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Abstract: Electrical Resistance Tomography (ERT) offers a non-destructive evaluation (NDE)
technique that takes advantage of the inherent electrical properties in carbon fiber reinforced polymer
(CFRP) composites for internal damage characterization. This paper investigates a method of
optimum selection of sensing configurations for delamination detection in thick cross-ply laminates
using ERT. Reduction in the number of sensing locations and measurements is necessary to minimize
hardware and computational effort. The present work explores the use of an effective independence
(EI) measure originally proposed for sensor location optimization in experimental vibration modal
analysis. The EI measure is used for selecting the minimum set of resistance measurements among all
possible combinations resulting from selecting sensing electrode pairs. Singular Value Decomposition
(SVD) is applied to obtain a spectral representation of the resistance measurements in the laminate
for subsequent EI based reduction to take place. The electrical potential field in a CFRP laminate
is calculated using finite element analysis (FEA) applied on models for two different laminate
layouts considering a set of specified delamination sizes and locations with two different sensing
arrangements. The effectiveness of the EI measure in eliminating redundant electrode pairs is
demonstrated by performing inverse identification of damage using the full set and the reduced set
of resistance measurements. This investigation shows that the EI measure is effective for optimally
selecting the electrode pairs needed for resistance measurements in ERT based damage detection.

Keywords: effective independence; delamination; CFRP composites; sensor optimization;
electrical resistance tomography

1. Introduction

Laminated carbon fiber reinforced polymer (CFRP) composite materials due to high stiffness to
weight ratio are preferred in the aerospace industry. Health monitoring and prognosis of remaining
useful life of CFRP composite structures require non-destructive evaluation (NDE) techniques to
inspect the material. Current NDE methods that have been used to inspect composites include
ultrasonic scanning, X-ray imaging, acoustic emission and thermography [1].

In CFRP composites, the carbon fibers are electrically conductive and the matrix material is
an insulator. The contact between fibers due to fiber waviness provides electrical conduction in the
direction normal to the continuous fibers. Failure modes in CFRP include intralaminar matrix cracking
and interlaminar delamination cracks. The presence of cracks due to delamination or matrix cracking
break these contacts through which the electric current flows and increases the electrical resistance.
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This allows using the intrinsic electrical resistance change to sense damage in a composite. Electrical
Resistance Tomography (ERT) is an NDE approach which has become increasingly popular in the
context of structural health monitoring. In ERT, the changes in electrical resistance are measured from
the composite laminate boundaries and the damage is characterized through inverse identification
techniques. A number of publications have appeared in the last few decades that demonstrate the
use and applicability of ERT methods for structural health monitoring in laminated fiber reinforced
polymer (FRP) composites [2,3].

Inverse identification of delamination crack location and size in ERT requires numerical
optimization that minimizes the difference between the measured and the model predicted resistances,
with the damage location and size as its variables. This optimization becomes prohibitively expensive
computationally for composite materials since it requires numerical finite element analysis models.
Damage identification based on electrical resistance change using surrogate modeling based on
response surface methods [4–6] or neural networks [7] has been presented to reduce model complexity.

An essential feature in the design of a sensing system for damage detection is to ensure that
the obtained measurements are able to identify damage with good sensitivity and distinguishability
for every considered case. However, this requires a large number of sensors which is not possible
in practical applications since the number of measurements are limited by the hardware restrictions
such as sensor availability, data channels and sampling time. This necessitates methods for optimum
selection of electrodes that provide high detectability and distinguishability. In ERT for damage
characterization in composites, this optimization translates into minimizing the number of electrode
sensing combinations used for resistance measurements, preserving accuracy in the characterization of
delamination location and size.

Optimum sensor selection has been previously explored in the structural vibration field.
The Effective Independence (EI) measure was introduced by Kammer [8] for optimum placement of
acelerometers in space structures to identify a given set of vibration modes. This work presented
a procedure for the reduction of sensor locations used in modal analysis in large structures based on
ranking the sensor locations according to their contribution to the linear independence of the target
modal partitions [8].

This paper extends the approach used by Kammer by using the EI measure to rank and classify
the measuring electrode combinations in ERT. The use of effective independence ranks electrode pairs
for resistance measurements according to their contribution to the independence of the damage states,
thus determining the minimum number of required electrodes to characterize such states. Preliminary
considerations and assumptions for using EI for the ERT problem on composites are presented.
Experiments simulated by numerical finite element analyses are used to demonstrate the application of
using EI in selecting the electrode configurations for ERT based detection of delamination in composite
laminates. The verification of the accuracy is demonstrated using inverse identification optimizations.

2. Electrical Resistance Tomography in CFRP Composite Laminates

Carbon Fiber Reinforced Polymer (CFRP) laminates exhibit highly orthotropic electrical
conductivity properties along their fiber, transverse and thickness directions. Electrical conductivity in
CFRP laminates along the fiber direction is the highest. Since the polymer matrix usually behaves as
an insulator material, the electrical conductivity in the transverse and thickness directions should be
zero or negligibly small for perfect unidirectional CFRP laminates. However, the fiber waviness in real
composites lead to fiber-to-fiber contact creating a network that allows the electrical current to flow in
the transverse to fiber direction.

The presence of a resin-rich region between plies in laminated composites made from pre-preg
materials further lowers the electrical conductivity in the thickness direction compared to the inplane
transverse to fiber direction [5]. As a result, the ratio of electrical conductance in the the fiber
direction (σ0) to the transverse to fiber direction (σ90) is approximately σ0/σ90 = 103, and the electric
conductivity ratio of the fiber direction to the thickness direction (σt) is approximately σ0/σt = 104 [9].
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Intralaminar transverse cracks that occur inside a ply layer and intralaminar delamination cracks
that occur between the plies break the fiber-contact network between plies, which further decreases
the electrical conductivity (increases the electrical resistance ) in the inplane transverse and out of
plane directions.

ERT based damage detection applies electric current resulting from an external electric potential at
electrode pairs on a specimen surface and measures the electric potential difference between electrode
pairs [10] (Figure 1a). Analogously, for ERT on a laminate, electric potentials can be measured [11]
(Figure 1b) between: (i) the electrode pair on which electric current is injected, (ii) consecutive electrodes
or (iii) a couple of electrodes following a given separation or skip [10]. Electrical resistance values
between the electrode pair through which excitation is applied can be determined using Ohm’s law.
These values can be obtained before and after delamination occurs in the composite, and the change in
resistance is used to measure the damage.
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Figure 1. Electrical Resistance Tomography (ERT): (a) General example; (b) in a laminate.

In order to measure electrical resistance on a composite laminate, many authors have placed
electrodes on both top and bottom surfaces using different configurations [4,9,12]. Delamination and
matrix damage detection using ERT is challenging because these damage modes are perpendicular to
directions in which the conduction is already low. This requires investigation of methods to optimize
sensors to increase sensitivity of the measurements that leads to more accurate damage detection
and identification.

3. Effective Independence for Optimum Sensor Location Selection

Kammer [8] presented a methodology for selecting an optimum set of sensor locations for the
identification of a set of target vibration modes using finite element models. Based on modal
representation from structural dynamics, the m-dimensional vector us with the sensed output
displacements describing the physical degrees of freedom (DOF) of a structure is related to the
n-dimensional vector q of target modal coordinates (modal DOFs) through the eigenmodes of the
system given by the mxn matrix Φs:

us = Φsq. (1)

In Equation (1), Φs represents the sensing locations in its rows and the target modes in its columns.
For us with added stationary Gaussian white noise N with variance σ2

s :

us = H(q) + N = Φsq + N, (2)
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the covariance matrix P of the estimate error for an efficient unbiased estimator is given by Equation (3).
For H(q) equal to Φsq, P can be expressed in terms of Φs (Equation (4)) which equals the inverse of the
Fisher information matrix Q. Therefore, minimizing P implies the maximization of Q:

P = E[(q− q̂)(q− q̂)T ] =

[(
∂H
∂q

)T

[σ2
s ]
−1
(

∂H
∂q

)]−1

, (3)

P =
[
ΦT

s (σ
2
s )
−1Φs

]−1
= Q−1. (4)

By assuming that the measurement noise is uncorrelated and possesses identical statistical
properties for each sensor, Q can be expressed as shown in Equation (5). Matrix A0 is an equivalent
Fisher information matrix [13] expressed in terms of Equation (6),

Q =
1
σ2

s
ΦT

s Φs =
1
σ2

s
A0, (5)

A0 ⇒
m

∑
i=1

Qi =
m

∑
i=1

Φsi
TΦsi. (6)

In Equation (6), m is the number of candidate sensors and Φsi is the ith row of the target mode
partition matrix related to the ith candidate sensor location. Therefore, as sensors are removed from
the candidate set, information is deleted from Q [13].

For a matrix Φs of eigenmodes with column vectors linearly independent, matrix A0 will have
real positive eigenvalues and orthonormal eigenvectors in matrix Ψ (Equation (7)). The eigenvectors
ψj form the absolute identification space [8],

[A0 − λI]Ψ = 0. (7)

Postmultiplying matrix Φs by matrix Ψ results in a matrix G0 (Equation (8)) in which the jth
column vector contains the orthogonal projection of each row vector of Φs on the jth eigenvector
(column vector) in Ψ such that the ith component of this vector contains the projection of the ith row
vector from Φs (Figure 2a),

G0 = ΦsΨ. (8)

Squaring each entry of matrix G0 (Equation (9)) results in matrix G (Figure 2b). For this matrix,
the ith component of its jth vector contains the contribution of the ith sensor location to the associated
jth eigenvalue in Ψ [8].

gi,j = (g0i,j)
2 ⇒ G (9)

Postmultiplying matrix G by the inverse of matrix λ with the eigenvalues of A0 (Equation (10))
divides every column of G, related to the jth eigenvector in Ψ, by its eigenvalue which gives equal
importance to each direction within the identification space [8]. The result of this product is matrix FE
(Figure 2b) with the fractional contribution of the ith sensor location of the jth eigenvalue [8],

FE = Gλ−1. (10)

Adding the entries within each row of matrix FE yields column vector ED (Figure 2b) with the
effective independence (EI) distribution of the sensor set [8]. Vector ED is alternatively formulated as
the diagonal of the matrix E shown in Equation (11) [8],

E = Φs[Φs
TΦs]

−1
Φs

T . (11)
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Figure 2. Determination of the Effective Independence (EI) distribution for the sensor set used for the
target modes: (a) Projection of row vectors of Φs on a given column vector ψj of Ψ; (b) Operations
involving matrices G0, G and Gλ for the generation of vector ED.

4. Problem Formulation and Solution

4.1. Effective Independence Applied to Electric Resistance Tomography Measurements

Applying the EI approach to ERT requires modification of the modal analysis formulation to
electrical resistance measurements. In ERT, the equivalent for the sensed output displacements us

(Equation (1)) are the electrical resistance changes measured at electrode locations on the boundaries
in the presence of specific delamination. The candidate sensing locations correspond to all the possible
combinations of excitation electrode pairs from which an electric resistance can be measured. The vector
of electrical resistance changes due to a damage case (delamination) is formulated analogously to
modal representation in structural dynamics (Equation (12)), namely,

∆r = Φsχ, (12)

where the vector ∆r represents the total set of m resistance change measurements on a given laminate
under damage with respect to an undamaged condition, and matrix Φs represents a set of (column)
vectors describing a new basis spanning the resistance changes (contained in ∆r) as a function of
damage associated to the vector χ containing the contribution of each vector of Φs to the measured
resistance ∆r.

Equation (12) can be generalized for multiple damage cases by determining a mxn matrix Φs

with the vector basis for the electrical resistance change space. The basis Φs can be obtained using
proper orthogonal decomposition of the governing equations for ERT. Instead, a numerical surrogate
method is proposed here that uses the forward solutions to the governing equation for a finite sample
of n-realizations from a space of all possible damages, and the resistance changes at all possible
sensor locations are determined. This information is assembled into a ∆R matrix, with each column
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representing the resistance change due to a particular damage state. The ∆R matrix can then be
expressed using a finite basis as:

∆R = ΦsX. (13)

The basis in Φs can be obtained by computing the eigenvalues of the covariance matrix ∆R∆RT

using Principal Component Analysis (PCA) or Singular Value Decomposition (SVD). Since ∆R is often
ill conditioned, SVD can be used to reduce ∆R and thus an equivalent matrix Φs can be obtained.
In SVD, ∆R is factorized as:

∆R = UΣVT . (14)

By doing a reduction on the factorization terms based on retaining the largest singular values
(in Σ), a reduced ∆Rr matrix results:

∆Rr = UrΣrVr
T , , (15)

where UrΣr = Φs and X = Vr
T .

Once a Φs is computed using the factorization from Equation (15), a matrix E is obtained using
Equation (11), and, from its main diagonal, the EI coefficients are assigned to vector ED. Accordingly,
the ith component of vector ED ranks the contribution from the electrode combination related to the ith
row of matrix ∆R to the effective independence in the identification of damage cases. Hence, electrode
combinations can be ranked using their associated EDi, allowing for a reduction in the number of
sensing combinations.

Reducing the number of electrode combinations using the EI measures can be attained in
a systematic and iterative fashion [13]. For the reduction, the effective independence (EI) values
of Φs are computed and then the row associated with the lowest EI value is eliminated from Φs.
These actions are repeated until the determinant of the updated matrix A0 approaches zero (ε = 10−9).
Thereafter, the number of remaining electrode combinations never exceeds the amount of retained
singular values in Σr.

For the quantitative assessment of the EI measure based optimal selection of electrode
combinations, this work uses a comparison of inverse identification of delamination with the full set
of electrodes to the optimally reduced set of electrodes. Surrogate based optimization is used for the
inverse identification of damage cases. The surrogate model is constructed from the definition of
a design space and the solution of a forward problem consisting of 2D finite element models. The next
section presents modeling considerations for the ERT forward problem and the EI measure results
along with the surrogate based inverse identification are presented later.

4.2. Solving the Forward Problem in ERT to Simulate Resistance Measurements

Damage detection in a composite laminate using ERT requires solving the forward problem
describing the electrical response in a domain with conductivity field inside a material as a function of
a given damaged parameters. The governing differential equation for the voltage distribution u in
a body with a conductivity field σ under the spatial coordinates r̄ is given by the following Laplace’s
equation and associated boundary conditions (BC) [14–16]:

∇ · σ∇u = 0, r̄ ∈ Ω, (16)∫
el

σ
∂u
∂n̄

dS = I, r̄ ∈ el, l = 1, 2, ..., L, (17)

σ
∂u
∂n̄

= 0, r̄ ∈ ∂Ω\UL
l=1 el , (18)

u + ξσ
∂u
∂n̄

= Ul , r̄ ∈ el , l = 1, 2, ..., L. (19)

Equation (17) establishes that the integral of the current density over the lth electrode (surface)
is equal to the electric current Il through the electrode (n̄ is the outward unit normal). Equation (18)
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implies no current flows through the electrode-free boundaries. Finally, Equation (19) represents the
behavior at the interface of the electrode, and the medium where an infinitely thin layer with a contact
surface resistance ξ is considered [14]. When electric contact between an electrode and the target
surface is perfect, the voltage drop due to contact resistance ξ term is neglected and the electrical
potential u under electrode el is equal to Ul .

In addition, for a proper problem formulation, the currents Il need to satisfy the charge
conservation condition and a potential reference must be set to zero for uniqueness in the solution [14].

For orthotropic fiber reinforced composites, the material properties vary in each layer due to ply
orientation and the introduction of cracks/delaminations within the laminate introduces free surfaces
within the domain. The solution of the governing equation formulated above requires numerical
methods such as the Finite Element Method (FEM). The effective resistance R(σ) across any electrode
pair, through which a current I flows, can be computed from the measured voltage V using Ohm’s
Law as:

V = R(σ)I, (20)

where V and I contain voltage measurements (between electrodes) and electric currents, respectively.
An approximation of the conductivity distribution is given by σ. It is possible to use the governing
Equation (16) along with Equation (20) to describe the physics of a composite laminate under
electric load.

The present work uses simulated measurements obtained from solving a numerical model of the
problem. A simplified 2D in the plane model for the laminate that spans the thickness and length
of the laminate is considered (Figure 3). The specimen, electrodes and the embedded delamination
are all assumed to span the entire length in the out-of-plane direction. The Finite Element Analysis
(FEA) model is used to solve the equations governing the electrical current density flow in a composite
laminate with orthotropic materials.

1 2 P/2 

P-1 P 

Electrode 
locations 

“jth” Delamination  
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pair 

(P/2)+2 
Electrode 
locations 
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Figure 3. Formulations for the resistance measurements. (a) Schematic representation of the 2D model
for the composite laminate (case of [04/904]s); (b) Electric potential matrix for a composite under
damage conditions.

The 2D finite element model is used to analyze the composite laminate with embedded
delamination for a given current path due to an electrode combination (where current Ie is injected)
and obtain the resulting voltage distribution. Figure 3a shows a schematic exemplifying the composite
laminate with P electrodes, where the electrical current is injected between electrodes h and h + 1
forming the ith pair. For a laminate with specified properties and P electrodes evenly distributed on
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both the top and bottom surfaces (Figure 3a), electric current is applied on all possible electrode pair
combinations. The number of combinations m of choosing two electrodes from P electrodes equals the
combinatorial coefficient PC2. The finite element analyses are repeated for n different damage cases.
For each case, the obtained voltage is the electric potential difference between the electrode pair used
for electric current injection. Therefore, m electric potential values are computed for each damage case
forming a column vector of matrix Vl .

The matrix Vl (Figure 3a) has m rows corresponding to the electrode pair combinations and
n columns for the damage cases (Figure 3b). Each damage case is represented by: delamination
length (x1), horizontal location (x2), and vertical location (x3) (Figure 3a). Every matrix entry contains
the voltage on the electric current injection electrode. Analogously, a control matrix V0 representing
the voltage values on the laminate when no damage is present is determined. This matrix is the same
size of Vl but with repeated column vectors representing no damage state. The matrix of resistance
changes ∆R calculated as (Vl − V0)/Ie represents the change in electric resistance measured between
the electrode pair combinations given the delamination cases. This matrix summarizes the electric
resistance change in the laminate under the different considered cases.

The 2D finite element models consisting of 16 ply laminates were created and solved using
a commercial software (ANSYS R© Academic Research, Release 15.0.7, Canonsburg, PA, USA).
Delamination cracks were created using doubly-defined nodes at the crack interface to represent
for free surfaces. The domain was meshed with eight node quadrilateral planar electric elements
(PLANE 230). The element size was selected based on a mesh convergence study which used electric
potential difference between excitation electrode pairs located at a center location, for a delamination
crack located at two plies under the injection electrode. Different mesh sizes tested until convergence
were observed. The converged element mesh size was found to be 0.125 mm, which completely spans
through the thickness of each ply. This resulted in a total number of 27,044 elements for the model.

Surface electrodes were modeled as thin sheets of silver and sets of 8 and 14 were evenly
distributed on the top and bottom surfaces of each laminate model (Figure 4). For resistance
measurements, this results in a total of 28 (8C2) electrode pair combinations for eight electrodes
and 91 (14C2) combinations for 14 electrodes. A low electric current of 30 mA is applied on the injection
electrode and the reference electrode which is set to 0 V.

0.5 mm 28 mm 

2 mm 

28 mm 28 mm 

5 mm 5 mm 5 mm 5 mm 

105 mm 

0.5 mm 11.5 mm 

2 mm 

5 mm 5 mm 5 mm 5 mm 

105 mm 

11.5 mm 11.5 mm 11.5 mm 11.5 mm 11.5 mm 

5 mm 5 mm 5 mm 

1 2 3 4 

5 6 7 8 

1(1) 3(2) 5(3) 7(4) 

8(5) 10(6) 12(7) 14(8) 

  2   4     6  

    9    11   13 

Figure 4. Laminate and electrode model used for the finite element analyses. Case of [04/904]s laminate
with eight electrodes (top) and 14 electrodes (bottom). Numbering for eight electrodes (red) and 16
electrodes (green) with its 8-electrode equivalence in parentheses.
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For the FEA model, orthotropic electrical properties were used for the [04/904]s and [(0/90)4]s
cross-ply laminate models, whereas electrode material is considered isotropic. The resistivity values
used correspond to a graphite epoxy composite lamina of 62% fiber volume fraction [5]. Table 1 lists
the conductivity values used for the plies in the composites for the FEA modeling. A conductivity of
62.9 S/m is assigned to the electrode material.

Table 1. Orthotropic conductivity σ values used for the finite element analysis models [4].

Fiber Direction Transverse to Fiber Transverse to Fiber
(σ0 [S/m]) Inplane (σ90 [S/m]) Normal to ply (σt [S/m])

5500 203.5 20.9

4.3. Selection of Optimum Set of Electrode Pairs for ERT Based NDE Using Effective Independence

Using EI to determine the optimum set of electrode pairs for damage identification using ERT first
requires the determination of the resistance change matrix after analyzing a set of damage cases set by
the three previously defined design variables related to the crack: x1, x2 and x3. Variable x1 assumed
one of six possible length values (in mm) from the set: [5, 10, 15, 20, 25, 30]. For x2, horizontal crack
center locations (in mm) for damage assumed one of the nine possible values: [19.5, 27.75, 36, 44.25,
52.5, 60.75, 69, 77.25, 85.5]. Variable x3, crack vertical location, assumed values from 1 to 15 associated
with the intralaminar locations. A full factorial design of the space defined by the variables x1xx2xx3

resulted in 810 cases (6 × 9 × 15).
The 8-electrode case (Figure 4, top) is a subset of the 14-electrodes case (Figure 4, bottom).

Therefore, only simulations for the 14-electrodes case were performed. The corresponding equivalence
in the electrodes numbering when comparing data for eight electrodes to 14 electrodes is shown in
parentheses (red) in Figure 4. Thus, for 810 cases, a total of 73,710 (91 × 810) FE analyses for every
given stacking sequence were necessary.

For each stacking sequence, resistance change matrices ∆R28×810 and ∆R91×810 were computed
for eight and 14 electrodes. The SVD based reduction of the ∆R matrix was performed by iteratively
eliminating singular values from Σ in the factorization shown in Equation (14) until the scalar
representing the relative change ∆M between the reconstructed and the original ∆R matrices exceeded
2% as defined in Equation (21):

∆M = 100× ‖U(Σ− Σr)VT‖
‖∆R‖ , (21)

where Σr is the diagonal matrix with the r retained singular values after each iteration. The equivalent
Φs shown in Equation (15) is formed by the matrix Ur containing the r left singular vectors after the
reduction. Using Ur as Φs provides a matrix with a set of column vectors from the spanning set of ∆R,
which results in a matrix A0 with condition number equal to 1.

4.4. Validation of Electrode Pair Reduction Using Inverse Identification

The validity of using EI measures to reduce the amount of resistance measurements for damage
detection is demonstrated by comparison of inverse identification results obtained from the full set
and the reduced set of measurements from the models. Inverse identification minimizes the L2 norm
of the difference between the model predicted resistances and the measured resistance with damage
descriptors on variables. The optimization problem for this unconstrained nonlinear multivariate
minimization problem with bound constraints on the variables is presented in Equation (22):

Min
x1,x2,x3

f (x) =
ndim

∑
i=1

(y− ŷ)2 ,

xL
i <xi<xU

i , i=1,2,3

(22)
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where the design variables xi describe the delamination size and location, ndim is the number
of resistance values of each design point, and y and ŷ are the vectors of measured and model
calculated resistance values, respectively. The minimization was performed using commercial software
(MATLAB and Optimization Toolbox Release 2016a, The MathWorks, Inc., Natick, MA, USA). Since the
optimization problem formulated above is a mixed variable problem (continuous in x1, x2 and discrete
in x3), a genetic algorithm (GA) was used. The GA optimization used an initial parent population of
80 individuals, with child populations obtained using cross-over and mutation operators based on an
elitist strategy. Parent population of 60 and 80 individuals along with mutation rates of 1% and 5%
were also evaluated. The GA was run for a maximum of 300 generations and terminated if there were
no improvements after 200 generations. The algorithm was run for each population size, in order to
evaluate the optimum designs. The lower and upper bounds for the design variables were defined
as in Table 2. The optimization process was repeated three times for each case and the optimization,
providing the lowest number of cases with high relative errors was taken.

Table 2. Distribution of the design variables along the domain.

xi Design Variable Description Type xi
L xi

U

x1 Crack Size, in (mm) Continuous 5 30
x2 Crack x-location, in (mm) Continuous 4.5 83
x3 Crack y-location, interlaminar Discrete 1 15

A krigging [17,18] approximation was fitted to resistance change values chosen after the full
factorial (x1xx2xx3) Design of Experiments (DOE) with 810 points [19].

5. Results and Discussion

5.1. Effective Independence Applied to ERT

Table 3 groups EI values for the delamination cases in the [04/904]s and [(0/90)4]s laminates with
eight electrodes. Both laminates show similar behavior. The highest EI contributions are found for
vertically opposed electrodes close to the center of the specimen. High EI contributions are also on
those opposing ones near the edges and consecutive electrode pairs on the same surface by the center.
Consecutive electrodes near the edges and those diagonally the closest have medium contributions.
The lowest EI contributions are found on electrodes with nonzero skips and large diagonal separation.

Table 3. Effective Independence value groups for 2D models of [04/904]s and [(0/90)4]s laminates and
eight electrodes.

Number of Groups and Group Description
for Both [04/904]s and [(0/90)4]s Layups

Ei Range Number of Groups Group description (Injection/Ground)
Ei ≥ 0.9 1 (2/6 , 3/7)

0.9 > Ei ≥ 0.5 2 (1/5 , 4/8) and (2/3 , 6/7)
0.5 > Ei ≥ 0.4 3 (2/7 , 3/6) ; (1/6 , 2/5 , 3/8 , 4/7) and (1/2 , 3/4 , 5/6 , 7/8)
0.4 > Ei ≥ 0.3 1 (1/7 , 2/8 , 1/3 , 2/4 , 3/5 , 4/6 , 5/7 , 6/8)
0.3 > Ei ≥ 0.2 1 (1/8 , 1/4 , 5/8 , 4/5)

Figures 5 and 6 present heatmaps for graphical comparison of the EI values before and after
reduction for both stacking sequences. The heatmaps were plotted using a toolbox developed for
MATLAB [20]. The diagrams present EI values before reduction in their area below the diagonal and
the EI values after reduction in the area above the diagonal. For an electrode pair, a first electrode
value set on the abscissa and the second one on the ordinate gives an EI value before reduction. On the
other hand, a first electrode value set on the ordinate and the second on the abscissa gives an EI value
after reduction.
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Stacking Sequence [04/904]s Stacking Sequence [(0/90)4]s 

Figure 5. Graphical representation of effective independence values before and after electrode
combination reductions for [04/904]s (left) and [(0/90)4]s (right) composite laminates with
eight electrodes (the above diagonal indicates retained electrodes).

Stacking Sequence [04/904]s Stacking Sequence [(0/90)4]s 

Figure 6. Graphical representation of effective independence values before and after electrode
combination reductions for [04/904]s (left) and [(0/90)4]s (right) composite laminates with
14 electrodes. (the above diagonal indicates retained electrodes).

Figure 6 shows that, for 14-electrodes cases, both stacking sequences find the highest
contributions in combinations of consecutive electrodes on the same side followed by combinations of
opposing electrodes.

Electrode reduction using EI measures resulted in an optimum selection of 12 from 28 possible
pairs for eight electrodes for both stacking sequences. From the original set, those combinations with
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EI contributions larger than 0.9 are preserved, whereas the other retained combinations do not follow
the order in Table 3. Figure 5 shows that all EI based ranks of electrode combinations are qualitatively
the same for both stacking sequences.

In the 14-electrode cases, the elimination process resulted in an optimum selection of 32 and 34
electrode pairs from the complete set of 91 pairs for the [04/904]s and [(0/90)4]s laminates, respectively.
Figure 6 shows the heatmaps of EI values for the 14-electrode cases. For the EI based reduction on
the [04/904]s laminate, consecutive electrodes hold the highest ranks followed by electrode pairs
opposing each other. For the [(0/90)4]s laminate, opposite sensing pairs generally show the highest
ranks followed by consecutive electrode combinations after reduction takes place.

5.2. Inverse Identification of Damage in the Composites

The errors are computed by taking the difference between the inverse identification prediction
and the actual values. To obtain relative errors, these values were normalized as described below.

The relative errors (REs) are computed for the crack size, horizontal and vertical locations by
comparing them to the values found by the inverse identification optimization to the actual values for
40 test cases obtained by a Latin Hypercube Sampling (LHS). The REs for crack size are calculated
relative to the electrode center to center spacing equal to 33 mm and 16.5 mm for the case of eight and
14 electrodes, respectively. The REs for the horizontal spacing are calculated relative to the range of
x2 used for the DOE points (x2

U − x2
L = 69− 19.5 = 49.5) mm. The REs for vertical locations are

computed relative to the total number of plies (16). Figures 7–10 present the maximum magnitude of
the RE obtained after inverse identification of the 40 design points. They present plots of each laminate
( [04/904]s or [(0/90)4]s ) for eight and 14 electrodes before and after reduction is done using EI.

The inverse identification optimization results for a [04/904]s laminate and eight electrodes
(Figure 7) with the full and reduced optimum sets of resistance measurements showing large relative
errors (>10%) at six out of 40 test cases in the full set and six cases when the reduced set of electrode
pairs was considered, considering REs larger than or equal to 5% results in 13 cases for the full set and
14 cases in the reduced one. In the case of 14 electrodes in the [04/904]s laminate (Figure 8), eight cases
present large errors for the full set of electrode pairs against seven cases for the reduced set. Both the
full set and the reduced set of electrode pairs presented 16 cases with REs larger than or equal to 5%.
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Figure 7. Scatter plot with maximum magnitude of relative errors obtained at the 40 test points used
for inverse identification in a [04/904]s laminate using eight electrodes and considering: (left) Full
resistance measurement set; (right) Reduced resistance measurement set using EI.
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Full set of resistance values Reduced set of resistance values 
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Figure 8. Scatter plot with maximum magnitude of relative errors obtained at the 40 test points used for
inverse identification in a [04/904]s laminate using 14 electrodes and considering: (left) Full resistance
measurement set; (right) Reduced resistance measurement set using EI.
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Figure 9. Scatter plot with maximum magnitude of relative errors obtained at the 40 test points used
for inverse identification in a [(0/90)4]s laminate using eight electrodes and considering: (left) Full
resistance measurement set; (right) Reduced resistance measurement set using EI.
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Figure 10. Scatter plot with maximum magnitude of relative errors obtained at the 40 test points
used for inverse identification in a [(0/90)4]s laminate using 14 electrodes and considering: (left) Full
resistance measurement set; (right) Reduced resistance measurement set using EI.

The inverse identification optimization results for the [(0/90)4]s laminate and eight electrodes
(Figure 9) with the full and reduced optimum sets of resistance measurements showed five cases with
large RE (>10%) for the full set and seven cases out of the total 40 when the reduced set of pairs was
considered. For the full set, 19 cases showed RE larger than or equal to 5%, whereas, for the reduced set,
21 cases in this condition were found. In the case of 14 electrodes in the [(0/90)4]s laminate (Figure 10),
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four cases present large REs in the full set of electrode pairs and only two cases do for the reduced set.
Nonetheless, 15 cases show RE larger than or equal to 5% when the full set of electrode combinations
is used, and this number increases up to 19 when reduction takes place.

In order to quantify the effectiveness of using EI on the electrode combinations, the root mean
square (RMS) between the reduced electrode pair set and the full set of relative errors at each test point
is computed (RERMS) according to Equation (23):

RERMS =

√√√√√ NT
∑

i=1

(
%REreduced −%RE f ull

)2

NT
, (23)

where NT is the number of test points and %REreduced and %RE f ull are the maximum relative
errors at the ith test point for the reduced electrode pair set and full electrode pair set, respectively.
The maximum relative error is chosen from one of the three xj(j = 1, 2, 3) space variables according to
Equation (24):

RE(%) = Max
j

∣∣∣∣∣
(

xj − x̂j

xj
re f

)∣∣∣∣∣× 100%, (24)

The RMS for the [04/904]s laminate using eight electrodes was 8.75% and when using 14 electrodes
was 4.76%. On the other hand, the [(0/90)4]s results in RMS values of 4.20% for eight electrodes and
3.01% for 14 electrodes. In general, these results suggest that, as the number of electrodes increases,
the relative errors in the measures before and after applying EI reduction on the electrode pair set
approach each other. This latter aspect is more significant in the [04/904]s laminate, where, in addition
to when using eight electrodes, the reduced set presents 25 test points where the absolute value of
their maximum error is larger than for the full set, and this value significantly reduces to 15 when the
number of electrodes increases to 14. This reduction is not observed in the [(0/90)4]s laminate where
actually the number of cases increases from 16 for eight electrodes to 18 when using 14 electrodes,
which can be related to the light variation observed in the RMS values.

Table 4 summarizes the inverse identification results. Three metrics are applied to the maximum
errors at the test points: Root Mean Square Error (RMSE) over the set of points, and maxima of the
maximum errors and number of cases with absolute values of error larger than 10%. For the [04/904]s
laminate, RMSE values suggest that identification deviations decrease when increasing the number
of electrodes. The maxima of the errors also decreased accordingly but not the number of cases with
errors larger than 10%. Applying effective independence reduction results in a decrease of the RMSE
values and the maxima for eight electrodes, but the opposite when 14 electrodes are used. The number
of cases with large errors (>10%) never changed after reduction for this layup.

Table 4. Summary of inverse identification results.

Layup Number of Electrode RMSE of Maximum Maxima of Maximum Number of Cases
Electrodes Set Relative Errors (%) Relative Errors (%) with RE(%) ≥ 10%

[04/904]s

8 Full 10.42 50 6
8 Reduced 8.09 37.5 6

14 Full 5.11 25 5
14 Reduced 6.02 27.38 5

[(0/90)4]s

8 Full 5.22 19.43 5
8 Reduced 7.65 33.78 6

14 Full 5.31 32.69 1
14 Reduced 3.37 16.09 1

RMSE: Root Mean Square Error; RE: Relative Error.
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For the [(0/90)4]s laminate, deviations do not follow a trend when increasing the number of
electrodes, as evidenced from the RMSE values. The RMSE values slightly increase when increasing
the number of electrodes for the full electrode set, but the opposite occurs with reduced set cases.
The same occurs with the maxima. The number of cases with large errors always decreases when
moving from eight to 14 electrodes with and without reduction. With regard to the sensing pairs
reduction for a given number of electrodes, applying effective independence results in an increase of
the RMSE values, the maxima and the number of failed cases when eight electrodes are used, which
means worsening of the fit. The opposite behavior is observed with 14 electrodes.

6. Conclusions

This paper has presented an approach for optimum selection of electrodes or measurements for
inverse identification of delamination damage via Electrical Resistance Tomography. The optimum
electrode selection is based on the Effective Independence measure originally proposed for vibration
modal identification. A Singular Value Decomposition was needed to apply the EI measure to resistance
measurements in Electrical Resistance Tomography damage detection. The SVD also offered additional
benefits in dimensional reduction. The EI based electrode selection was performed. The procedure
was assessed through comparisons of inverse identification optimization performed using a full set of
measurements and a set of reduced measurements (as identified by the EI measure) on two different
stacking sequences for two sets of excitation/sensing electrodes. The results indicate that the effective
independence based procedure offers a viable way to perform optimum electrode selection for ERT
based damage detection.
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CFRP Carbon Fiber Reinforced Polymer
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EI Effective Independence
PCA Principal Component Analysis
SVD Singular Value Decomposition
BC Boundary Condition
FEM Finite Element Method
FEA Finite Element Analysis
APDL ANSYS Parametric Design Language
GA Genetic Algorithm
DOE Design of Experiments
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