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Abstract

SARS-CoV-2 caused the first severe pandemic of the digital era. Computational approaches have been ubiquitously used in
an attempt to timely and effectively cope with the resulting global health crisis. In order to extensively assess such
contribution, we collected, categorized and prioritized over 17 000 COVID-19-related research articles including both
peer-reviewed and preprint publications that make a relevant use of computational approaches. Using machine learning
methods, we identified six broad application areas i.e. Molecular Pharmacology and Biomarkers, Molecular Virology,
Epidemiology, Healthcare, Clinical Medicine and Clinical Imaging. We then used our prioritization model as a guidance
through an extensive, systematic review of the most relevant studies. We believe that the remarkable contribution provided
by computational applications during the ongoing pandemic motivates additional efforts toward their further development
and adoption, with the aim of enhancing preparedness and critical response for current and future emergencies.
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Introduction

The ongoing COVID-19 pandemic has prompted an unprece-
dented research effort by the global scientific community. The
urge to identify effective countermeasures against the tremen-
dous health, economic and social impact caused by the disease
led to an astounding proliferation of studies covering all the
diverse aspects of the pandemic [42]. From the development of
assays aimed at better understanding, the molecular mecha-
nisms exploited by the virus to the design of epidemiological
models predicting its spread, research labs around the world
have produced a sheer amount of potentially fruitful knowledge,
which is still growing on a daily basis at a soaring pace while we
write.
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COVID-19 is also the first severe pandemic of the digital
era. Besides accelerating the production and spread of research
literature, digital technologies produced a significant impact as
investigational tools, with contributions that range from the
viral sequence establishment [173] to the latest data-driven risk
models that are helping governments to select the most efficient
restriction measures [26]. Such results are already summarized
by a number of review articles, which cover both specific appli-
cation areas (like drug discovery and repositioning [108, 116, 167],
preventive pharmacology [106], medical image analysis [110])
and method-oriented overviews, such as artificial intelligence
(AI) applications [85, 88] and relevant software tools [73].

As valuable as these efforts are, the quantity of published
studies poses a significant challenge both for researchers and
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Figure 1. CSCoV data collection and analysis pipeline. COVID-19 related scientific papers are collected by querying 4 different sources, including both journal (PubMed)

and preprint articles (arXiv, bioRxiv, medRxiv). The database of computational studies (CSCoV) is obtained by filtering the collected COVID-19 papers based on a

manually curated set of 83 keywords to be matched against the article abstracts. The dataset of computational papers is then analyzed using a topic modeling method

for categorization and a machine learning model together with bibliometric-based ranking for prioritization. The latter is based on additional quality metrics obtained

from the Semantic Scholar website or from preprint servers.

for media operators striving to remain up to date with the
state-of-art, and correctly inform the governments and the
public. The emergency character of a pandemic crisis urges
researchers to make their results timely available. In this regard,
online platforms for preprint publication provide an effective
shortcut [158], although the lack of a peer-review process
warrants additional caution [22]. In general, the usual time
span needed by the scientific community to properly digest
the available literature and reach a consensus on the most
promising research directions is challenged by the number of
publications made available in such a short amount of time.

For these reasons, with the aim of comprehensively assess-
ing the contribution provided by computational applications in
the fight against the ongoing pandemic, we developed a soft-
ware framework called computational studies about COVID-19
(CSCoV) based on automatic collection and filtering of computa-
tional studies related to COVID-19. The framework automatically
gathers both articles from multiple sources and meta-data about
publication and author metrics in order to prioritize the studies
by predicted relevance. AI is then used to categorize the papers
by topics and to predict the chances of preprint articles to pass
a peer-review process. The whole framework is continuously
updated with new articles and corresponding metrics. With the
help of the CSCoV database and tools, we analyzed 147 346
research articles, filtered 17 269 of them involving computational
approaches and assigned each of them to one of six automati-
cally derived topics: Molecular Pharmacology and Biomarkers,
Molecular Virology, Epidemiology, Healthcare, Clinical Medicine
and Clinical Imaging. Finally, guided by our categorization and
scoring system, we reviewed the most relevant literature within
each topic, with a special focus on the computational aspects of
each study.

In the following, we describe both the CSCoV framework
and the most relevant literature about COVID-19 involving com-
putational approaches at various extents. The entire database,
including categorization and prioritization scores, is publicly
available together with the used computational models [111].

The database of CSCoV
Article collection

We systematically collected COVID-19 related studies from four
different sources (see Figure 1): PubMed for articles published in

journals and arXiv, bioRxiv and medRxiv for preprint articles,
gathering an initial broad collection of 147 346 papers. Studies
involving computational approaches were selected based on
83 manually curated keywords appearing in the abstracts (see
Supplementary Methods). We thus obtained a total of 17 269
papers, including 12 408 journal articles and 4861 preprints. The
studies were published in 1655 different journals or conferences
(see Supplementary Methods for additional details). Figure 2A
shows a summary of the collected articles against publishing
time. Some of the preprint articles originally appeared before
the pandemic and have been subsequently updated for their
potential application to the COVID-19 crisis. Novel preprints
started to appear in January 2020, while the first journal articles
date back to February. Expectedly, the ratio of journal articles
versus preprint articles increased over time. On the other hand,
for more than 60% of the preprints, we were not able to identify
a corresponding journal publication after 70 weeks (Figure 2B)
from its appearance online. Detailed statistics concerning the
articles from each source are reported in Figure 2B.

The CSCoV database is regularly updated. Each update
includes both new articles and the corresponding analytical
results described in the following.

Article categorization

In order to categorize all the collected articles into topics, we
trained a latent dirichlet allocation (LDA [20]) with all the paper
abstracts. LDA is a generative probabilistic model that aims at
modeling each document from a given collection as a mixture of
latent topics, which are in turn defined by a set of words. Once
the topics are obtained, each document can be assigned to one
of them.

Our final solution identified six topics: Healthcare, Epidemi-
ology, Clinical Medicine, Molecular Pharmacology and Biomark-
ers, Molecular Virology, and Clinical Imaging. Figure 3A summa-
rizes the results. In the figure, the entire collection is visualized
as a two-dimensional (2D) map where each point represents an
article colored by the assigned topic, and similar articles based
on the extracted keywords appear close to each other (see Sup-
plementary Methods for further details). The top 10 keywords for
each topic are reported in Figure 3B. Topic names were assigned
based on the top keywords observed after multiple runs of the
LDA algorithm.
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Figure 2. Publication timeline of all the papers in the CSCoV database. (A) Number of articles appeared weekly since January 2019 divided by source. (B) Fraction of

preprint articles that eventually appeared also in journals as a function of the number of weeks from their appearance online. C) Tabular summary of the number of

articles currently included in CSCoV, grouped by source and publication status.

Figure 3. Categorization of articles in the CSCoV collection. (A) 2D visualization of the database. Each point represents an article, points proximity reflects article

similarity, colors represent the extracted topic as reported in panel B. (B) Top 10 keywords in article abstracts identifying each of the six extracted topics. (C) Number of

articles in CSCoV by topic.

In the map, the ‘Molecular Pharmacology and Biomarkers’
and ‘Molecular Virology’ topics lie especially close, which is
expected based on drug and vaccine development efforts that

make large use of the viral sequence. Interestingly, ‘Epidemiol-
ogy’, ‘Healthcare’ and ‘Clinical Medicine’ are found next to each
other, in a sequence that appear to arrange articles from the
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general population to the single patient perspective. Finally,
articles in the ‘Clinical Imaging’ cluster, which are consis-
tently driven by established Deep Learning approaches (see
Subsection 3.7) constitute a well-characterized group on their
own, expectedly placed next to the ‘Clinical Medicine’ cluster.

The relative number of articles across topics and sources also
confirms an overall meaningful categorization (see Figure 3C).
As expected, papers included in the arXiv collection have
their larger relative shares assigned to the ‘Clinical Imaging’
and ‘Epidemiology’ groups, which largely rely on machine
learning and mathematical models respectively (see Section 3).
Only a negligible number of arXiv preprints is assigned to
‘Clinical Medicine’. On the other hand, bioRxiv articles are
almost exclusively assigned the ‘Molecular Pharmacology
and Biomarkers’ and ‘Molecular Virology’ topics, with zero
articles assigned to ‘Epidemiology’ or ‘Clinical Medicine’. This
is in line with the policy that was enforced by the platform
maintainers since the launch of medRxiv, which requires
authors to submit epidemiology- and medicine-related articles
to the new server. Indeed a complimentary situation is observed
for medRxiv articles, which tend to be especially associated
with the ‘Epidemiology’ topic and cover the largest share of
‘Clinical Medicine’ studies. Articles collected from the PubMed
collection span all the six topics, although they appear to be
disproportionately fewer in the ‘Epidemiology’ topic.

Article prioritization

Collecting and categorizing 17 269 articles allowed us to obtain a
meaningful general overview (see Figure 3) of the contribution
provided by the research community to fight the pandemic
relying on computational techniques. However, a detailed review
of the published literature implies carefully reading each single
article, which is only feasible through a collective, time con-
suming effort that is unsuitable for an emergency and rapidly
evolving situation. We thus sought to establish an advantageous
trade-off between extensively reviewing every articles and the
urgency to timely identify the most impactful or promising
research paths. To this aim, we developed additional tools to
prioritize studies that are more likely to be especially relevant,
as illustrated in the following subsections.

Metric-based ranking

The navigation of the sheer number of research articles con-
stantly produced by researchers is normally facilitated by the
collective work of the scientific community, which gradually
digests published literature and implicitly produces signals of
interest and consensus. For example, article quality has been
shown to be reflected by the number of citations received [154],
which in turn correlates with the number of times the article
is downloaded from a hosting web server [60]. Although such
indicators have many known limitations, they are commonly
used by researchers as heuristics to screen scientific literature
[153]. We thus took advantage of available indicators to estimate
article credibility. We were able to collect the number of citations
for all the papers in our collection using the Semantic Scholar
online platform [50], and the number of downloads for all the
preprint articles by scraping the public statistics available at
bioRxiv and medRxiv. The arXiv server does not release such
information.

Although the number of citations and downloads can
be highly valuable for article prioritization, it is of course
scarcely available for newly published studies, which are also an

important target of this review. Moreover, citations and down-
loads are distributed differently across time. In particular, the
latter appears to be especially novelty-driven, while the former
extends longer over the years [60], which adds to the task
difficulty. For these reasons, we sought to gather additional time-
independent metrics. In particular, since a relation between
the article citations and authors reputation has been shown
[23], we added author data to our prioritization system. Using
Semantic Scholar, we collected the number of papers published
and the number of ‘Influential citations’ (see Supplementary
Methods) received by each of the authors in our entire collection,
which amounts to a total of 171 106 queries. The obtained
scores showed similar distribution across article sources (see
Figure 4A). Moreover, when comparing scores of preprints
eventually published in journals against preprints of similar
age that never did, we observed the former to have higher
scores than the latter (see Figure 4C). By factoring in all the
collected meta-data based on rank statistics (see Supplementary
Methods), we were finally able to derive a score for each
paper and prioritize the entire CSCoV collection accordingly.
As expected, score distributions may differ across topics (see
Figure 4D), which, however, we analyze independently in this
paper.

Prediction of journal publication for preprint articles

Although we believe that the gathered metrics can greatly
help to score the relevance of the studies in our collection,
preprint articles need special caution. On one hand, it has been
shown that article quality does not improve dramatically after a
preprint article passes the peer-review process [16]; on the other
hand, recent cases of poorly substantiated claims in COVID-19
studies that appeared on preprint servers have reminded the
research community about the risks posed by the lack of proper
peer review [86]. Therefore, with the aim of gaining further
indication about the reliability of preprint publications, we
developed a machine learning framework to predict the chances
that each preprint would pass a peer-review process solely based
on its contents. In particular, we fed a Deep Neural Network
model with article abstracts, the full article citation network
(see Figure 4B), and the topic scores previously described. Each
node in the citation network represents an article in CSCoV, and
there is a link between two nodes A and B if the article A cites
the article B. The model learned to discriminate preprint-only
articles from articles published in journals (area under the curve
(AUC) = 0.76) according to a probability score (see Supplementary
Methods). We used the predicted probabilities to provide an
additional score to all the preprints in our database.

Article reviews by topic
Once we established the CSCoV database, we sought to exploit
this resource to identify the most significant contributions pro-
vided by the research community to the fight against the pan-
demic. Although we used our prioritization system as a guide,
we did not follow it strictly. In particular, we extracted the top
100 articles from each topic and manually reviewed them. The
resulting selected articles are therefore the result of a media-
tion between the CSCoV recommendation system and our best
judgment. Given the breadth of this review and the special
focus on computational aspects, an in-depth analysis within
each topic from an application field standpoint falls out of our
aims. However, we cited those specialized review articles that are
available in CSCoV when relevant.
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Figure 4. Article scoring to guide manual review. (A) Four different metrics are used, including article-related (number of citations and views) and author-related

(number of published articles and citations received) scores. As shown, the scores have similar distributions across sources. (B) The article citation network is used to

prioritize preprints together with their text contexts. It shows general concordance with the computed topics, as highlighted by colors. (C) Comparison of scores across

two groups of preprints having similar size and age but differing in publication status. The scores for articles published in journals tend to be higher. (D) Scores are not

significantly biased across topics.

Computational methodologies used in the reviewed articles
are diverse, ranging from mathematical model fitting to arti-
ficial neural networks. Although we will detail them in the
next Subsection, general insights can be obtained by analyzing
the keywords used to build the database. Figure 5-left reports a
summary including the top 10 keywords recurring within each
topic, showing the importance of omics data analysis for ‘Molec-
ular Pharmacology and Biomarkers’ and ‘Molecular Virology’,
statistical models for ‘Healthcare’ and ‘Clinical Medicine’, neural
network models for ‘Clinical Imaging’ and mathematical models
for ‘Epidemiology’. Nonetheless, the same methodologies can of
course be found across all topics.

‘Omics’ data analysis, which was made possible by com-
putational approaches, had an ubiquitous presence in COVID-
19-related research. Figure 5-right reports an analysis of
different omics data types across research topics. In particular,
articles concerning ‘Molecular Virology’ were fundamentally
driven by genomic data, while transcriptomics and pro-
teomics approaches are also significantly present. ‘Molecular
Pharmacology and Biomarkers’ is the cluster in which we
observed the largest diversity of ‘omics’ data types, including
transcriptomics, proteomics, genomics and interactomics.
Expectedly, ‘radiomics’-related keywords emerged from the
‘Clinical Imaging’ cluster.

The next Subsection aims at establishing the beginning of the
COVID-19 research endeavor according to our database. Further
Subsections review the most relevant studies that we identified
within each of the six topics in CSCoV. A general timeline of
the main publications we reviewed is shown in Figure 6. Finally,
the last Subsection proposes some of the latest preprint articles
that could provide an especially relevant contribution in the near
future.

Early contributions

Based on the CSCoV database, we identified when the first com-
putational studies about COVID-19 started to appear. Although a
significant number of papers started to be published in February
2020, several articles appeared even earlier. These studies repre-
sent the first response by the research community to the pan-
demic. Here, we will mention the majority of them. As expected,
most of them first appeared as preprint articles.

A few articles in the CSCoV database predate the epidemic.
However they were originally unrelated with COVID-19 and later
updated during the pandemic, thus we did not consider them
here. By looking at single article versions, we identified the
earliest published study as a preprint appeared on 19 January
2020 [32], and later published as a peer-reviewed article on 18
February [29]. The study used a mathematical model to assess
the basic reproduction number of SARS-CoV-2 at 3.58. A second
estimation of 2.2 obtained through stochastic simulations was
published on 24 January [133]. On 31 January, a third preprint
showed the use of a Bayesian framework to infer the time-
calibrated phylogeny and the epidemic dynamics, resulting in an
effective reproductive number of 1.1 and a most recent common
ancestor dated at 7 December 2019 [186]. Contributing to the
heated debate about the origins of the virus, on 27 January
a preprint article showed genomic proximity with bat coro-
naviruses and excluded a recent recombination event based
on evolutionary analysis [122]. The article appeared in a peer-
reviewed journal three months later [121]. Another confirmation
about the bat origin hypothesis arrived on 2 February based on
RNA sequencing data analysis [173]. One of the earliest studies
concerning prevention measures appeared on 28 January, con-
firming the risk posed by asymptomatic transmission on the
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Figure 5. Left: association between topics and the most recurrent keywords used to select computational studies provides insights into the most used methodologies.

Right: diverse ‘omics’ data types have been used across topics.

Figure 6. Timeline of the most representative reviewed studies by topic (colored dots), together with major events (black dots) related to the COVID-19 pandemic.

basis of computational simulations [142]. Also one of the earliest
studies involving pharmacological measures appeared at the
end of January, attempting virtual screening for drugs inhibiting
the M protease of SARS-CoV-2 [94]. The article was published in a
journal one1 month later [125]. Finally, by means of epidemiolog-
ical modeling, another preprint article reported on the necessity
of healthcare measures, including lockdowns and universal face
mask wearing, to counteract possibly disastrous consequences
of the pandemic [105].

Molecular pharmacology and biomarkers

From the inception of the pandemic, the development of effec-
tive treatments and vaccines has been one of the main hopes
to effectively fight it. In recent years, computational tools sup-
ported researchers both in the former [152] and in the latter
[117]. During this pandemic, it has been proposed that further
efforts should be directed toward the definition of reliable com-
putational pipelines in order to be more prepared for the next
one [51], particularly given the potential of AI-based approaches
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[192]. Many studies assigned to this topic do not focus specifi-
cally on the identification of treatments, but also on the elucida-
tion of molecular biomarkers that underlie potential treatments
or disease mechanisms. They also span multiple omics data
types, such as transcriptomics, proteomics, genomics, interac-
tomics and metabolomics (see Figure 5-right).

Drug discovery and repositioning

One of the most promising approaches to cope with health
emergencies is the repositioning of already approved drugs to
quickly respond to new outbreaks. This specific topic has been
covered by a number of reviews also included in our database
[3, 192]. Computational approaches have been used to prioritize
potentially effective small molecules in a variety of ways, such
as using molecular docking simulations and network-based drug
repurposing, even with ad hoc SARS-CoV-2-related software tools
provided to the community [84]. Docking simulations have been
used to propose the efficacy of statins [43], recently confirmed by
clinical data analysis [61]. In another study, remdesivir was iden-
tified through molecular docking and proposed as a potentially
effective treatment for its ability to target the RNA-dependent
RNA polymerase (RdRp) [41]. The drug has later been approved by
the US Food and Drug Administration, although recommended
against by the World Health Organization (WHO) [100]. Among
network-based computational approaches, on 16 March, one
integrative drug repurposing methodology was published to dis-
cover potential drugs in interactomic approach [191]. A total
of 16 repurposable drugs (e.g. melatonin, mercaptopurine and
sirolimus) were prioritized and further validated in human cell
lines and three potential drug combinations (e.g. sirolimus plus
dactinomycin, mercaptopurine plus melatonin and toremifene
plus emodin) were identified. Another study used a knowl-
edge graph based on 24 million PubMed papers to identify 41
drugs, among which dexamethasone, a glucocorticoid whose
efficacy has been confirmed in hospitalized patients [57] and
niclosamide, an anthelmintic recently proposed for repurposing
on the basis of its ability to suppress the calcium-activated ion
channel TMEM16F activity [15].

A number of in vitro studies used metabolomics and tran-
scriptomics data with the aim of identifying novel therapeutics
[52, 63]. For example, using metabolomics profiling, spermidine,
mk-2206 and niclosamide were shown to exert antiviral effects
in VeroFM cells [52], while transcriptomics analysis was used
to identify imatinib and mycophenolic acid as inhibitors of
SARS-CoV-2 in hpsc-derived lung organoids [63].

Besides direct drug discovery, many computational applica-
tions have provided insights about related molecular mecha-
nisms. For example, one study reported the use of machine
learning with chemoinformatics data to classify drugs and pre-
dict target specificity [138]. Among others, the study classified
chloroquine and its highly debated [107] derivative hydroxy-
chloroquine as non-specific drugs. Structural and molecular
modeling was used to further investigate the two molecules
helping to understand their mode of actions [44]. Molecular
dynamics simulations have also been used to study the binding
mechanism of remdesivir to RdRp, suggesting that the small
molecule could act as a SARS-CoV-2 RNA-chain terminator, thus
stopping RNA replication [184].

Vaccines and antibody therapies

One of the biggest breakthroughs in fighting the pandemic has
been the development of vaccines. The efficiency of computa-
tional approaches has been advocated as a means to speed up

vaccine and therapeutic antibodies for the COVID-19 emergency
[140]. Among the papers we found of particular significance, one
used a combinatorial machine learning approach to evaluate
and optimize peptide vaccine formulations [94]. Many other
studies in this context focused on the identification of epitopes
and on the essential understanding of COVID-19 immunological
mechanisms (see Subsection 3.2.3). Another work used machine
learning-based reverse vaccinology tools, namely Vaxign and
Vaxign-ML, to predict vaccine targets, supporting that a cock-
tail containing structural and non-structural proteins can be
effective through the stimulation of complementary immune
responses.

A number of proteomic studies have been dedicated to the
identification of epitopes. Based on a tool named VirScan, a high-
throughput method to analyze epitopes of antiviral antibodies
in human sera, 800 SARS-CoV-2 epitopes were identified, 10 of
which were considered likely recognized by neutralizing anti-
bodies. Furthermore, XGBoost was used to predict SARS-CoV-2
exposure from the output of VirScan [146].

Besides high-throughput approaches, other studies focused
on specific interactions. For example, using structural modeling,
a specific conformation of CR3022, a neutralizing antibody iso-
lated from a SARS patient, was demonstrated to be required in
order for it to bind a cross-reactive SARS-CoV-2 epitope [179].
In fact, prior knowledge about the SARS-CoV virus has been
largely exploited. In one study, detection of sequence homology
has been used to identify conserved regions between SARS-
CoV and SARS-CoV-2. Epitope prediction was then performed
using BepiPred 2, a random forest, sequence-based algorithm
and Discotope, which relies on structural modeling [56]. Finally,
an interesting application of computational methods in animal
modeling is also worth of mention. Using sequence analysis
and structural modeling, it was possible to identify a panel
of adaptive mutations in a mouse-adapted SARS-CoV-2 strain
potentially associated with increased virulence [58].

Molecular biomarkers

Understanding the pathogenicity mechanisms of COVID-19 is
important for the development of effective drugs, vaccines and
antibody therapies, or to characterize the disease. Many tran-
scriptomics studies were conducted to elucidate infection risk
and mechanisms by evaluating the expression of angiotensin-
converting enzyme 2 (ACE2) in different organs, such as lungs,
heart, kidneys, intestines, brain and testicles [7, 67, 120, 168, 181,
182]. Other studies use transcriptomics to analyze the immune
response among COVID-19 patients to discover biomarkers. For
example, release of excessive cytokine, such as CCL2/MCP-1,
CXCL10/IP-10, CCL3/MIP-1A and CCL4/MIP1B were suggested as
biomarkers for COVID-19 pathogenesis [118, 175, 193]. Tran-
scriptomics analysis was also used to identify type I interferon
deficiency as a biomarker of COVID-19 severity [62].

Proteomic data analysis was also widely employed for
biomarker discovery. For example, one study analyzed the
cellular infection profile of SARS-CoV-2 on human cell-cultures
using mass spectroscopy (MS). Central cellular pathways such as
translation, splicing, carbon metabolism, protein homeostasis
and nucleic acid metabolism were reported to be reshaped
after SARS-CoV-2 infection. Moreover, two inhibitors, 2-deoxy-
d-Glucose, which blocks glycolysis, and NMS-873, which
affects protein homeostasis, were found effective against viral
replication in vitro [12]. Another study also used MS to analyze
phosphorylation and perturbations in protein abundance,
suggesting inhibition of the p38, CK2, CDK, AXL and PIKFYVE
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kinases as antiviral mechanisms [14]. Biomarkers were also
used for automatic classification. One study profiled plasma
proteomics of COVID-19 cases and reported 11 plasma proteins
as biomarkers for severity. Using a machine-learning-based
pipeline, the authors found that plasma levels of ORM1, ORM2,
S100A9, CRP, AZGP1, CFI, SERPINA3/ACT and LCP1/LPL were
elevated in severe COVID-19 conditions, while levels of FETUB,
CETP and PI16 were reduced [147]. Using a similar approach
with multi-omics data, a preprint article highlighted the
specificities of proteomic and metabolomic responses to COVID-
19 in younger patients, identifying potential children-specific
markers [162]. Besides MS, sequence and structural analysis
approaches were also used for proteomic studies. For example,
different cytokine profiling and inflammatory signaling after
SARS-CoV-2 infection were described in this way [112].

Finally, metabolomic data were also employed in a number
of studies. For example, circulating lipids, such as phosphatidyl-
choline 14:0_22:6 and 16:1_22:6, and phosphatidylethanolamine
18:1_20:4 were identified as potential COVID-19 biomarkers [8].

Molecular virology

Unsurprisingly, articles identified as related to Molecular Virol-
ogy appear next to the Molecular Pharmacology and Biomark-
ers cluster (see Figure 3), which make large use of sequence
and structural analysis especially based on genomics data (see
Figure 5-right). Molecular virology studies significantly marked
the progressive understanding of SARS-CoV-2, with the most
important contribution arguably being the already mentioned
(see Subsection 3.1) sequencing of its complete genome in Jan-
uary 2020 (published in February 2020 [173]). Using RNA sequenc-
ing and phylogenetic analysis, the study also showed that the
new virus is closely related to a group of SARS-like coron-
aviruses found in bats. Based on the growing collections of
viral sequences in online repositories, it became soon possi-
ble to identify reliable RT-PCR targets by identifying conserved
sequences across multiple strains [36] and develop the effective
molecular diagnostic tools. In April 2020, proteomics study of
human leukocyte antigen susceptibility map for SARS-CoV-2
[113] and high-resolution transcriptome and epitranscriptome
map of the SARS-CoV-2 were also reported [81]. Strongly linked
to pharmacological studies, molecular virology research played
a pivotal role in helping to shed light on the virus origin, detect
novel variants and track the local and global evolution of the
pandemic, as summarized in the next Subsections.

Origin of SARS-CoV-2

On the same day in which results about the similarity of SARS-
CoV-2 to other bat coronaviruses were published [173], another
article appeared that analyzed the similarity of SARS-CoV-2 to
SARS-CoV, with 79.6% sequence identity and the same cell entry
receptor (ACE2) identified [190]. The highest similarity was found
against another bat coronavirus, RaTG13, with 96% identity.
Andersen et al. [4] summarized the notable genome features
of SARS-CoV-2 as mutations in the receptor-binding domain
(RBD)and having polybasic furin cleavage site and O-linked gly-
cans. They discussed three theories on the origin of this virus,
(i) natural selection in an animal host before transfer to human,
(ii) natural selection in humans after zoonotic transfer and (iii)
laboratory selection and inadvertent release outside. Based on
the genomic features observed, they concluded the latter to
be implausible. Based on a population genetics-phylogenetics
approach, another study used the full sequences of 52 SARS-
CoV-2 strains to analyze selective events that accompanied the

divergence of SARS-CoV-2 from RaTG13, concluding that the two
viruses are likely to share a common ancestor [19]. Moreover,
Zhou et al. [188] found a new bat virus (RmYN02) with 93.3%
sequence identity to SARS-CoV-2. Its spike protein contains an
insertion of multiple amino acids at the S1/S2 cleavage site,
which is also observed in SARS-CoV-2 but not other betacoro-
naviruses, pointing again to natural evolution. Using phyloge-
netic dating methods, Boni et al. [13] assessed the divergence
between SARS-CoV-2 and RaTG13 to possibly have happened as
early as 1969. They also concluded that, given the large number
of existing bat coronaviruses and their mutation rate, global
surveillance systems employing genomic tools to identify and
characterize pathogens in human disease are highly needed.
Despite the many studies based on the viral genomic sequence,
the origins of SARS-CoV-2 are still a major source of public debate
while we write [102].

Identification of variants

Another fundamental use of genomic analysis is to track ‘vari-
ants of concern’, which pose a serious threat both for their
potentially higher lethality or infectivity, and for the unknown
efficacy of existent vaccines in contrasting them [37]. On 9
March 2020, a study employed metatranscriptome sequencing of
samples from patients and controls and found that the number
of intrahost variants was as much as 51, with a median of 1–4
in SARS-CoV-2-infected patients [143]. This indicates the in vivo
evolution of SARS-CoV-2 after infection. During this pandemic,
several transmissive variants have been reported. For exam-
ple, the variant B.1.1.7 was first detected in southeast England
in September 2020 and quickly became the dominant lineage
in the country. Through genome analysis, 17 non-synonymous
mutations and deletions in B.1.1.7 were identified, 8 of which in
the spike protein, including N501Y, occurring at a key contact
residue of the RBD [128]. In December 2020, the variant B.1.351
was reported from Eastern Cape Province, South Africa and char-
acterized as carrying nine non-synonymous mutations, three of
which at key sites in the RBD (K417N, E484K and N501Y) [156].
The P.1 variant was first detected in north Brazil in December
2020, and three RBD mutations, K417T, E484K and N501Y, were
also identified in this lineage [45]. The 501Y mutation, present
in all of the three lineages, has been reported to potentially
cause an increased transmission rate, up to 70% [40]. Variants
of concern are still constantly monitored across countries in an
attempt to anticipate novel threats [172].

Tracking international spread of SARS-CoV-2

A constant effort is also being devoted to track the virus spread
at the regional, national and global level since the first epidemic
outbreak. In February 2020, Park et al. [123] analyzed the first
COVID-19 case in Korea using phylogenetic analysis and found
that it clustered together with other SARS-CoV-2 sequences
reported from Wuhan. Subsequently, by fitting a molecular clock
model, Zehender et al. [180] analyzed the viral sequences iso-
lated from three patients in the first outbreak of COVID-19 in
Italy and concluded that the virus was present in Italy weeks
before the first case was reported in 21 February 2020. De Jesus et
al. [77] analyzed six cases of early reports in Brazil by combining
phylogenetic analysis with self-reported travel history. Their
results suggested multiple independent importations from Italy
at the beginning of the Brazilian COVID-19 outbreak, further
contributing to understand the dynamics of the pandemic. In the
meantime, nine viral genomes from early patients in the United
States were sequenced and analyzed [46]. Through a combina-
tion of genome epidemiology and travel pattern analysis, it was
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found that coast-to-coast spread had occurred, thus highlighting
an urgent need for national surveillance. On the other hand, Lu
et al. [98], who analyzed 53 genomes from infected individuals
in Guangdong, China, showed that the large majority of viral
infections in the province were caused by multiple importations,
thus concluding that the surveillance and intervention mea-
sures taken had been effective. They also recommended careful
interpretation of phylogenetic trees built in the early phase of
the pandemic and suggested that epidemiological information
should be combined with genomic data for more reliable results.
In this regard, a related study has been conducted by Lemey et
al. [91], who integrated travel history data in Bayesian phylogeo-
graphic inference. The study analyzed 282 SARS-CoV-2 genomes,
64 of which included travel history data, concluding that more
realistic spreading hypotheses and higher predictive accuracy
could be obtained as compared to using sample locations only.

Epidemiology

Although the ‘Molecular Pharmacology and Biomarkers’ and
‘Molecular Virology’ clusters discussed above mostly assume
a molecular perspective, the remaining four clusters shift the
focus toward the actual impact of the pandemic, from epidemio-
logical considerations to individual patient care. Here, we review
the main studies in the ‘Epidemiology’ cluster.

Understanding epidemiological features and transmission
dynamics of the pandemic is crucial to inform intervention
policies [183], such as coordinating screening and containment
strategies, anticipating the viral spread, and ensuring optimal
use of resources to reduce morbidity and mortality [78]. During
the COVID-19 pandemic, governments across the world have
relied on epidemiological models to help guide their decisions
[1]. For example, results from a study by the Imperial College in
early March 2020 significantly influenced the country’s response
strategies [1, 47]. The following Subsections describe major stud-
ies in the areas of epidemiological parameters estimation and
assessment of non-pharmaceutical interventions (NPI).

Epidemiological parameters estimation

Critical epidemiological parameters influencing the spread of a
virus include the ability of sustained human-to-human trans-
mission, the basic reproduction number R0, and the incubation
period. In order to estimate such parameters, a large variety of
methods have been used, including susceptible, infectious and
recovered models; phylogenetic analysis; statistical simulations;
agent-based models; network models; etc. Nonetheless, their
objectives and contexts are generally homogeneous, therefore
we summarized all of them by systematically collecting method-
ologies, dataset details, specific applications and resource avail-
ability. All this information is summarized in Supplementary
Table 4. The most relevant studies are discussed below.

During the initial phase of the COVID-19 outbreak, human-
to-human transmission by a novel coronavirus was confirmed,
also based on Sanger sequencing and phylogenetic analysis,
in a family of six COVID-19 patients, only five of which had
been in Wuhan between 29 December 2019 and 4 January
2020 [25]. Another research analyzed the first 425 confirmed
cases detected in Wuhan based on parametric model fitting
of epidemiological information, reporting evidence of human-
to-human transmission among close contacts dating back to
December 2019 [92].

The basic reproduction number R0 is the average number of
secondary cases generated by an infected person. Many sim-
ulations were conducted to estimate its value across different

countries. Most early studies reported a mean R0 to be within
the range of 2 to 3 using epidemic data from China [48, 92,
134]. However, another estimate based on a bats-hosts-reservoir-
people transmission network model resulted in a value of 3.58
[30]. As the virus spread across Europe, further early R0 estimates
were published from Italy (2.43–3.10) [39] and England (2.8–3.10)
[96]. The value of R0 is studied continuously, as environmental
and viral features evolve, and more data become available.

Another crucial epidemiological parameter is the viral
incubation period i.e. the time interval between infection and
occurrence of the first symptoms. Incubation period estimations
impact important public health activities, such as active
monitoring, surveillance and control [90]. Studies showed that
the median incubation period for COVID-19 is approximately 5
days, which is similar to other coronaviruses, such as SARS and
MERS [90, 92, 157, 183]. Moreover, the mean serial interval, that
is the time interval between the first symptoms in the primary
patient and the beginning of symptoms in the next infected
patients, has also been studied. By analyzing 8579 cases from 30
provinces excluding Hubei in China, one early study found such
interval to be slightly shorter than the mean incubation period,
thus indicating a risk of asymptomatic transmission [183]. The
ability of the virus to transmit without causing visible symptoms
has been a prominent cause of its dramatic spread.

NPI assessment

Epidemiological models have been widely used to estimate the
efficacy of NPI, such as case isolation, contact tracing, social
distancing and lockdowns [78]. As for the previous Subsection,
we reported a detailed summary of the used approaches in
Supplementary Table 4 and will discuss a selection below.

On 28 February 2020, based on a stochastic transmission
model, it was reported that highly effective contact tracing and
case isolation could be enough to control a new COVID-19 out-
break within 3 months, as long as less than 1% asymptomatic
cases occur [66]. However, asymptomatic transmission was later
estimated at 6% by another study concluding that only widely
used digital contact-tracing apps could possibly control the epi-
demic [48]. Although digital contact-tracing apps have raised
concerns about privacy issues, they are widely accepted by some
of the countries that achieved the best results at flattening the
COVID-19 cases curve [72]. On this subject, Keeling et al. [79]
conducted a detailed survey including information on social
encounters from 5800 UK respondents, coupled with predictive
models of contact tracing and control. The study concluded that
the UK definition of contact as a permanence of at least 15 min
within 2 meters is appropriate. However, according to the study,
it also places a significant burden on health services, thus timely
case detection and quarantine remain necessary to ensure the
success of contact tracing.

Limitations to social activities to reduce contacts have also
been widely studied and adopted. Measures like school and
workplace closures or limiting gatherings have reduced the risk
of overwhelming the health systems and bought more time for
treatment and vaccine development, although at the cost of eco-
nomic downturn [5]. For this reason, assessing the benefit-cost
ratio of each intervention has been an objective of paramount
importance, and many research efforts have been devoted to it.
For example, in March 2020 a preprint article reported a com-
parison between one-time and intermittent social distancing
scenarios in the United States based on a mathematical model
[82]. The study concluded that adoption of the former could have
delayed the epidemic peak eventually exacerbating the load on
critical care services. The study contributed to the debate on the
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actual implementation of social distancing measures, which can
take diverse forms. Another study, for example, used an agent-
based model to analyze the effects of self-isolation, and in partic-
ular its impact on intensive care unit (ICU) occupancy in Canada
[145]. According to the study, even with a self-isolation ratio of
40%, the need for ICU beds would still exceed the total supply
in the country, suggesting once again the need for multiple
combined interventions. On the other hand, cautious but timely
lifting of social restrictions is also necessary in order to reduce
their social burden. Therefore, the consequences of lifting NPIs
have also been thoroughly studied. Hoertel et al. [68], for exam-
ple, used a stochastic agent-based model to simulate the COVID-
19 epidemic in France and analyze the potential impact of lifting
a national lockdown. Although the study found a rebound to
be almost certain, it also concluded that other measures, such
as social distancing, mask-wearing and shielding of vulnerable
people would still prevent the overwhelming of the critical care
services.

Healthcare

In our embedding, the next cluster of studies concerns public
health and related services. One of the greatest dangers posed
by the ongoing pandemic has been the overwhelming of the
national healthcare systems, constituting the main rationale
behind policies aimed at ‘flattening the epidemic curve’. Among
the top papers in our collection, a significant number in the
‘Healthcare’ group were devoted to studying the psychological
burden on healthcare workers (HCWs) and lay people, the digital
technologies to speed up the response by the healthcare system,
and literature mining tools aiming at keeping researchers and
practitioners up to date with latest knowledge.

Psychological burden on HCWs and the public

During the battle against COVID-19, HCWs played the role of
front-line fighters. Many factors, such as the ever-increasing
number of patients, the overwhelming workloads, the shortage
of specific drugs or equipment, have contributed to place a sig-
nificant psychological burden on them, prompting researchers
to study such secondary effects of the pandemic. In our database,
most articles on the subject collected data digitally through
online surveys and analyzed them using logistic regression-
based models. Given the uniformity of the approaches, we sum-
marized the most representative ones in Supplementary Table
5, reporting the geographical area of each study, the number of
individuals surveyed, the specific aim and the used method. We
describe a few representative examples in the following.

In two studies, multivariate regression models were used to
assess psychological impact on Wuhan HCWs based on 5062
[195] and 1577 [114] surveyed subjects respectively. Factors like
concomitant chronic diseases, history of mental disorders and
family members or relatives confirmed or suspected positive
were found associated with stress, anxiety and depression. Con-
versely, social and professional support was confirmed to exert
protective effects. The need for psychological support was also
underlined by another study on 1257 HCWs in China, espe-
cially among women and nurses [87]. Similar results were also
reported from other countries. For example, an online platform
was used to gather data from 1379 HCWs in Italy [137]. The study
concluded that younger age and female sex were associated
with posttraumatic stress symptoms, depression, anxiety and
high perceived stress. Frontline HCWs were associated with
posttraumatic stress symptoms, while nurses and health care
assistants were more likely to endorse severe insomnia.

Besides the direct psychological burden on front-line HCWs,
the general public has also been psychologically affected by
severe intervention measures such as isolation and social dis-
tancing, which impose changes in routines and may favor anx-
iety and depression [21]. Many studies have been conducted
to assess their impact. For example, Mazza et al. [103] tried to
identify risk and protective factors for psychological distress in
Italy. Using an online survey platform, they collected data from
2766 individuals. Multivariate ordinal logistic regression high-
lighted an association between female gender, negative affect
and detachment with higher levels of depression, anxiety and
stress. In general, psychological effects of the pandemic may
involve a complex system of factors, such as the fear of get-
ting infected, the worry about socioeconomic costs, xenopho-
bic attitudes, and compulsive checking and reassurance seek-
ing [155]. Some of these conditions may be ameliorated not
only by psychological interventions, but also through behavioral
attitudes. One study found that physical activity following the
WHO guidelines may be beneficial in this sense [97]. Finally,
sentiment analysis has also been used to assess the emotional
state of the public in response to the pandemic. For example, one
study analyzed 105+ million tweets in six languages (English,
Spanish, Arabic, French, Italian and Chinese) using deep learn-
ing language models to identify positive, negative and complex
(like joking) expressions. They found that early tweets were
dominated by a mixture of joking with anxious/pessimistic/an-
noyed feelings, which shifted toward positive states (optimistic,
thankful and empathetic) as the pandemic came under control
[185].

Digital technologies for rapid response

Digital technologies in the public health response to the pan-
demic are being harnessed worldwide with diverse applications
[18]. Also using online data collection and analysis platforms,
initiatives such as the epidemic intelligence from open sources
by the WHO aim at early detection, verification, assessment
and communication of public health threats based on publicly
available data [171]. Rapid response strategies have been pro-
posed using mobile applications in diverse contexts, such as
self-reporting through online surveys [2, 130], digital contact
tracing through Bluetooth-based proximity detection [48], or
even remote healthcare services. For example, one study demon-
strated vital signs measurement based on a convolutional neural
network (CNN) model including an attention module to analyze
image data acquired from the device’s camera [95].

COVID-19 research and public health

The surge in COVID-19 research publishing has posed both
the opportunity and the challenge of exploiting continuously
updated scientific knowledge with the aim of timely imple-
menting state-of-art interventions [42]. In this context, AI
approaches have been widely applied to help identify relevant
literature, including the present work. On the other hand,
crowd-based manually curated approaches to create annotated
literature datasets for machine learning algorithms have been
proposed as well [71]. In this regard, one notable effort has
been made to automatically produce and update the COVID-
19 research dataset (CORD-19) database, which include 500 000
scientific articles directly or indirectly related to SARS-CoV-2
[164]. This dataset has been specifically created for researchers
to apply natural language processing algorithms and develop
information retrieval and hypothesis generation approaches.
Toward this aim, the TREC-COVID initiative was launched to
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build a test set and assess the ability of algorithms to rank
CORD-19 papers based on their relevance to COVID-19-related
topics [135, 161]. Based on the CORD-19 dataset, other works
constructed knowledge graphs [170], also with applications to
drug discovery [165].

Clinical medicine

Most studies belonging to the ‘Clinical Medicine’ cluster analyze
data directly obtained from patients. They usually apply statis-
tical analysis approaches, which are well assessed in medical
literature and better suited in a context of low dimensional
data. However, a number of studies also make use of omics
data analysis (see Figure 5-right) mostly for the identification
of biomarkers with clinical applications. For example, transcrip-
tomics data were used to characterize critically ill patients leuko-
cytes [139]; proteomics data were used to characterize SARS-
CoV-2 neurotropism [160]; metabolomics data were used to iden-
tify prognostic biomarkers [38]. One study integrated all of these
three data types to identify molecular markers in peripheral
blood and plasma samples of COVID-19 patients [32]. Biomarkers
identification is a common theme within the ‘Clinical Medicine’
cluster, as shown in the remainder of this Subsection.

Prognostics

The vast majority of the top-scoring papers in the ‘Clinical
Medicine’ topic concerns the assessment of risk and the iden-
tification of risk factors for COVID-19 patients. Many of them
use classical logistic regression-based methods on internally
collected data from hospitals and clinics [94, 187], in one case
even producing an online risk calculator for the public [76]. One
notable study proposed an online platform for the collection of
large pseudonymised health records from English subjects at
the national level, accompanied by open source statistical data
analysis software [169]. The tool identified being male, greater
age, diabetes and severe asthma among the most prominent
COVID-19 risk factors based on the health records of ˜17 000 000
English adults, including ˜11 000 COVID-19 patients. Concerning
model complexity, it is worth mentioning one study that used
an XGBoost model as a best-in-class approach to assess the
performance of a generalized additive model combined with
LASSO regression, which is more interpretable at the cost of
slightly lower predictive power [83].

As opposed to identifying risk factors, other studies have
focused on investigating some of the known ones in particular.
For example, one paper supports that low levels of vitamin D
concentration, which have been a concern also linked to lock-
down measures [24], has little effect on the risk of infection based
on the analysis of clinical data for ˜348 000 patients, 449 of which
had confirmed COVID-19 infection [64]. Other such studies have
investigated risk associations to diverse factors, such as smoking
status based on Bayesian meta-analyses [149], hyperglycaemia
using logistic regression [125] and even generic variants through
whole-exome sequencing analysis [159].

Finally, among the highest rated papers in the ‘Clinical
Medicine’ category, it is worth mentioning a systematic review,
which underlines both the importance of prognostic models and
the urgency to improve their reliability [174].

Clinical sign identification and clinical trials

Most other articles in the cluster are devoted to the identification
of COVID-19 patients clinical signs and to the assessment of
treatement efficacy. Of note, some articles dealing with clinical

signs use imaging techniques like computed tomography (CT)
[11, 173, 178]; however, they focus on the statistical analysis of
manually extracted features, as opposed to direct computational
segmentation or classification as described in Subsection 3.7.

Finally, our database picked up a few clinical trial studies that
specifically refer to modeling tools. For example, a retrospective
study on 13 981 patients with COVID-19 in the Hubei Province,
China, based on a mixed-effect Cox model, found a reduction
of all-cause mortality from 5.2 to 9.4% in the subgroup of 1219
patients treated with statins [186]. A living systematic review
uses a Bayesian network meta-analysis of clinical data from 85
trials (at time of publication) to monitor treatment efficacy, con-
firming a large uncertainty in the outcomes of highly discussed
drugs, such as remdesivir, azithromycin, hydroxychloroquine
and tocilizumab [148].

Clinical imaging

The area of Clinical Imaging conceptually falls under the broader
field of Clinical Medicine. However, due to the large number of
specifically dedicated papers in our database, most of them shar-
ing Deep Learning techniques, they formed a well-characterized
cluster on their own (see Figure 3). A number of studies in
this area use the term ‘radiomics’ to refer to the computa-
tional extraction of features from biomedical images [74, 89] (see
Figure 5-right). Thoracic computer tomography (CT) and chest X-
ray imaging have played an important role during this pandemic
as easily accessible tools to diagnose COVID-19, monitor thera-
peutic efficacy and assess patients for discharge. In China, for
example, portable chest X-ray devices are used in point-of-care
testing, especially to monitor immobile, critically ill patients on
a daily basis [93].

The general workflow of imaging-based diagnostics can be
divided into three phases: pre-scan preparation, image acquisi-
tion, and disease diagnosis [196]. After raw data are acquired,
images are stored in a picture archiving and communication
systems. In the diagnosis phase, specifically trained radiologists
inspect the images to assess the presence of COVID-19-related
features. The integration of AI in the loop can help speeding up
this step, potentially producing a significant impact in emergent
situations.

CT image segmentation and classification

Application of AI in CT imaging can be generally divided into two
main tasks: segmentation and classification. In chest CT image
segmentation, deep learning models are employed to extract a
target region of interest (ROI), such as lesion and lung lobes, and
quantify the corresponding morphological features. We summa-
rized studies belonging to this category in Supplementary Table
6, which includes references, methodology, number of patients,
target ROI, data availability and performance scores. We mention
some of the most representative studies below.

One intriguing approach proposed a weakly supervised
model, which embeds a generative adversarial network (GAN)
model [54] within the segmentation framework. This model
is trained to replace the lesion with normal features until
the image is classified as generated from a healthy patient,
thus implicitly learning abnormal morphologies. This allowed
to perform effective training even with a single voxel-level
annotated COVID-19 patient CT scan [176]. Another innovative
study used both a novel preprocessing method and a novel
deep learning model for segmentation and quantification.
Specifically, in order to deal with training data shortage,
the proposed framework included a CT scan simulator for
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generating new images by interpolating existing ones over
different time points. Moreover, the 3D segmentation problem
was decomposed into three 2D problems, significantly reducing
complexity and improving accuracy, as demonstrated over
multi-country, multi-hospital, and multi-machine datasets [189].

Other approaches use human-in-the-loop strategies, in
which radiologists correct the results of automatic segmenta-
tion, thus speeding up the learning process. One such example
called VB-Net is based on a modified 3D CNN combining a V-
Net [104] model with a bottle-neck structure [141]. Another one,
called COPLE-Net, uses an adaptive self-learning framework
with a noise-robust Dice loss that is suitable for noisy labels [163].
Finally, Chen et al. [31] designed a modified U-Net [136] model,
achieving the highest performance among those we reviewed.

Besides segmenting ROIs, many studies have also been pro-
posed to detect COVID-19 using chest CT images, reporting
impressively high accuracy. As before, we summarized the main
features of many top-scoring articles in this category in tabular
form (see Supplementary Table 7) and mention some of them in
the following.

Many studies employed segmentation models, such as U-Net
[136] or its variations, to extract features before classification.
This was the case for Gozes et al. [55] (U-Net) and Chen et al. [27]
(UNet++ [194]), both of which also used a pre-trained ResNet-50
[65] model for classification, achieving 0.996 and 0.989 accuracy,
respectively. Other works applied deep transfer learning models
without using segmentation. For example, Jaiswal et al. [75] used
a DenseNet201 architecture [70] and Pathak et al. [124] used a
ResNet [65]. Among alternative approaches, Wang et al. [166]
combined graph convolution models with convolutional neural
networks and proposed a new model named FGCNet, which
achieved 0.971 accuracy.

X-ray image classification

Due to the nature of X-ray images, segmentation is less used
in this context. In fact, all the top papers in our database con-
cerning X-ray imaging are devoted to classification tasks, aim-
ing at COVID-19 diagnosis. Also, in this case, we produced a
detailed tabular summary, which includes references, dataset
details, learning model, application, data availability and accu-
racy scores (see Supplementary Table 8).

Among the top-performing models, Ozturk et al. [119] built
on a previous You Only Look Once architecture named DarkNet
[132], achieving 0.981 accuracy. Another work by Brunese et al.
[17] used a model based on VGG-16 [150], which yielded an accu-
racy of 0.980. A number of studies focus on overcoming data lim-
itation as a fundamental prerequisite to improve classification
performance. For example, a work by Khalifa et al. [80] employed
GAN for data augmentation and ResNet18 [65] for classification,
achieving an F1-score of 0.990. On the other hand, Rajaraman
et al. [127] trained a custom CNN and a selection of ImageNet
pre-trained models on publicly available X-ray images and then
applied transfer learning on COVID-19 images achieving 0.990
accuracy. Finally, Nour et al. [115] used a 5-layer CNN model for
feature extraction and other machine learning models such as
k-nearest neighbor, support vector machine (SVM), and decision
trees for classification. In their results, the combination of CNN
model and SVM achieved the highest accuracy (0.990).

In addition to diagnosis, automatic severity assessment has
also been proposed through X-ray image analysis. Cohen et al.
[35] created a geographic extent score (ranging 0–8) and lung
opacity score (ranging 0–6) based on the evaluation from three
experts, and used them to train a DenseNet model [70]. Their

results show that the model can regress the two scores with 1.14
and 0.78 mean absolute error, respectively.

Latest contributions
In order to systematically review the latest research trends,
we extracted the most recent (March–May 2021), top-scoring
preprint articles that were also predicted to pass a peer review
process with the highest probability. By reviewing such articles,
we observed a shift of focus toward the monitoring of emer-
gent SARS-CoV-2 variants, the evaluation of approved vaccines
efficacy in real-world settings, and the follow-up of patients
to investigate post-COVID-19 syndrome. We report a selection
of representative articles in the following. Regardless of our
effort to select the most potentially impactful literature, the
mentioned results need to be considered unconfirmed.

Emergent variants of SARS-CoV-2

Based on sequencing techniques and bioinformatic analyses,
several emergent variants of SARS-CoV-2 are being identified
around the world (see Subsection 3.3.2). For example, variant
P.3, carrying multiple mutations in the Spike protein, has
been reported from the Philippines. These mutations could
possibly impact the interactions of the Spike protein with
the ACE2 receptor and neutralizing antibodies [9]. B.1.617
lineage is found to be the predominant clade in Maharashtra,
India, with accumulation of convergent mutations [33]. Variant
B.1.616 was identified in Western France. It is reported to
have higher lethality and to be poorly detectable by RT-PCR on
nasopharyngeal samples [49]. Besides, another study identified
multiple N-terminal domain (NTD) and RBD mutations of SARS-
CoV-2 associated with reduced antibody neutralization from
an immunosuppressed patient with tacrolimus, steroids and
convalescent plasma therapy [28]. It provides an evidence
that immunocompromised patients with convalescent plasma
therapy are potential breeding grounds for immune-escape
mutants.

Effectiveness of vaccines in a real-world setting

Despite the benefits of vaccine clinical trials, their accuracy
is limited by subject recruitment restrictions and sample size
[177]. Evaluation in real-world settings is therefore necessary to
obtain more detailed safety and efficacy estimations [144]. One
of the most urgent needs is the evaluation of vaccine efficacy
against SARS-CoV-2 variants [10, 126, 129, 144], which has been
the subject of several recent studies. This is obtained through
data analysis of large clinical datasets against sequence variants.
For example, researchers in Oxfordshire, UK evaluated the
effectiveness of Pfizer-BioNTech BNT162b2, Oxford-AstraZeneca
ChAdOx1 and immunity after natural infection, against the
B.1.1.7 variant in 13109 HCWs [99]. They found that natural infec-
tion with detectable anti-spike antibodies and two vaccine doses
both provide robust protection. Besides, better understanding
vaccine adverse effects is also important, both to minimize their
impact on patients and to cope with vaccination hesitancy [131].
Researchers in the UK surveyed 974 HCWs with prior COVID-19
infections and compared those with and without a COVID-19
history using two-way analysis of covariance and a logistic
regression model to evaluate the adverse effects following
BNT162b2 vaccination [131]. They found that previous infection
in absence of long COVID symptoms (see next Subsection) was
associated with an increased risk of self-reported adverse events
among the respondents. Besides, researchers in India assessed
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the outcomes of 515 HCWs completed two doses of Covishiel
ChAdOx1-nCOV and Covaxin BBV-152 vaccines using logistic
regression [151]. Both showed good immune response after two
doses, which is good news in the war against COVID-19.

Elucidating the post-COVID syndrome

A portion of COVID-19 patients continue to experience persistent
symptoms after being discharged from hospitals. This condition
is known as post-COVID syndrome or ‘long COVID’ [34, 53, 69,
101]. To better characterize the syndrome, a follow-up study
was conducted with 958 non-hospitalized patients in Germany,
mostly with mild COVID-19 symptoms [6]. The study assessed
the predictors of long-term symptoms, finding that 12.8% of the
patients were affected by shortness of breath, anosmia, ageusia
and fatigue at four or seven months after infection. Another
nationwide cohort study in Germany followed 8679 hospitalized
patients and analyzed risk factors [59]. It found a considerable
long-term mortality of 29.6% in all subjects and readmission
rates of 26.8% among 6235 discharged patients. Coagulopathy,
body mass index ≥ 40 and age were reported to be risk factors
for 180-day mortality. Finally, a study compared the CpGs num-
ber, telomere length, and ACE2 and DPP4 expression between
117 COVID-19 survivors and 144 non-infected volunteers using
pyrosequencing [109]. The results showed a significant telomere
shortening (3.03–10.67 Kb) and ACE2 expression decreasing in
the COVID-19 survivors.

Discussion and conclusions
The ongoing COVID-19 pandemic has impacted all aspects of
society and ignited an unprecedented global research effort.
With the last severe pandemic being the Spanish flu, which
dates back to 1918, COVID-19 is the first one to occur in a digi-
tized world. With computers being ubiquitously used in modern
societies, they are also expected to constitute a novel tool to fight
global health emergencies, providing faster data and knowledge
sharing, advanced analytical tools, and more accurate forecast-
ing capabilities.

In order to analyze the impact of computational applications
to the ongoing pandemic from a scientific point of view, we built
a large database of research articles covering diverse aspects
of the emergency, but all sharing the use of computational
tools. Due to the complexity of the constructed database, we
in turn used computational approaches to guide our review.
The main topics we identified i.e. Molecular Pharmacology and
Biomarkers, Molecular Virology, Epidemiology, Healthcare, Clin-
ical Medicine and Clinical Imaging highlight the fundamental
role of computational applications in supporting critical activ-
ities such as scientific discovery, clinical practices and institu-
tional decision making in diverse areas of the ongoing crisis. We
believe that our approach guided by automatic collection, cate-
gorization and prioritization of research articles can help to deal
with publication bursts that are expected during emergencies
such as the COVID-19 crisis.

During the pandemic, computational approaches have been
used at various extents, from facilitating statistical data analysis
of large datasets and gain a better understanding of the rapidly
changing situation, to the construction of sophisticated machine
learning models for automating, accelerating and/or guiding
biomedical tasks. For some applications, such as those within
the fields of genomics or structural chemistry, computers are
now established tools routinely used through well assessed and
standardized analytical pipelines. In other areas, such as drug

repurposing or vaccine development, they are widely used as
tools for candidate prioritization or hypothesis generation. In
clinical applications such as automatic diagnostics and prognos-
tics, computational models proved to be potentially effective,
although the special caution required by patient care warrants
further assessment and development toward fruitful integrating
within healthcare systems [174]. Simulations based on mathe-
matical models have been widely used to forecast viral spread
or the effect of NPI measures. Governments around the world
have relied on the results of such models to make informed
decisions with vast socioeconomic effects. The immense impact
that mathematical modeling can have in this area prompts the
scientific community to strive for more reliability and wise use
of available data, which can be particularly fragmented and
inconsistent at the beginning of a global health emergency [78].
In other areas, such as the assessment of treatments efficacy and
risk factors, computational approaches have supported classical
statistical analyses of large datasets collected and managed
through digital platforms.

While we write, the COVID-19 pandemic still poses a global
threat. Nonetheless, extraordinary successes have been achieved
by the scientific community in understanding the SARS-CoV-2
mechanisms and countermeasures. The contribution of com-
putational sciences in this endeavor has been remarkable. In
this regard, we believe that the experience gathered during the
COVID-19 pandemic should lay the foundation for objectives
that reach beyond the end of the current crisis.

Key Points
• A software framework was developed to automati-

cally collect 17 269 computational studies related to
COVID-19 from multiple sources, including PubMed
and preprint servers.

• Using an AI model, articles were automatically catego-
rized into clusters corresponding to six topics: Molec-
ular Virology, Molecular Pharmacology and Biomark-
ers, Epidemiology, Healthcare, Clinical Medicine and
Clinical Imaging.

• All the studies were ranked using bibliometric infor-
mation and a Deep Neural Network model was devel-
oped to predict the chance for preprint articles to pass
peer review.

• The developed framework was used as a guide
throughout an extensive and detailed manual review,
which demonstrates the huge impact of computa-
tional approaches during the COVID-19 global crisis.
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