommultiple other pub-

lications and the robust NanoString technology, which is currently in

clinical practice.
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