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Convolution neural network–based Alzheimer’s disease classification
using hybrid enhanced independent component analysis based

segmented gray matter of T2 weighted magnetic resonance imaging with
clinical valuation
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Abstract In recent times, accurate and early diagnosis of Alzheimer’s disease (AD) plays a vital role in pa-
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tient care and further treatment. Predicting AD from mild cognitive impairment (MCI) and cognitive
normal (CN) has become popular. Neuroimaging and computer-aided diagnosis techniques are used
for classification of AD by physicians in the early stage. Most of the previous machine learning tech-
niques work on handpicked features. In the recent days, deep learning has been applied for many
medical image applications. Existing deep learning systems work on raw magnetic resonance imag-
ing (MRI) images and cortical surface as an input to the convolution neural network (CNN) to
perform classification of AD. AD affects the brain volume and changes the gray matter texture. In
our work, we used 1820 T2-weighted brain magnetic resonance volumes including 635 AD MRIs,
548 MCI MRIs, and 637 CN MRIs, sliced into 18,017 voxels. We proposed an approach to extract
the gray matter from brain voxels and perform the classification using the CNN. A Gaussian filter
is used to enhance the voxels, and skull stripping algorithm is used to remove the irrelevant tissues
from enhanced voxels. Then, those voxels are segmented by hybrid enhanced independent compo-
nent analysis. Segmented gray matter is used as an input to the CNN.We performed clinical valuation
using our proposed approach and achieved 90.47% accuracy, 86.66% of recall, and 92.59% precision.
� 2019 Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Alzheimer’s disease (AD) is a progressive dementia,
which causes a loss of connection between nerve cells in
elders. Owing to AD, the brain shrinks, hippocampal size
decreases, and the brain ventricles enlarge. As AD pro-
gresses, it debases memory, thinking ability, and the per-
son’s expressions to the problem in day-to-day activities.
Understanding AD, mild cognitive impairment (MCI),
and cognitive normal (CN) manifestation is one of the
most challenging tasks faced by neurologists from the
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past few years. Physicians are using different clinical meth-
odologies to perform classification of AD. Clinically, cere-
brospinal fluid (CSF) concentration deals with AD. The
level of norepinephrine increases in the CSF as the disease
progresses. The CSF is collected using a ventricular punc-
ture; the physician makes a hole in the skull and collects
the CSF directly from one of the brain ventricles [1]. It
is a laborious procedure, and it may have a risk of bleeding
in the brain. With the development of medical imaging
techniques, neuroimaging plays a major role in the diag-
nosis of structural and functional changes in the brain
and encompasses computer tomography, magnetic reso-
nance imaging (MRI), positron emission tomography, func-
tional MRI, and single-photon emission CT. MRI is used to
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analyze structural changes caused by AD, CN, and MCI
manifestation because of its ease of accessibility. The
most common MRI sequences are T1-weighted and T2-
weighted scans. T2-weighted scans are used in this work.
Neuroimaging techniques help visualize the anatomical
changes in the brain. In Fig. 1, change in the hippocampal
size and enlargement of ventricles are observed in the MRI
image AD brain having cortical atrophy compared with the
MRI image of CN brain and MCI brain.

It is evident that the texture of the brain changes as the
disease progresses from CN to MCI to AD. Shape transfor-
mation in the brain is used as a morphological signature of
the brain structure. Morphological changes in the brain
texture, structure, and volume are used to classify the healthy
brain from a diseased brain [2,3]. AD is caused by degener-
ation of brain cells and changes in the brain volume. The
early effect of AD is observed based on changes in the hip-
pocampus, the size of which is used to classify the AD stage
[4]. Change in thewhite matter (WM) is estimated to analyze
the area of the brain affected due to AD [5]. The gray matter
(GM) is used to analyze AD [6]. AD is classified using the
volume of interest [7]. Image volume has more number of
voxels and high dimensionality. The huge information is
reduced via wavelet transformation where the classification
is carried out in a voxel-by-voxel manner instead of classi-
fying the entire data [8]; selecting an appropriate voxel
and relevant area will result in good specificity and sensi-
tivity [9]; voxel-based features are used to classify AD
stages [10].
1.1. Related work

Since the last few years, computer-aided diagnosis
(CAD) is used to assist and give a second opinion to the
physicians. Many researchers are developing different
CAD systems to diagnose AD. Most physicians use phys-
ical tests and the Mini-Mental State Examination [2,11]
to verify the stage of AD. Clinically AD classification is
performed by collecting different parameters and by devel-
oping biomarkers to test the AD stage. A 5-stage route map
was developed for CSF-based diagnosis of preclinical AD
using Ab ratios rather than Ab42 [12]. Recent CAD sys-
tems use machine learning as a computational technique
to analyze patterns of medical data. Different machine
learning approaches such as regression, classification, and
clustering are used in the CAD system. Machine learning
approach gives better classification accuracy based on the
features that are extracted from the images; to detect the
structural and textural changes in the brain MRI, single
modalities and multimodalities are used as features [13].
Brain volume, shape, voxel intensity, CSF measurement,
and genetic information are used as features to perform
the classification of AD, using random forest [14]; those
features are correlated using PCA, the dimensionality of
the features is reduced, and they are classified using sup-
port vector machine (SVM) and particle swarm optimiza-
tion [14,15]. As AD progresses, it affects brain tissues
such as the WM, GM, and hippocampus. The WM and
GM are segmented from brain MRI using learning vector
quantization, an unsupervised approach, and classification
was performed using SVM. Texture changes in the WM
and GM are used to differentiate AD from MCI and CN;
texture changes are measured using first-order statistical
parameters that are extracted from the histogram, and
then the second-order statistical features are extracted
from GLCM and Gabor filters [16]—these features are
used to differentiate AD from CN using KNN [16] and
SVM [17] classifiers. Hybrid features generated by
combining texture and volume information, such as texture
features along with GM volume, are used to perform the
classification of AD using SVM-random Fourier expression
(SVM-RFE) [18]. Hybrid features extracted from
segmented brain image and clinical data are used for multi-
class classification of AD from MCI and CN [19]. As the
features are more, the classification accuracy increases,
but it makes accurate training of a classifier more compli-
cated; greedy score is used to select the important features,
and kernel-based discriminative method is used to perform
feature selection of complex features [20]. Hippocampal
volume is used to differentiate AD and MCI [21]. Hippo-
campal volume is verified patchwise [22]; patch-based im-
age features are selected by professional and medical
experts with knowledge in medical segmentation. Texture
features are extracted patchwise using Gabor filter, and
classification is performed using a weak classifier [23]. In
all the aforementioned approaches, features are extracted
manually, and it requires expert knowledge in selecting
the features.

In recent years, deep learning framework has achieved
greater success in many fields. An artificial neural network
has more influence on the development of deep learning ar-
chitecture. There are many machine learning approaches
adopted to perform classification of medical images using
CAD. The advantage of neural networks is that the CAD sys-
tem used in recent days [24]. In deep convolutional neural
networks, hierarchical layers are connected and have the
advantage over artificial neural networks. Deep learning
achieves good performance in medical image analysis
[25]. Deep radiomic features are extracted from the three-
dimensional MRI image using entropy convolution neural
network (CNN) to perform AD classification [26]. Multi-
modal three-dimensional CNN is used to extract the features
and perform AD classification [27]. Features from stacked
autoencoders and low-level features in combination help to
build the classification model [28]. Extracting texture from
the center slices of the MRI image and using those as input
for performing AD classification using bootstrap algorithm
as the region of interest is used to collect the features from
MRI [29]. Transfer learning using the VGG-16 pretrain
model is used to perform the classification of AD-NC-MCI
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[30]. Hippocampal volume patches are used to perform the
classification using the hybrid classifier CNN and recurrent
neural network [22].

In this article, we propose a CNN classifier for auto-
matic classification of AD from MCI and CN using GM.
Fig. 1. Cross sections from MRI images of CN (the top row), MCI (the middle ro

aging; CN, cognitive normal; MCI, mild cognitive impairment; AD, Alzheimer’s
We evaluated the architecture performance using T2-
weighted MR images collected from a standardized data
set, Alzheimer’s Disease Neuroimaging Initiative
(ADNI). The contribution of the article is summarized as
follows:
w), and AD (the bottom row). Abbreviations: MRI, magnetic resonance im-

disease.



Table 1

Demographic representation of MRI images

Date source

Research

group

Number of

subjects

Sex

Age (years)

Number of

MRI volumes Image slices

Imaging

protocolM F

ADNI AD 120 59 61 55–93 635 6017 Axial, 2D, 1.5 Tesla

field strengthCN 117 50 67 71–96 637 6000

MCI 112 66 66 61–96 548 6000

Abbreviations: AD, Alzheimer’s disease; ADNI, Alzheimer’s Disease Neuroimaging Initiative; CN, cognitive normal; MCI, mild cognitive impairment;

MRI, magnetic resonance imaging; M, male; F, female.
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a) Threshold andmorphological operations are performed
to remove the unwanted tissues from the voxels.

b) We specifically used GM for atrophy detection. In this
article, GM tissues are segmented using hybrid
enhanced independent component analysis (ICA).

c) CNN architecture is trained using segmented GM
voxels.

d) The trained CNN is evaluated using independent MRI
voxels collected from a local MRI center and corre-
lated with clinical information, which achieves
remarkable accuracy.

The aim of this work is to develop a computer-based diag-
nosis system that provides additional support for the medical
staff to support their diagnosis evidence.
2. Materials

In our work, a total of 1820 MRI images are obtained
from the ADNI database (adni.loni.usc.edu). We used 1.5-
Tesla, T2-weighted MRI volumes, which are of 420 !
462 ! 32 voxels. We collected AD, MCI, and CN MRIs
of individuals of different age groups, both male and female.
MRIs and their demographic representation are shown in
Table 1. Overall, we collected 635 AD MRIs, 548 MCI
MRIs, and 637 CN MRIs.
I(x, y) is the input image

k(x, y) 3 ! 3 Kernal

I5 is the output image

Step1: I 5 input image

Step2: I1 5 enhanced image

Step3: Convolution of input image and kernel I2 5 I1 conv k

Step4: Threshold the image for i 5 1: row length of I2
for i 5 1: column length of I2

if I2 (x, y) � 254

I2 (x, y) 5 0

else

I2 (x, y) 5 1

end if

end if

end if

Step5: Erode: I3 5 erode I2 image

Step6: Active contour: I4 5 Perform active contour on I3
Step7: Skull stripped image I5 5 I ! I4
3. Methodology

In our work, MRIs are initially sliced into voxels. These
voxels are preprocessed to correct for geometric distortion
and reduce noise using Gaussian filter. Nonbrain tissues
are removed from the voxels using the skull stripping algo-
rithm. Structural and texturual changes in the brain are
used to differentiate healthy and diseased tissues, and
enhanced ICA is used to perform segmentation of the brain
into the WM, GM, and CSF. Brain tissue atrophy is used to
detect AD stage. AD is a progressive disease, in which the
brain experiences changes in GM and WM texture and vol-
ume, as well as expansion of ventricles. In our work, we clas-
sify the AD based on GM atrophy. We used CNN as a
classifier which is used in different computer vision tech-
niques, since the past couple of years. Our classification
approach has 3 major sections: (1) preprocessing; (2) train,
test, and validation of the classifier; and (3) perform clinical
valuation—as shown in Fig. 2.
3.1. Preprocessing
3.1.1. Skull stripping algorithm
Skull stripping is the most important preprocessing tech-

nique. For accurate classification of images, unwanted and
nonbrain tissues are initially removed from the voxels and
the brain tissues are left. The proposed skull stripping algo-
rithm has a sequence of steps. Before applying skull strip-
ping, the image is enhanced using a Gaussian filter, and
detailed information and noise are reduced.

The enhanced voxels are convolved by a 3 ! 3 filter as
given in equation (1).

kðx; yÞ5
2
4 1 21 1=2
1 1 1
1 1 1

3
5 (1)

The filtered image is segmented into brain and nonbrain
tissues using thresholding technique; selection of threshold
value is crucial to generate the initial binary image. Morpho-
logical operation is performed on the binary image to re-
move the unwanted regions. Active contour is applied on
the binary image to separate foreground from background
and generate a final binary mask. Onmultiplying the final bi-
nary mask with the original voxel, the skull is stripped and
unwanted tissues such as skull, scalp, dura, eyes, and so forth
are removed from the voxel. The skull stripping algorithm
steps are as follows.

http://adni.loni.usc.edu


Fig. 2. Proposed framework with CNN. Abbreviation: CNN, convolution neural network.
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3.1.2. Segmented algorithm
Blind separation of brain tissues in the MRI is carried out

by using an unsupervised segmentation approach. In our
work, we have used hybrid enhanced ICA. K-means and ex-
pected maximization (EM) are combined to form a hybrid
strategy to cluster the brain tissues in the MRI. This combi-
nation achieves the capability of providing clusters for well-
distributed image pixels and compactness through EM.

In our proposed hybrid enhanced ICA, the concept of
mixture model is introduced and it is characterized into
mutually exclusive classes. In the modified GMM approach,
spatial information is added to GMM using Markov random
field (MRF) and takes spatial dependency into account. In
EM, the expected step is computed using log likelihood
with mean and variance calculated using modified K-means
and latent variable calculated through Gibbs density func-
tion. The aforementioned parameters are used as input pa-
rameters to hybrid enhanced ICA to perform the
segmentation of the brain MRI voxels. The algorithm is
further explained using the following steps:
g(x, y) is the input image into k identically independent GMMs with parameters q
Step1: Represent g(x,y) in vector{gi: i 5 1, 2, 3, 4. N}

Step2: Modified K-means to find the prior information of the Gaussian mixture m

{Mixing Coeficient pk: i 5 1, 2 ,3 ,4 . N}, gi is the gray level.

a. Partition of N pixels into K equal sets

b. Center of each set as a centroid c1, c2, c3, .ck
c. Find the distance between Euclidean distance between g(x

d. Find the centroid that is close to the particular g(x, y)

e. Recalculate the centroids of each clusters

f. Repeat the steps from c to e

g. If the distance between g(x,y) and new cluster center is less

otherwise it moves to another cluster based on the distance

h. The process continues until the clusters are convergence

i. Collect mean and covariance of the clusters qk 5 {mk, Ek}

Step2: qk 5 {mk, Ek}

for i 5 1: pixels

for k 5 1: number of k

Probability density of the mixture model is considered as pðxijp;qÞ5
P

end

end

Step 3: log likelihood of the density function is calculated to find the probability

pð5pðXjqÞ5PN
i51ln pðxijqÞ , q 5 {z, m, s}, z, latent variable and calculated u

Step 4: E step for I:

QðiÞ ðZðiÞÞ : 5Pðzijxi;qÞ
Step 5: M Step for all z

q:5argmaxq
P
i

P
Zi

QiðziÞ log pðxi; zi; qÞ
QiðziÞ , Qi the posterior distribution of (zi)

Step 6: Prior distribution of p is given by MRF model through Gibbs density fun

VNi (p) is the clique potential function

Step 7: Process stops when
��qnew 2 qold

�� � error

Convolutionwidth 5
Input MRI Slice Size
3.2. Classifier

The CNN is used for classification. In our article, we used
224 ! 224-sized gray segmented images as input to the
CNN. The performance of the CNN depends on the network
architecture and weights that are set. The architecture of the
CNN depends on the specific task, and the requirements of
the data for the network need to be known. The size of the
MRI slice, filter size, number of kernels, padding, and strides
determine the particular convolution layer size. Our classi-
fier has 5 convolution layers with 32, 64, 128, 256, and
512 filters with different sizes (4,4), (5,5), (3,3), (3,3), and
(3,3), respectively, at different stages of stride 1, padding,
followed by max pooling layers used to extract features
and 6 fully connected layers used to perform classification.
The network is trained using back-to-back propagation
with 200 epochs; we used Adam optimization. Equations
(2), (3), (4), (5), (6), (7), and (8) show the layerwise param-
eter calculation and activation functions used at convolution
layer and fully connected layers.
k 5 {mk, Ek}

odel such as mean and covariance

, y) and the cluster centers

than or equal to the previous distance, then g(x,y) will be in the same cluster

.

c
k51p

k
i p ðxijqkÞ

of pixels that belong to the particular Gaussian ln

sing expectation and maximization

ction pðpÞ5expv
2b

PN
i51VNiðpÞ
a

, a is a normalizing constant,

width2Filterwidth1ð2XPaddingÞ
StridesWidth

11 (2)



ConvolutionHeight 5
Input MRI Slice SizeHeight2FilterHeight1ð2XPaddingÞ

StridesHeight
11 (3)

No: of Neurons in Convolution layer 5 Convolutionwidth!ConvolutionHeigh!Number of Filters (4)

Max Pooling resultant imagesize 5
Convolutionwidth

2
(5)

Fully Connected layerparameters 5No: of parameters form previous stage! No: of nodes in the present layer (6)

Rectified linear unit used as activation function: f ðxÞ5
�
0 for x , 0
x for x � 0

(7)

Table 3

Summary of the architecture of CNN

Layer 1 Kernel size Feature map

Input image 224 ! 224 —

Convolution layer 1 4 ! 4 221 ! 221 ! 32

Dropout layer 1 20% —
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soft max function5
exiPn
j51e

xj
for i5 1; 2; 3;.n (8)

3.3. Model development and training

In our work, we used MATLAB R2015b to perform
slicing, skull stripping, and segmentation of the image. To
train deep neural network data, parallel processing is
needed, so we used an open-source software package Py-
thon, version 3.0, Google Colab to perform the training
and validation of the classifier (GPU: 1xTesla K80, having
2496 CUDA cores, compute 3.7, 12 GB [11.439 GB useable]
GDDR5 VRAM). We used Keras library over TensorFlow
modules to design our proposed model.
Zero padding layer 1 3 ! 3 227 ! 227 ! 32

Max pooling 1 2 ! 2 113 ! 113 ! 32

Convolution layer 2 5 ! 5 109 ! 109 ! 64

Dropout layer 2 20% —

Zero padding layer 2 2 ! 2 113 ! 113 ! 64

Max pooling 2 2 ! 2 56 ! 56 ! 64

Convolution layer 3 3 ! 3 54 ! 54 ! 128

Dropout layer 3 20% —

Zero padding layer 3 1 ! 1 56 ! 56 ! 128

Max pooling 3 2 ! 2 28 ! 28 ! 128
3.4. Creating training and test set

Our total data set has 18,017 GM segmented images. We
shuffled and split the data set in the ratio 80:20 as training
and test data sets. We used this data set for multiclass classi-
fication and binary classification; the data set is summarized
in Table 2.
Table 2

Training set, validation set, and test set sizes

Classification type Class label Training set Test set Total images

Multiclass

classification

AD 4814 1203 6017

MCI 4800 1200 6000

CN 4800 1200 6000

Binary class

classification

AD-MCI 9614 2403 12,017

AD-CN 9614 2403 12,017

CN-MCI 9600 2400 12,000

Abbreviations: AD, Alzheimer’s disease; CN, cognitive normal; MCI,

mild cognitive impairment.
Our classifier has 5 convolution layers with 32, 64, 128,
256, and 512 filters with different sizes (4,4), (5,5), (3,3),
(3,3), and (3,3) , respectively, at various stages of stride 1,
padding, followed by max pooling of the feature extractor
followed by 6 fully connected layers. The networked is
trained by Adam optimization using back-to-back propaga-
tion with 200 epochs.
Convolution layer 4 3 ! 3 26 ! 26 ! 256

Dropout layer 4 20% —

Zero padding layer 4 1 ! 1 28 ! 28 ! 256

Max pooling 4 2 ! 2 14 ! 14 ! 256

Convolution layer 5 3 ! 3 12 ! 12 ! 512

Dropout layer 5 20% —

Zero padding layer 5 1 ! 1 14 ! 14 ! 512

Max pooling 5 2 ! 2 7 ! 7 ! 512

Fully connected layer 1 1024 —

Fully connected layer 2 1024 —

Fully connected layer 3 32 —

Fully connected layer 4 16 —

Fully connected layer 5 1024 —

Abbreviation: CNN, convolution neural network.



Fig. 3. Accuracy and loss calculation of AD-CN during training and testing. (A) AD-CN accuracy calculation. (B) AD-CN loss calculation. Abbreviations: AD,

Alzheimer’s disease; CN, cognitive normal.

Fig. 4. Accuracy and loss calculation of AD-MCI during training and testing. (A) AD-MCI accuracy calculation. (B) AD-MCI loss calculation. Abbreviations:

AD, Alzheimer’s disease; MCI, mild cognitive impairment.

Fig. 5. Accuracy and loss calculation of CN-MCI during training and testing. (A) CN-MCI accuracy calculation. (B) CN-MCI loss calculation. Abbreviations:

CN, cognitive normal; MCI, mild cognitive impairment.

Fig. 6. Accuracy and loss calculation of AD-CN-MCI during training and testing. (A) AD-CN-MCI accuracy calculation. (B) AD-CN-MCI loss calculation.

Abbreviations: AD, Alzheimer’s disease; CN, cognitive normal; MCI, mild cognitive impairment.

S. Basheera and M.S. Sai Ram / Alzheimer’s & Dementia: Translational Research & Clinical Interventions 5 (2019) 974-986 981



Table 4

Comparing the proposed approach with previous frameworks

Author (year) Resources Processing and training Classification Modalities Accuracy Sensitivity Specificity AUC

Fung and Stoeckel (2007)

[9]

SPECT Relevant area and

selection of voxels

SVM AD-HC – 84.40% 90.90% –

Escudero et al. (2011) [21] MRI Volumetric and cortical

thickness of the

hippocampus

SVM AD-HC 89.20% – – –

AD-MCI 72.70%

Suk and Shen (2013) [28] MRI, PET SAE Multikernel SVM AD versus HC 95.50% – – –

MCI versus HC 85.00%

MCIC versus MCINC 75.80%

Adaszewski et al. (2013)

[4]

MRI Hippocampal

temporoparietal atrophy

SVM HC 80.30% – – –

AD 73.50%

cMCI 63.70%

ncMCI 69.00%

Yang et al. (2013) [15] MRI Volume and shape PCA 1 SVM AD-NC(Vol) 82.35% – – –

MCI-NC(Vol) 77.72%

AD-NC(Sha.) 94.12%

MCI-NC (Sha.) 88.89%

Gray et al. (2013) [14] PET MRI volumes, voxel-

based FDG-PET signal

intensities, CSF

biomarker measures, and

categorical genetic

information

Random Forest AC-HC 89% – – –

AD-MCI 75%

Ortiz et al. (2013) [31] MRI Tissue information SVM AD-CN 90% 95% – –

Li et al. (2017) [27] MRI Multimodel features CNN AD-HC 88.31 91.4 84.42 92.73

Lama et al. (2017) [20] MRI Cortical thickness, folding

index

10-fold CV SVM AD-CN 60.1 74.63 88.81

IVM 59.5 62.3 62.85

RELM 77.3 62.12 79.85

LOO CV SVM AD-CN 78.01 75.81 79.12

IVM 73.36 70.97 75.95

RELM 75.66 72.13 77.22

Altaf et al. (2018) [19] MRI GLCM, SIFT, LBP,

HoG’s, Clinical Data

SVM AD versus CN 97.80% 100% 95.65% –

AD versus MCI 85.30% 75.00% 94.29%

CN versus MCI 91.80% 90.00% 93.33%

Hett et al. (2018) [23] MRI Gray Matter 1 Gabor

Filter

Weak classifier Intensity-based grading

histo

CN versus AD 93.5 95.5 82.7

CN versus pMCI 90 81.8 81.4

AD versus sMCI 81.1 78.5 68.3

sMCI versus pMCI 74.9 77.6 67.2

Texture-based grading

histo

CN versus AD 94.6 94.2 86.6

CN versus pMCI 92 92.5 81.2

AD versus sMCI 82.6 77.6 72.6

sMCI versus pMCI 76.1 74.9 70.2

(Continued )
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Table 4

Comparing the proposed approach with previous frameworks (Continued )

Author (year) Resources Processing and training Classification Modalities Accuracy Sensitivity Specificity AUC

Chaddad et al. (2018) [26] MRI Selecting MRI based on

entropy, intensity,

texture, shape

CNN AD-HC – – – 92.58%

Jain (2019) [30] MRI Mathematical model

PFSECTL

Transfer learning VGG-16 AD-CN-MCI 95.73 – – –

AD-CN 99.14

AD-MCI 99.3

CN_MCI 99.22

Kim et al. (2019) [32] MRI Cortical thickness Hierarchical approach CN-dementia 86.10% 87.00% 85.40% 0.917

AD versus FTD 90.80% 87.50% 92.00% 0.955

bvFTD versus PPA 86.90% 92.10% 77.10% 0.865

nfvPPA versus svPPA 92.10% 97.40% 88.00% 0.955

Vaithinathan et al. (2019)

[29]

MRI Region of interest SVM 1 bootstrapped AD-CN – 89.58 85.82 –

Li et al. (2019) [22] MRI Hippocampus CNN 1 RNN AD-NC – – – 91.00%

MCI-NC 75.80%

pMCI-sMCI 74.60%

Basaia et al. (2019) [33] MRI No feature engineering CNN AD-NC 99.2 98.9 99.5 –

AD-MCI 75.4 74.5 76.4

MCI-NC 87.1 87.8 86.5

Proposed Method MRI Segmented gray matter

using enhanced ICA

CNN AD-CN-MCI 86.7 89.6 86.61 88.50

AD-CN 100 100 100 100

AD-MCI 96.2 93.0 100 98.72

CN-MCI 98.0 96.0 100 99.87

Abbreviations: CNN, convolution neural network; PET, positron emission tomography; ICA, independent component analysis; SPECT, single-photon emission computed tomography; AD, Alzheimer’s dis-

ease; CN, cognitive normal; RNN, recurrent neural network; MCI, mild cognitive impairment.
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Fig. 8. Confusion matrix for clinical analysis of images.

Fig. 7. Proposed system parameters modality wise.
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4. Results

In this work, a total of 18,016 MRI axial slices are used;
these are generated from 1820 T1-weighted MRIs collected
from the standard AD data set, the ADNI. All the voxels are
preprocessed by enhancing them using rotationally invariant
Gaussian filters. Irrelevant tissues such as scalp, skull, ears,
dura, and eyes are removed from the MRI voxels using skull
stripping algorithm. We focused on the GM for atrophy
detection. GM tissues are segmented using hybrid enhanced
ICA. Atrophy in the GM is used to differentiate AD from
MCI and CN.

Our proposed CNN model has 5 convolution layers and 5
fully connected layers; each convolution layer is followed by
dropout, padding, and max pooling layers with ReLu as an
activation function. Preprocessed images are augmented to
increase the sample size and train the CNN model. We
used Keras with TensorFlow to build the proposed CNN
model using Python. Our proposed approach performs bi-
nary classification and multiclass classification to fit the
model in a batch size of 128 in 200 epochs using Google Co-
lab. It takes around 7 hours to train the model. The total ar-
chitecture is summarized in Table.3.

We train the model by Adam optimization with a learning
rate of 0.001, beta1 of 0.9, and beta2 of 0.999. Our classifier
is trained with 200 epochs.We used it to perform binary clas-
sification and multiclass classification. During binary classi-
fication, we first trained the classifier with AD-CN
segmented images and the model resulted in 99.75% training
accuracy. Then, we trained the classifier with segmented
AD-MCI voxels, which achieved 98.72% training accuracy.
Later, it was trained with segmented CN-MCI images which
resulted in 99.87% training accuracy. Multiclass classifica-
tion was performed by the trained classifier, using
segmented AD-MCI-CN images which achieved 99.50%
training accuracy. Training, testing accuracy, and loss graphs
are shown in Fig. 3, Fig. 4, Fig. 5, and Fig. 6. It is required
that our proposed framework is trained and the prediction
is made with utmost accuracy.

We compared the performance of the proposed system
with that of different models discussed in literature review
as shown in Table 4. It is observed that our classifier achieves
remarkable performance both in binary classification and
multiclass classification. Fig. 7 shows parameters of both bi-
nary and multiclass classifications.

We further performed the clinical evaluation using our
proposed approach on 21 independent MRI slices collected
from Poorvi MRI Center, Chirala and compared the pre-
dicted results generated by our system with results diag-
nosed by the physician. The confusion matrix of clinical
analysis is shown in Fig. 8.

We calculated some important performancemeasurement
parameters as follows using Equations (9), (10), (11), and
(12):

Accuracy5
TN1TP

TN1FP1FN1TP
(9)

Recall5
TP

FN1TP
(10)



Fig. 9. Clinical evaluation of proposed system.

S. Basheera and M.S. Sai Ram / Alzheimer’s & Dementia: Translational Research & Clinical Interventions 5 (2019) 974-986 985
True Negative Rate5
FP

TN1FP
(11)

Precision5
TP

FP1TP
(12)

We achieve 90.47% accuracy, 86.66% recall, and 92.59%
precision in comparison of our system with physician
decision. Bar diagram of the clinical evaluation is given in
Fig. 9.
5. Conclusion

Effective diagnosis of AD helps the patient to get a
featured treatment. Many researchers are focusing on this
challenging task; they had developed many CAD systems
to perform the diagnosis of AD. In our workflow, we devel-
oped a deep learning approach to perform the classification
based on GM segment, using hybrid enhanced ICA.

Our proposed framework has more strengths than the pre-
vious techniques. We use heterogeneous MRI volumes of
different age groups and gender. In our experiment, we
used T2-weighted MRI to perform the classification. The
GM has neuron cell bodies and non-neuron brain cells called
glial cells. The GM undergoes development and growth
throughout childhood and adolescence; it is used to carry
glucose to the brain, and changes in this affect the memory,
speech, and motor controls. In our work, we mainly focused
on the use of the GM to classify AD. In our work, we
observed that the framework is not affected with noise and
data augmentation.

Our deep learningmodel got trained and was validated and
tested on the MRI collected from the database, and we per-
formed binary classification such as AD-MCI, AD-CN, and
MCI-CN and multiclass classification such as AD-MCI and
CN. We further compared the classifier performance with
the physician’s decision and achieved good results. No other
framework performed the comparison of the system with
the physician’s decision. Our system is recommend not to
replace but to support the physician decision.
RESEARCH IN CONTEXT

1. Systematic review: In our work we had used AD data
collected from online repository to train the model
and test the model using images collected from local
MRI center. We used 21 MRI slices of different age
groups of 60 to 92 years both male and female, and
compared the test result of model with a physician
decision based on MSME score, to evaluate the sys-
tem accuracy.

2. Future directions: System is further improved by
adopting multiple image data such as T1, T2 and
meta data along with the proposed system to improve
evaluation of AD at clinical level.
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