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ABSTRACT The anaerobic oxidation of methane by anaerobic methanotrophic (ANME)
archaea in syntrophic partnership with deltaproteobacterial sulfate-reducing bacteria
(SRB) is the primary mechanism for methane removal in ocean sediments. The
mechanism of their syntrophy has been the subject of much research as traditional
intermediate compounds, such as hydrogen and formate, failed to decouple the
partners. Recent findings have indicated the potential for extracellular electron trans-
fer from ANME archaea to SRB, though it is unclear how extracellular electrons are
integrated into the metabolism of the SRB partner. We used metagenomics to re-
construct eight genomes from the globally distributed SEEP-SRB1 clade of ANME
partner bacteria to determine what genomic features are required for syntrophy. The
SEEP-SRB1 genomes contain large multiheme cytochromes that were not found in
previously described free-living SRB and also lack periplasmic hydrogenases that
may prevent an independent lifestyle without an extracellular source of electrons
from ANME archaea. Metaproteomics revealed the expression of these cytochromes
at in situ methane seep sediments from three sites along the Pacific coast of the
United States. Phylogenetic analysis showed that these cytochromes appear to have
been horizontally transferred from metal-respiring members of the Deltaproteobacte-
ria such as Geobacter and may allow these syntrophic SRB to accept extracellular
electrons in place of other chemical/organic electron donors.

IMPORTANCE Some archaea, known as anaerobic methanotrophs, are capable of
converting methane into carbon dioxide when they are growing syntopically with
sulfate-reducing bacteria. This partnership is the primary mechanism for methane re-
moval in ocean sediments; however, there is still much to learn about how this syn-
trophy works. Previous studies have failed to identify the metabolic intermediate,
such as hydrogen or formate, that is passed between partners. However, recent
analysis of methanotrophic archaea has suggested that the syntrophy is formed
through direct electron transfer. In this research, we analyzed the genomes of multi-
ple partner bacteria and showed that they also contain the genes necessary to per-
form extracellular electron transfer, which are absent in related bacteria that do not
form syntrophic partnerships with anaerobic methanotrophs. This genomic evidence
shows a possible mechanism for direct electron transfer from methanotrophic ar-
chaea into the metabolism of the partner bacteria.
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The anaerobic oxidation of methane (AOM) is mediated by syntrophic consortia of
anaerobic methanotrophic (ANME) archaea and deltaproteobacterial sulfate-reducing

bacteria (SRB) and is the dominant mechanism for controlling the flux of methane from
marine sediments (1–3). Since the initial molecular microbial ecology studies describing
the association between methane-oxidizing ANME archaea and sulfate-reducing Del-
taproteobacteria were published (2, 3), significant effort has been devoted to under-
standing the genetic potential of the ANME archaea and the mechanism enabling this
unusual syntrophic partnership using isotopic (2, 3), metagenomic (4, 5), metatranscrip-
tomic (5, 6), and metaproteomic (7, 8) analyses in natural samples and reactor systems.
Initial hypotheses focused on conventional syntrophic substrates such as hydrogen,
formate, and acetate as diffusible intermediates; however, experimental amendment of
these compounds into sediment microcosms failed to decouple the syntrophic asso-
ciation (9–11). Recent experimental and molecular evidence supports an alternative
hypothesis based on extracellular electron transfer (EET), using multiheme cytochromes
to pass electrons produced during methane oxidation by the ANME archaeon directly
to its bacterial partner (12, 13). The process of EET has been studied rigorously in
metal-reducing organisms from the genera Shewanella and Geobacter, where electrons
are transferred to extracellular metals (14) or syntrophic microorganisms (15, 16) using
outer membrane multiheme cytochromes and/or conductive nanowires. Comparative
genomics has shown that ANME-2 genomes contain very large multiheme cytochromes
(13, 17) that are similar in size to the outer membrane cytochromes used by Geobacter
and Shewanella to respire metals or to grow on electrode surfaces. Staining for heme
and redox active proteins in ANME-2:deltaproteobacterium consortia showed localiza-
tion in the extracellular matrix between cells (13), while electron microscopy of
thermophilic ANME-1 consortia revealed extracellular structures produced by the
“HotSeep-1” sulfate-reducing partner (�Candidatus Desulfofervidus auxilii�) that visually
resemble nanowires produced during EET by Geobacter (12). This observation was
further supported by metatranscriptomic data showing upregulation of pili and outer
membrane cytochromes by �Ca. Desulfofervidus auxilii� during syntrophic growth with
ANME archaea (12). Finally, microcosm experiments revealed that high rates of meth-
ane oxidation by ANME-2 can occur without sulfate in the presence of alternative
extracellular electron acceptors, such as 9,10-anthraquinone-2,6-disulfonate (AQDS),
iron citrate, and humic acids substituting for an active SRB partner (18).

The majority of research to date has focused on the metabolism of ANME archaeal
lineages; however, there have been fewer studies on the diversity of and metabolic
potential within the associated SRB partners in methane seeps. The syntrophic partners
of ANME archaea come from a number of environmental clades of Deltaproteobacteria.
The most common partner bacteria, known as SEEP-SRB1 (19), are most closely related
to Desulfosarcina and Desulfococcus (20); however, multiple other clades within Desul-
fobulbaceae have been shown to form associations with ANME archaea (19, 21–24). To
date, genomic analysis of ANME partners has been restricted to �Ca. Desulfofervidus
auxilii,� a representative from the “HotSeep1” clade, which can form syntrophic asso-
ciations with thermophilic members of ANME-1 and is distantly related to the common
deltaproteobacterial partners of ANME archaea from globally distributed cold seep
sediments (25, 26). �Ca. Desulfofervidus auxilii� is able to grow without the ANME-1
partner using hydrogen as the electron donor (26), which has not been demonstrated
with SEEP-SRB1 partners. Recent sequencing of the �Ca. Desulfofervidus auxilii� genome
confirmed the presence of periplasmic hydrogenases and of multiheme cytochromes
that may be involved in extracellular electron transfer with ANME-1 archaea (26). The
current lack of genomic data for the more widely distributed deltaproteobacterial
partners of the ANME archaea in cold sediments makes it difficult to assess whether
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these traits are universal among the bacteria that form syntrophic partnerships with
ANME archaea. Here we reconstructed genomes from diverse ANME partner bacteria
belonging to the SEEP-SRB1 clade across multiple continental margin seep environ-
ments. Genomic comparisons between these ANME partners and cultured Deltaproteo-
bacteria species revealed a number of unique genomic features in the syntrophic ANME
partners that are suggestive of a common ability to engage in interspecies extracellular
electron transfer.

RESULTS AND DISCUSSION

Shotgun metagenomic sequencing of five sediment samples from Hydrate Ridge
and Santa Monica Basin seep sites resulted in 8 draft genomes from diverse members
of the most common, globally distributed Desulfobacteraceae clade, SEEP-SRB1, and 10
additional genomes from members of Desulfuromondales, Desulfovibrio, and Desulfob-
ulbaceae (Fig. 1; see also Fig. S1 in the supplemental material). The levels of complete-
ness and contamination, based on the presence of single-copy marker genes, ranged
between 65% and 90% and between 1% and 15%, respectively (see Table S1 in the
supplemental material). The SEEP-SRB1 group represented two previously described
subclades, SEEP-SRB1a and SEEP-SRB1c (19), and had an average level of amino acid
identity between genomes of 60%, indicating that each genome represented a unique
family-level taxonomic classification (27) (see Text S1 in the supplemental material).

Despite the broad phylogenetic diversity, all SEEP-SRB1 genomes contained hall-
marks of an autotrophic lifestyle, including carbon and nitrogen fixation (Fig. 2). The
genomes contained the Wood-Ljungdahl pathway (a reductive acetyl-coenzyme A
[CoA] pathway) for carbon fixation in agreement with previous observations from lipid
biomarkers and [13C]bicarbonate labeling studies (28); in contrast, �Ca. Desulfofervidus
auxilii� utilizes the reductive TCA cycle (26). The genomes contained the Embden-
Meyerhof-Parnas pathway and the pentose phosphate pathway, which links carbon
fixation to biomass and carbohydrate synthesis and enables the generation of glycogen
as a storage compound. Previous ecophysiological studies of AOM consortia in meth-
ane seep sediments have demonstrated differences in nitrogen utilization among
different ANME partners, including direct or indirect involvement in nitrogen fixation
(29, 30) and nitrate utilization (23). The genomic data support these findings, with
nitrogenase identified in the SEEP-SRB1 genome bins, suggesting that N2 can be used
as a biosynthetic nitrogen source.

The SEEP-SRB1 genomes contain all of the genes necessary for the canonical sulfate
reduction pathway, including those encoding sulfate adenylyl transferase (Sat), aden-
osine phosphosulfate (APS) reductase (AprAB), dissimilatory sulfite reductase (DsrAB),
and sulfur carrier protein DsrC (31) (Fig. 2). All of the genome bins contained genes for
the QmoABC and DsrJKMOP membrane complexes, which are required for sulfate
reduction. QmoABC donates electrons from quinone to APS reductase (32), whereas
DsrMKJOP donates electrons from the quinone pool to produce sulfide by breaking the
trisulfide intermediate of DsrC formed by the action of the dissimilatory sulfite reduc-
tase (31, 33). In addition to genes for the core sulfate reduction pathway, the SEEP-SRB1
genome bins contained genes for the Tmc transmembrane spanning complex (34) and
the cytoplasmic Flx-Hdr complex (35) (Fig. 2), which are widely distributed in deltapro-
teobacterial SRB (36) and may contribute to redox balance by interacting with DsrC. The
Tmc complex has been shown to accept electrons from soluble periplasmic cytochrome
c and is hypothesized to transfer electrons to DsrC to generate sulfide (34). Energy
conservation involving the Flx-Hdr complex is proposed to occur through flavin-based
electron bifurcation by oxidizing NADH that is coupled to the unfavorable reduction of
ferredoxin to the (hypothesized) favorable reduction of DsrC (35). In Desulfovibrio
vulgaris Hildenborough, Flx-Hdr is essential for NADH oxidation during growth on
ethanol (35).

Quinones are a vital part of the SRB respiratory chain, donating electrons to APS
reductase in the second step of sulfate reduction and to the DsrJKMOP membrane
complex in the final step of sulfate reduction. The ability to synthesize respiratory
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quinones was found in the SEEP-SRB1 genomes, which also carry the genes that encode
the quinone reductase complex (QrcABCD) (37), consistent with most other members
of the Desulfobacteraceae. This membrane-bound complex is believed to play a role in
energy conservation by transferring electrons from soluble periplasmic cytochrome c
into the quinone pool.

In model sulfate reducers, such as Desulfovibrio vulgaris, reducing power for the Qrc
and Tmc membrane complexes is sourced from periplasmic hydrogenases or formate
dehydrogenases using a small soluble cytochrome c (TpIc3) as a periplasmic electron

FIG 1 Phylogeny of methane seep Deltaproteobacteria and related organisms. Maximum likelihood phylogeny
data were determined on the basis of an alignment of 40 universally conserved protein sequences. Internal
nodes in the tree with greater than 70% or 90% bootstrap support are marked by gray or black circles,
respectively. Genome bins identified in our metagenomic sequencing are highlighted in red; many of them are
grouped into the Desulfobacteraceae SEEP-SRB1 or the Desulfobulbaceae SEEP-SRB4 clades. �Ca. Desulfofervidus
auxilii,� a previously analyzed ANME partner, is shown in bold text. Wedges represent multiple related genomes
that have been collapsed for brevity. At the right, yellow squares indicate that the organism is capable of
respiration using any sulfur compound; red squares indicate the ability to perform metal respiration; green
circles indicate organisms that contain the same cytochrome-containing operon that is found in SEEP-SRB1.
Blue, purple, and orange circles indicate that one or more of the four core genes in the cytochrome operon
had been detected in the Santa Monica Mounds, Hydrate Ridge, or Eel River Basin sites.

FIG 2 Proposed model of SEEP-SRB1 metabolism in AOM consortia. All identified SRB from AOM consortia contained the canonical sulfate reduction pathway:
sulfate adenylyltransferase (Sat), adenylyl-sulfate reductase (Apr), dissimilatory sulfite reductase (DsrAB), and the membrane-associated complexes Qmo and
DsrMKJOP. The DsrC protein acts as a key intermediate for transferring electrons from DsrAB to other redox-active complexes, including the DsrMKJOP and Tmc
membrane complexes and the soluble Flx-Hdr complex. Electrons required to reduce the Qrc or Tmc membrane complexes are proposed to be sourced from
direct extracellular electron transfer from the ANME archaeon cell mediated by outer membrane c-type cytochromes. All genomes fix carbon using the
Wood-Ljungdahl pathway and contain a complete tricarboxylic acid (TCA) cycle, a pentose phosphate pathway (PPP), and the Embden-Meyerhof-Parnas (EMP)
pathway for glycolysis/gluconeogenesis.
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shuttle (38). Notably, all of the SEEP-SRB1 genomes appear to lack both periplasmic
hydrogenases and formate dehydrogenases but do contain the membrane-bound
energy-converting hydrogenase (Ech) and cytoplasmic formate dehydrogenases. There
were a number of operons that included genes similar to those encoding electron-
transferring subunits of the Hox-type or F420-reducing multisubunit hydrogenases;
however, none of these operons contained genes encoding the hydrogenase subunit.
Ech has been biochemically characterized in Methanosarcina barkeri, where it can
generate reduced ferredoxin (while consuming H2) during methanogenesis using
H2/CO2 or oxidize ferredoxin (while producing H2) during acetoclastic methanogenesis
(39). The physiological role of Ech in sulfate reducers is currently unknown and may be
species specific; for example, Ech plays a minor role in overall bioenergetics in Desul-
fovibrio gigas (40), whereas Ech is highly upregulated using H2 as the electron donor in
Desulfovibrio vulgaris (41). The lack of periplasmic hydrogenases or formate dehydro-
genases helps explain why efforts to grow SEEP-SRB1 organisms using H2 or formate
have failed (9, 10). In contrast, �Ca. Desulfofervidus auxilii� contains a periplasmic
hydrogenase and is capable of growing using H2 in the absence of an ANME partner
(12, 26).

Without periplasmic hydrogenases or formate dehydrogenases, SEEP-SRB1 organ-
isms must have alternative mechanisms to reduce membrane complexes used in
respiration. Recent evidence has pointed to electrons being transferred from ANME
archaea to SRB partners using large extracellular multiheme cytochromes (12, 13, 17).
The SRB partners must have a complementary mechanism that enables these electrons
to participate in their metabolism. Analyses of syntrophic Geobacter species, and of a
partnership of Geobacter and Methanosaeta, performing extracellular electron transfer
have identified type IV pili and multiheme cytochromes as crucial to the transfer of
electrons between partners (15, 42). Similarly, the SEEP-SRB1 genomes included type IV
pili and unusually large multiheme cytochromes (Fig. 3; Fig. S2), many of which

FIG 3 Representative operon structure from organisms containing large multiheme cytochromes found in SEEP-SRB1. Homologous genes are colored the same
between organisms, with the exception of the cytochromes, which are colored with various intensities of red based on the number of heme binding motifs
present in the gene. Genes in gray are not conserved (i.e., are unique to that genome). The NCBI locus tag identifier for the core set of four genes is shown
below each operon.
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contained homologs to Geobacter but not to other sulfate reducers (Fig. S3). The largest
cytochrome in most previously characterized sulfate-reducing Deltaproteobacteria spe-
cies is encoded by the hmcA gene and contains 16 heme binding motifs. In comparison,
the Desulfobacteraceae SEEP-SRB1a and SEEP-SRB1c genome bins contained an operon
with two multiheme cytochromes, including one with 26 heme binding motifs that was
adjacent to another with 16 heme binding motifs that is unrelated to hmcA (Fig. 3).
There were many additional families of cytochromes that were present in the SEEP-
SRB1 with homologs in the Desulfuromonadales but not in previously sequenced
free-living SRB (Fig. S3). A second operon, also widely distributed in SEEP-SRB1,
included two cytochromes with 11 or 12 heme binding motifs that were related to the
OmcX gene in Geobacter. The genome bins from SEEP-SRB4, though not known to be
ANME partners, also contained an operon with a multiheme cytochrome containing 19
heme binding motifs that was distinct from those seen with SEEP-SRB1 and all other
cultured Deltaproteobacteria species (see Text S1 in the supplemental material).

Homologs of the SEEP-SRB1 cytochromes are present only in some other cultured
Deltaproteobacteria species, predominantly in the Desulfuromonadales that are known
metal reducers, including genome bins from the sediment samples (Fig. 1). Addition-
ally, �Ca. Desulfofervidus auxilii� (26), several related Thermodesulfobacterales species,
Anaeromyxobacter, and Desulfurivibrio alkaliphilus AHT2 (43) contain homologs of these
cytochromes. This operon contained a core set of four genes encoding a six-bladed
beta propeller fold protein, the two cytochromes (16 heme and 26 heme), and a
peptidyl-prolyl cis-trans-isomerase protein. These four proteins contained signal pep-
tides localizing them to the periplasm but did not contain any transmembrane helices,
suggesting that they were not physically attached to either the inner or outer mem-
brane. Surrounding these core genes were open reading frames encoding proteins that
vary in composition and number but are often smaller cytochromes, proteins contain-
ing beta propeller fold motifs, and proteins of unknown function, some of which
contained transmembrane helices (Fig. 3). D. alkaliphilus AHT2 contains two copies of
this operon that do not appear to be the result of a recent internal duplication event
as each operon contains a different complement of additional cytochromes that differ
in the number of heme binding motifs.

Electron transfer across the outer membrane is achieved in a number of organisms
by using a porin-cytochrome complex (44–46). These complexes consist of a porin-like
integral outermembrane protein and at least one cytochrome which uses the pore to
traverse the membrane. The SEEP-SRB1a and SEEP-SRB1c genomes did not contain any
homologs of previously identified porins specifically from known porin-cytochrome
complexes. However, the genomes did contain open reading frames annotated as
encoding homologs of OmpA/OmpF outer membrane porins. It is possible that SEEP-
SRB1 genomes utilize a novel mechanism to transfer electrons across the outer mem-
brane or that they encode a porin that is not related to those previously identified in
other organisms performing extracellular electron transfer.

Phylogenies of the conserved four proteins showed that the genomes belonging to
SEEP-SRB1 and the distantly related �Ca. Desulfofervidus auxilii� grouped together in
what appears to be an ANME partner-associated clade (Fig. 4). Two other clades were
present; the first was composed mostly of Geobacter and Anaeromyxobacter, and the
second contained Desulfuromonas and related organisms that included genome bins
from the seep sediments, Desulfurivibrio alkaliphilus AHT2, and the other members of
the Thermodesulfobacteriales. The phylogenies suggest that �Ca. Desulfofervidus auxilii�
may have obtained its operon from the common ancestor of the SEEP-SRB1 clade,
whereas the other Thermodesulfobacterales appear to have obtained their cytochromes
from members of the Desulfuromonadales.

There is no known physiological function for the homologs of these cytochromes in
cultured organisms, and so the significance of these clades cannot be determined.
Proteomic and transcriptomic experiments in Anaeromyxobacter dehalogenans 2CP-C
(47), Geobacter sulfurreducens (48), Geobacter bemidjiensis (49), and Desulfuromonas
acetoxidans (50) showed that these cytochromes are not expressed during metal
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respiration. However, metal respiration donates electrons to the extracellular environ-
ment rather than accepting them from external sources. A number of microbes can
accept electrons from electrodes, including G. sulfurreducens (42, 51–54). In a microarray
study performed using G. sulfurrenducens growing on the cathode, the homologs to the
cytochrome-encoding operon detected in SEEP-SRB1 did not show significantly differ-
ent expression results under current-producing or -consuming conditions (55). How-
ever, the experimental conditions of this study poised the electrode at �500 mV, which
is significantly more negative than sulfate (�220 mV), the terminal electron acceptor for
SEEP-SRB1. We hypothesize that this operon is expressed in situations with an extra-
cellular electron donor that is similar in redox potential to that supplied by the ANME
archaea, which must have a more positive redox potential than sulfate.

The expression of this operon was assessed using semiquantitative metaproteomics
in situ at methane seeps at the Santa Monica Mounds, Eel River Basin, and Hydrate
Ridge along the west coast of North America (Fig. S4; Table S2). While absolute
quantification of expressed proteins was beyond the scope of current study, a semi-
quantitative mass spectrometry (MS) approach was taken to assess the relative abun-
dances of expressed proteins and has been used in a number of previous protein

FIG 4 Maximum likelihood phylogenetic trees of (A) the 16-heme cytochrome; (B) the 26-heme cytochrome; (C) the peptidyl-prolyl cis-trans-isomerase; and
(D) the six-bladed beta propeller fold protein. Each tree was rooted at the midpoint branch. Internal nodes in the tree with greater than 70% or 90% bootstrap
support are marked by gray or black circles, respectively. The ANME partners are labeled in red. Scale bars represent numbers of substitutions per site.
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expression analyses of complex samples (56–58). The raw mass spectra were matched
against a large concatenated predicted proteomic database containing 16 genomes
that belonged to Desulfobacteraceae SEEP-SRB1, Desulfobulbaceae SEEP-SRB4, and Desulfu-
romondales genomes recovered from the seep sediments. Although the total number of
identified proteins was modest (367 proteins across all three sites), among these were
informative proteins that belonged to the Wood Ljungdahl pathway (carbon monoxide
dehydrogenase, formylmethanofuran-tetrahydromethanopterin N-formyltransferase) and
to nitrogen fixation and sulfate reduction pathways (Sat, AprAB, DsrAB, and DsrC)
(Table S2). The identification of multiheme cytochrome proteins, which are abundant at
low to moderate levels in these systems, was challenging. For complex systems,
metaproteomics easily identifies the most abundant proteins but is limited in dynamic
range; thus, the lower-abundance proteins often do not have adequate fragment ions
or signal intensity to pass the standard threshold filters (59, 60). In particular, the use
of a large database to search for low-abundance proteins adds to the difficulty in
identifying the less abundant proteins, since overall peptide identification metrics
(spectral matching, scoring criteria, and false-discovery rates [FDR]) are driven by the
higher-abundance peptides/proteins (61). To better enable investigations using the
search criteria for scouting out lower-abundance proteins, the database complexity was
reduced by generating a smaller database of 2,246 proteins derived from the 16
genomes of SEEP-SRB1 and SEEP-SRB4 clades. This database comprised proteins with
four or more heme motifs and the full genome of Desulfuromonadales bacterium
C00003107 (consisting of genes encoding ~2,000 proteins). Using this approach, we
could detect several multiheme cytochromes, all having fewer than 10 heme motifs
(Table S3). For a more refined search, we further reduced the database complexity by
assembling another database comprising multiheme cytochromes only, derived from
the 16 genomes of SEEP-SRB1 and SEEP-SRB4 clades. Protein expression was detected
in all three sites from members of SEEP-SRB1a and SEEP-SRB1c and two members of the
Desulfomonadales that were also recovered from the seep sediment metagenomes
(Fig. 1; Table S4). Not all genes from each operon were detected at all sites, with Santa
Monica and Eel River Basin having more matches than Hydrate Ridge (Table S4). To
more definitively support these limited database searches, peptide and protein iden-
tification was confirmed by manual validation of acquired peptide mass spectra from
representatives of all the four members that constitute this operon (Fig. S5). These
results show that these cytochromes are expressed in situ in syntrophic partnership
with ANME archaea but at levels that are lower than those of enzymes from the sulfate
reduction pathway. The reasons for this are unclear; it may be that extraction and
detection were more difficult or that cells may not require that many copies of the
protein or may be involved in a separate physiology not related to ANME syntrophy.
However, their presence in SEEP-SRB1 and the phylogenetically unrelated �Ca. Desul-
fofervidus auxilii� as a possible component of the ANME archaeon-SRB syntrophy
warrants further analysis.

In model SRB, a small soluble periplasmic cytochrome c (TpIc3) is central to trans-
ferring electrons from periplasmic hydrogenases or formate dehydrogenases to mem-
brane complexes (36). It is therefore likely that the transfer of ANME archaeon-derived
electrons to TpIc3 occurs via outer membrane cytochromes as this minimizes the overall
changes in the metabolic network. This same scheme has been suggested in “Ca.
Desulfofervidus auxilii” as it could allow easy switching between syntrophic growth and
hydrogenotrophic growth (26). The metabolic flexibility of “Ca. Desulfofervidus auxilii”
may suggest an evolutionary route that SEEP-SRB1 organisms might have under-
taken to become syntrophic partners of ANME archaea. The first stage may have
been the acquisition of large multiheme cytochromes that allowed extracellular
electrons to enter the cell. At this stage, the SRB could easily transition between
independent hydrogenotrophic growth and syntrophy with amenable partners,
much as “Ca. Desulfofervidus auxilii” is capable of doing. The syntrophy may have
become obligate in SEEP-SRB1 through the loss of genes encoding periplasmic
hydrogenases and formate dehydrogenases that could act as alternative electron
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donors. This gene loss may explain why members of SEEP-SRB1 have not been
cultured or enriched from hydrogen- or formate-amended microcosm experiments.
One future avenue for culture of SEEP-SRB1 may be that of using electrodes or other
extracellular electron donors to replace the role of ANME archaea in donating
electrons to the SRB.

MATERIALS AND METHODS
Metagenome sample collection. Five sediment samples from Hydrate Ridge or the Santa Monica

Mounds off the Pacific coast of United States were used for metagenome sequencing. Sample collection
details for three samples from Hydrate Ridge, labeled 3730, 5133-5, and 5579, have been described
previously (62). Briefly, sample 3730 was collected within a Calyptogena clam bed from Hydrate Ridge
south (44°43.09=N, 125°9.14=W; depth, 776 m); samples 5133-5 and 5579 were collected from a white
microbial mat at Hydrate Ridge North, station 7 (44°40.03=N, 125°6.00=W; depth, 600 m). Two additional
samples were collected from the Santa Monica Basin, offshore in California, as part of the R/V Western
Flyer Southern California Expedition in May 2013. Using the ROV Doc Ricketts, a sediment push core, PC51
(33°47.3301=N, 118°40.0979=W), was collected on dive DR-461 at a depth of 863 m from the Santa Monica
Mounds, characterized by the presence of a white microbial mat. Upon recovery shipboard, PC51 was
separated into two samples that were used for metagenomic sequencing. Sample 7086 was created from
sediment in the 6-cm to 9-cm horizon of the push core. The remaining sediment samples (0 to 6 cm; 9
to 15 cm) were combined and used as the sample PC51 mix. Aliquots of each were preserved for DNA
extractions at �80°C prior to sequencing. DNA was extracted from the sediment using a Powersoil DNA
extraction kit (catalog no. 12888; Mo Bio Laboratories, Inc., Carlsbad, CA).

Metaproteome sample collection, processing, and analysis. Five sediment samples were col-
lected for metaproteomics from three locations. A 20-cm push core (PC48) was collected on 26 July 2005
from the Eel River Basin on dive T-863 of R/V Western Flyer using ROV Tiburon (coordinates 40°48.6631=N,
124°36.7437=W; water depth, 520 m) and divided into two sections of 10 cm (0 to 10 cm and 10 to 20 cm).
A second 20-cm push core was collected on 15 February 2005 on dive T-796 of R/V Western Flyer using
ROV Tiburon from a mound a few hundred meters northwest of the venting mound in Santa Monica Basin
(coordinates 33°47.9748=N, 118°38.796=W; water depth, 826 m). This push core was divided into 4-cm
segments; the 0-cm to 4-cm horizon and 8-cm to 12-cm horizon were used for proteomics. The final
sample was the sediment 3730 sample collected from Hydrate Ridge that was also used for metagenomic
sequencing.

Cellular lysis, protein extraction, and sample preparation. Partially thawed seep sediments (5 g)
were suspended in 10 ml of detergent-based lysis buffer and subjected to heat-assisted cellular lysis as
described previously (63). The suspension was cooled on the benchtop and centrifuged in fresh tubes for
5 min at 8,000 � g to settle the sediment. The resulting clear supernatant was aliquoted into fresh tubes
and amended with chilled 100% trichloroacetic acid (TCA) to a final concentration of 25% (vol/vol) and
kept at �20°C overnight. The residual sediment was discarded. Following overnight TCA precipitation,
the supernatant was centrifuged at 21,000 � g for 20 min to obtain a protein pellet. The pellet was
retained, washed thrice with chilled acetone (64), air dried, and solubilized in 6 M guanidine buffer (6 M
guanidine, 10 mM dithiothreitol [DTT], Tris-CaCl2 buffer [50 mM Tris; 10 mM CaCl2; pH 7.8]) and incubated
at 60°C for 3 h with intermittent vortex mixing. An aliquot of 25 �l was utilized for protein estimation,
which was carried out using an RC/DC protein estimation kit (Bio-Rad Laboratories, Hercules, CA) per the
manufacturer’s instructions. The remaining protein sample was diluted 6-fold using Tris-CaCl2 buffer, and
trypsin was added (40 �g/1 to 3 mg total protein) based on protein estimation results. Proteins were
digested overnight at 37°C with gentle mixing, and the resulting peptides were reduced by addition of
DTT (10 mM) and desalted using a Sep-Pak column and solvent exchange (65). Peptides were stored at
80°C until MS analysis was performed.

All chemicals used in sample preparation and mass spectrometry analysis were obtained from Sigma
Chemical Co. (St. Louis, MO), unless mentioned otherwise. Sequencing-grade trypsin was acquired from
Promega (Madison, WI). High-performance liquid chromatography (HPLC)-grade water and other sol-
vents were obtained from Burdick & Jackson (Muskegon, MI), and 99% formic acid was purchased from
EM Science (Darmstadt, Germany).

NanoLC-MS/MS analysis. Peptide mix (100 �g peptide) was pressure loaded onto a biphasic
resin-packed column (SCX [Luna; Phenomenex, Torrance, CA] and C18 [Aqua; Phenomenex, Torrance, CA])
as described earlier (65, 66). The sample column was connected to the C18 packed nanospray tip (New
Objective, Woburn, MA) mounted on a Proxeon (Odense, Denmark) nanospray source as described earlier
(67). Peptides were chromatographically sorted using an Ultimate 3000 HPLC system (Dionex, USA) over
the course of 24 h. The HPLC system was connected to a LTQ Velos mass spectrometer (Thermo Fisher
Scientific, Germany), which was employed for peptide fragmentation and measurements via the Multi-
Dimensional Protein Identification Technology (MuDPIT) approach as described earlier (65–67). The
peptide fragmentation and measurements were carried out in data-dependent mode, using Thermo
Xcalibur software V2.1.0. Each full scan (1 microscan) was followed by collision-activated dissociation
(CID)-based fragmentation using 35% collision energy and the 10 most abundant parent ions (2
microscans) with a mass exclusion width of 0.2 m/z and a dynamic exclusion duration of 60 s.

Bioinformatics and data analysis. For protein identifications, the raw spectra were searched against
three databases of various sizes via Myrimatch v2.1 (68) using parameters described previously (69). The
first database was composed of 16 genomes identified in this study belonging to members of Desulfo-
bacterales and Desulfuromonadales; the second database contained all predicted c-type cytochromes
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from these genomes containing four or more heme binding motifs (CxxCH amino acid sequences) and
the open reading frames of Desulfuromonadales sp. strain C00003107; finally, the third database
contained the core four proteins encoded by the cytochrome operon from all of the SEEP-SRB1 and
Desulfuromonadales genomes recovered in this study. Static cysteine and dynamic oxidation modifica-
tions were not included in the search parameters. Identification of at least two peptides per protein
sequence (one unique and one nonunique) was set as a prerequisite for protein identification. Common
contaminant peptide sequences from trypsin and keratin were concatenated to the database along with
reverse database sequences. The reverse database sequences were used as decoy sequences to calculate
the false-discovery rate (FDR), which was maintained at �1% for the peptide-to-spectrum identification.
For downstream data analysis, spectral counts of identified peptides were normalized as described
before (70) to obtain the normalized spectral abundance factor (NSAF), also referred to as the normalized
spectral count (nSpc). Averages of nSpc values from duplicate runs were used to obtain values of relative
abundances of expressed proteins across different samples. Normalization of spectra helps account for
differences in protein length and for variations in results of MS analysis of samples, thereby providing
information on the relative abundances of proteins in a given sample and across samples in a given
study.

Metagenome sequencing and genome binning. Sequencing, assembly, and binning of samples
3730, 5133-5, and 5579 have been described previously (62). Briefly, these samples were sequenced using
a HiSeq 2000 system (Illumina, Inc., San Diego, CA) and assembled using CLC genomics workbench 6.0;
metagenomic bins were defined using GroopM 0.2 (71). Additionally, a second assembly procedure was
performed on the samples using megahit 0.3.3a (72), and the results were then binned using metabat
0.26.1 (73). This assembly and binning complemented the previous approach and resulted in additional
genome bins. Sample 7086 and the PC51 mix sample were sequenced using an Illumina HiSeq 2500
system at the University of California, Davis. Raw metagenomic reads were assembled using both CLC
genomics workbench 9.0 and megahit 1.0.3. Genome binning was performed on both of these assem-
blies using metabat 0.26.1.

Comparative genomics. Homologous proteins were identified across Deltaproteobacteria species
with proteinortho 5.11 (74) using blast� 2.2.30 (75). Orthologous groups relating to carbon fixation and
energy metabolism were manually checked for inclusion of biochemically analyzed proteins and man-
ually aligned using MUSCLE 3.8.31 (76) for inclusion of conserved amino acids, and the data were
compared to the KEGG database using KAAS (77), the Uniprot database (78) and the Interpro database
(79) to make sure that the correct annotations and protein motifs were present.

Porin-cytochrome complex annotation. Representative porin genes from Geobacter sulfurreducens
(GSU2733), Desulfurivibrio alkaliphilus (DaAHT2_2270), and Gallionella capsiferriformans (Galf_2003) were
used as search sequences against the SEEP-SRB1 genomes. BLASTP 2.2.29� (75) was used with an E value
cutoff of 0.01 to determine if there were any known homologs for these genes in SEEP-SRB1 genomes.

Genome tree construction. The genome tree was constructed from a concatenated alignment of 40
protein-coding genes that are universally distributed and in single-copy form in both archaea and
bacteria (80). The marker genes were aligned to the hidden Markov model generated from each of
the 40 marker genes using hmmer 3.1b2 (http://hmmer.org). A maximum likelihood tree was created
using RAxML 8.1.7 (81) with the following settings: -f a -k -x 67842 -p 19881103 -N 100 -T 16 -m
PROTGAMMAWAG. The tree was visualized using the ete toolkit (82).

16S rRNA gene tree construction. A tree of the 16S rRNA gene was constructed of sequences
belonging to SEEP-SRB1. A maximum likelihood tree was created using RAxML 8.1.7 (81) with the
following settings: -f a -k -x 67842 -p 19881103 -N 100 -T 16 -m GTRGAMMAI.

Data availability. Raw sequencing data, metagenomic assemblies, and draft genome sequences are
available under NCBI bioproject identifiers PRJNA326769 and PRJNA290197.
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