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Coronavirus 2019 (COVID-19), the WHO-classified novel coronavirus of severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2), has rapidly become a global pandemic. To tackle both its spread

and virulence, research is ongoing worldwide to develop an effective anti-COVID-19 drug or vaccine. In

this review,we explore the clinical understanding and severity of COVID-19 emergence across theworld,

with a focus onChina.We also discuss potential therapeutic targets, either host virus based, that could be

used to tackle the COVID-19 outbreak.
Introduction
During the early weeks of December 2019, the first case of pneu-

monia caused by the novel coronavirus defined as COVID-19 by

the WHO was reported in Wuhan, the capital city of Hubei

province, China [1]. Local daily-wage employees of the Huanan

Seafood Market in Wuhan were believed to be the initial COVID-

19 carriers, infecting a large proportion of the population of

Wuhan [2,3]. Since its emergence and as of [96_TD$DIFF], June 24, 2020,

COVID-19 had infected [97_TD$DIFF]�85098 individuals across China. At

the time of [98_TD$DIFF]completion of the review-draft (by 24th June 2020),

the Iran, Italy, Chile, Peru, Spain, UK, India, Russia, Brazil, and

USA had recorded the highest population count of COVID-19

cases, ranging from [99_TD$DIFF]209,970 to 2,424,492,819 to 1,573, (www.

worldometers.info/coronavirus/). Thus far, � [100_TD$DIFF]9,373,424 cases of

COVID-19 have been recorded worldwide, with the total number

of deaths reaching [101_TD$DIFF]480,140, and the number of recovered patients [102_TD$DIFF]

5,062,840, (www.worldometers.info/coronavirus/).
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Although SARS-CoV-2-encoded proteins share similar homolo-

gous structures with SARS-CoV, the spike (S) ectodomain of the

COVID-19 virus shows a higher binding affinity (�15 nM) for the

angiotensin-converting enzyme 2 (ACE2) receptor protein of the

upper bronchial system, which is �10–20-fold higher compared

with SARS-CoV. Thus, this facilitated the unprecedented transmis-

sion of COVID-19 among humans [4]. The SARS-CoV-2 strain can

spread through all modes of physical contact, including sneezing

and coughing [5].

A higher level of COVID-19 cases, �87%, has been recorded

among the adult and older population groups (30–79 years of

age) [6]. Contradictorily, a moderate (3%) and a small (1%)

number of cases have been recorded in the older population

group (�80 years old) and the younger population group (10–19

years) [6]. Concomitantly, people with prior respiratory ail-

ments and metabolic complications, such as type 2 diabetes

mellitus, hypertension, cardiovascular complications, and can-

cer, are highly susceptible to COVID-19 infection with in-

creased mortality [6,7]. Consistent with earlier clinical

evidence that SARS-CoV and Middle East respiratory syndrome

coronavirus (MERS-CoV) affected males more than females [8],
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the prevalence of COVID-19 has been recorded in the male

population at a higher rate compared with that of the female

population [3]. It might be that estrogen receptor activation

and its associated signaling cascades in females confer increased

protection against infection with COVID-19, similar to the

results of clinical-based research studies with SARS-CoV and

MERS-CoV [9].

Moreover, some patients with SARS-CoV-2 have become

infected with virus from asymptomatic carriers who do not show

any obvious clinical symptoms, such as flu, tiredness, fever, and

dry cough, but are able to pass-on COVID-19 to healthy individu-

als either by direct or indirect physical contact through nasal

droplets and sneezing [10]. In addition to this major barrier to

the control of COVID-19 spread, it is difficult to control the spread

of disease from recovered patients to healthy individuals [11,12].

In this review, we focus on clinical trials involving drugs against

COVID-19, potential clinical therapeutic targets, and the future

directions of COVID-19 management.

Clinical lessons learned, current therapeutic molecules,
and prospects for COVID-19 management
As depicted in Fig. 1, all nonstructural proteins (NSPs), which

represent virus-based targets, are crucial for the design of thera-

peutic efforts to ameliorate colonization of the virus in the host,

especially in the upper bronchial system. The catalytic sites of the

functional NSPs of the Coronaviridae can be targeted to attenuate

SARS-CoV, MERS-CoV, and SARS-CoV-2 virulence. Moreover, the

functional NSPs interact with the host ACE2 to enable coronaviral

entry to the cells [13].

Given the current lack of vaccines to either attenuate or prevent

COVID-19 transmission, targeting any of the crucial invasion steps

ofSARS-CoV-2,suchasthevirusentry, transcriptionandtranslation,

genomesynthesis andassembly, andvirus releasewouldbeeffective

in reversing its pathogenesis and transmission in humans.

To target the initial colonization of SARS-CoV-2, research has

focused on the use of potential antiviral agents used against other

viruses, such as SARS-CoV, MERS-CoV, hepatitis B, hepatitis C,

HIV, and common influenza viruses [14].

Past lessons
During the initial stages of the COVID-19 outbreak, from late

December 2019 to early February 2020, during 40,000 cases were

confirmed and 850 people died across China, patients in clinical

trials were treated with drugs that were found to be generally

ineffective at against the virus. One such drug was oseltamivir,

selected because COVID-19 symptoms include fever and other

symptoms common to influenza infections [15]. Oseltamivir is a

potent neuraminidase inhibitor that effectively attenuates the

virulence of influenza viruses A and B, but did show any noticeable

effects against COVID-19 because the virus does not secrete neur-

aminidase [16]. Moreover, the treatment of patients with COVID-

19 with antibacterial drugs, including moxifloxacin, ceftriaxone,

and azithromycin, either as a single drug or in combination,

showed little health benefit [17]. In addition, the long-term use

of a higher dose of antibiotics during the COVID-19 outbreak was

found to be linked with the adverse clinical symptoms of severe

respiratory ailments, including hyperinflammation, shock, circu-

latory impairment, and other organ damage.
1546 www.drugdiscoverytoday.com
Corticosteroids mimicking the natural corticosteroids of the

human body have been commonly used to treat patients with

defective adrenal glands who fail to synthesize sufficient levels of

corticosteroids [18]. However, corticosteroids have also been wide-

ly prescribed at a higher dose in patients with immunological

disorders, inflammation, and/or an impaired salt/water balance

[18]. Nevertheless, there is no clear clinical evidence of the core

therapeutic benefits of corticosteroids in treating respiratory

symptoms of respiratory syncytial virus (RSV), common influenza

viruses, SARS-CoV, and MERS-CoV [19,20]. Research was con-

ducted to evaluate the efficacy of corticosteroids in low to mild

doses for treating the adverse clinical symptoms induced by cor-

onaviruses [21]. Concomitantly, patients with COVID-19 were

treated with corticosteroids as a supplementary drug for aminimal

duration of 3–15 days, with no substantial improvement in symp-

toms [6,15]. This shortened treatment time was because cortico-

steroid are well known for their long-term adverse effects and

other secondary level complications [16,22].

Thus, this lack of success with the aforementioned drugs also

contributed to the increased mortality among patients with

COVID-19 across China, alongside impairments in the early diag-

nosis and treatment of COVID-19; delayed action from healthcare

professionals to break the virus transmission chain; a poor under-

standing of COVID-19 virulence and its transmission efficacy

among the common population; and inadequate clinical diagnos-

tic kits and other essential medical facilities, such as respiratory

ventilators, protective medical gowns and gloves, to handle

patients critically ill with COVID-19 [23].

Present therapeutics with clinical significance for COVID-19
management
Chemical agents

To manage the emerging COVID-19 outbreak and its associated

mortality, �300 clinical trials have been performed on patients

with COVID-19 in China [24]. Some of the clinical drugs used in

these trials have shown promising results in reversing COVID-19

clinical symptoms [25] (Table 1).

To tackle the SARS-CoV epidemic, lopinavir and ritonavir drug

combinations [US Food and Drug Administration (FDA) approved]

that inhibit viral 3-chymotrypsin-like cysteine protease [33], sup-

plementedwithribavirin,effectivelycontrolledSARS-CoVvirulence

and the associated mortality rate [34]. Such outcomes resulted in

�14 clinical trials using lopinavir and ritonavir drug combinations

to treat patients with COVID-19. That lopinavir and ritonavir drug

combinations effectively attenuated the adverse clinical symptoms,

such as fever, of five patients with COVID-19 demands further

clinical validation [35]. By contrast, a recent clinical trial using these

drug combinations failed to showanynoticeable therapeutic effects

on the adult patients with COVID-19 over other patients who

received standard medication [36]. Thus, there is a need for a more

in-depth clinical trial on these drug combinations.

Ribavirin, another FDA-approved effective antiviral drug com-

monly used to treat hepatitis C virus and RSV, has been widely

referred to in combinations with effective antibiotics and/or with

or without hormonal treatment [16]. As a potent inhibitor of the

viral RNA-dependent RNA polymerase (RdRp), ribavirin effectively

controlled COVID-19 virulence when co-administered with rito-

navir/lopinavir drug combinations [27].
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FIGURE 1
Virus-based and host-based targets against the coronavirus replication cycle. Coronaviruses, including severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) gain the entry into the host cell via the endosomal pathway and/or the cell surface non-endosomal pathway. Viral translation, replication, assembling and
exocytosis then occur using key proteins, which could be potential therapeutic targets against SARS-CoV-2. Abbreviations: 3CLpro, 3-chymotrypsin-like cysteine
protease; ACE2, angiotensin-converting enzyme 2; AP, accessory protein; DPP4, dipeptidyl peptidase 4; E, envelope; ER, endoplasmic reticulum; Hel, helicase; M,
membrane; N, nucleocapsid; ORF, open reading frame; PLpro, protease papain-like protease; RdRp, RNA-dependent RNA polymerase; S, spike; TMPRSS2,
transmembrane serine proteases 2.
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Given that chloroquine derivatives exhibited a strong inhibito-

ry action against SARS-CoV colonization [16,37], clinicians

showed that chloroquine derivatives together with remdesivir

effectively controlled the proliferation of a clinically isolated

SARS-CoV-2 strain [28]. A clinical trial using chloroquine phos-

phate to treat COVID-19 virulence has since been approved by the
National Health Commission of the People’s Republic of China

[38].

Arbidol, a potent antiviral drug targeting virus-associated in-

flammatory cytokines, has been used to treat patients with

COVID-19 and severe pneumonia; it has not shown any adverse

effects and, thus, is under study in both China and Russia [39]. In
www.drugdiscoverytoday.com 1547
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TABLE 1

Summary of anti-SARS-CoV-2 compounds against COVID-19 currently in clinic trials

Names Structure targets Original
indication

Activity against
SARS-CoV-2
reported

No. of
clinic
trials

Refs

Lopinavir/ritonavir

[TD$INLINE]

Protease; 3CLpro;
CYP3A4

HIV Yes 14 [26]

Ribavirin

[TD$INLINE]

RdRp HCV and RSV Yes
(EC50 = 109.5 mM)

2 [27,28]

Chloroquine

[TD$INLINE]

Endosomal
acidification

Malaria Yes
(EC50 = 1.13 mM)

20 [28]

Hydroxychloroquine

[TD$INLINE]

Endosomal
acidification

Malaria No 10

Arbidol

[TD$INLINE]

Clathrin-
dependent
trafficking

Influenza Yes (EC50 = 10–
30 mM)

8 [29]

Dipyridamole

[TD$INLINE]

Phosphodiesterase Ischemic
heart disease

Yes
(EC50 = 100 nM)

1 [30]

Darunavir/cobicistat

[TD$INLINE]

3CLpro HIV Yes 2 [31]

Remdesivir

[TD$INLINE]

RdRp Ebola virus Yes
(EC50 = 0.77 mM)

2 [28]

Favipiravir

[TD$INLINE]

RdRp Influenza Yes (EC50 = 62 mM) 4 [28]
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TABLE 1 (Continued )

Names Structure targets Original
indication

Activity against
SARS-CoV-2
reported

No. of
clinic
trials

Refs

Emtricitabine/
tenofovir
alafenamide

[TD$INLINE]

Reverse
transcriptase

HIV No 1

Azvudine

[TD$INLINE]

Reverse
transcriptase

HIV No 3

ASC09/ritonavir
(ASC09F)

[TD$INLINE]

3CLpro HIV No 6

Baloxavir marboxil

[TD$INLINE]

Endonuclease Influenza No 2

Oseltamivir

[TD$INLINE]

Neuraminidase Influenza No 2

Abbreviations: 3CLpro: 3-chymotrypsin-like cysteine protease; CYP3A4, cytochrome P450 3A4; HCV, hepatitis C virus; RdRp, RNA-dependent RNA polymerase; RSV, respiratory syncytial
virus
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addition, both in vitro and in vivo studies have explored the

additional therapeutic advantages of arbidol as a drug that exhibits

a strong immune response by disrupting the viral capsid binding

the host cell membrane [16,40]. Arbidol has been prioritized with

the other potential clinical drugs discussed earlier for clinical trials

to tackle the COVID-19 outbreak, supported by the sixth edition of

Guidelines for the Prevention, Diagnosis, and Treatment of Novel

Coronavirus-induced Pneumonia [XX].

Dipyridamole, an antiplatelet and phosphodiesterase inhibitor

drug that targets intracellular cAMP/cGMP levels, including posi-

tive-stranded RNA viruses, has been suggested to be an effective

antiviral drug [41,42]. Dipyridamole effectively inhibited the rep-

lication of SARS-CoV at a half-maximal effective concentration

(EC50) concentration of 100 nM in vitro [30]. This clinical profi-

ciency of dipyridamole emphasized its possible usage as an adju-

vant to strengthen the immune system as well as to inhibit viral

proliferation and hypercoagulation [30].

Darunavir, a potent retrovirus inhibitor, together with cobici-

stat, which controls cytochrome P4503A (CYP3A) activity result-

ing in the breakdown of antiviral agents, has been used to treat

patients with HIV [43]. Although Darunavir is intended to inhibit
viral proteinases [31], research is required to prove its clinical

significance in reversing COVID-19 virulence.

Animal studies showed that remdesivir inhibited the virulence

of SARS-CoV and MERS-CoV [32]. In vitro research also confirmed

that remdesivir treatment profoundly inhibited SARS-CoV-2 pro-

liferation at an EC50 concentration: 0.77–1.76 mM [28].

Favipiravir, which markedly inhibits influenza-dependent RNA

polymerase, exhibits profound antiviral activity against many

viruses, including arenavirus, bunyavirus, and filovirus, which

result in fatal hemorrhagic fever [16,44]. In addition to these

viruses, favipiravir treatment effectively inhibited the prolifera-

tion of SARS-CoV-2 in Vero E6 culture cells, with an EC50 value of

62 mM [32]. Based on this positive outcome, the Ministry of

Science and Technology, China recently recommended favipiravir

for COVID-19 management in a larger group of patients [45].

Other potential drugs of high therapeutic value include balox-

avir and marboxil, which target the viral cap-dependent endonu-

clease (although this is absent in SARS-CoV-2) [32]; TMC310911

targets viral protease activity [46]; emtricitabine/tenofovir alafe-

namide and azvudine target the viral reverse transcriptase and

have been tested on patients with COVID-19 [47,48]. Although
www.drugdiscoverytoday.com 1549
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these clinical drugs showed promising therapeutic effects against

COVID-19 virulence, there is still a need for an in-depth clinical

trial to confirm their efficacy in a larger group of patients with

COVID-19.

Thepharmacokinetics (PK)ofall emergingCOVID-19drugs, such

as absorption, distribution, metabolism and excretion, including

thedruggable effect on thehost body (pharmacodynamics; PD), can

be studied using PK/PD modeling [49]. A PK/PD drug model would

reveal the correlation between drug exposure and its associated PD

effect in silico [49]. Of the empirical and mechanistic models of PK/

PD available, empirical models that comprise direct-link, spline-

function, logistic-regression, and circadianmodels could be used to

study disease progression in patients with COVID-19 with or with-

out drug exposure in silico [49]. Mechanistic model studies, which

primarily rely on data from clinical biomarkers in the context of

COVID-19 virulence in the presence or absence of a drug, would

confer a brief clinical understanding of the druggable effect against

COVID-19 in humans and other species as well as the determined

drug dosage for COVID-19 management [49]. PK/PD analyses are

conducted at three various levels: Level 1 reveals the direct correla-

tionbetweenthedrugexposureandits relevantresponseusingaplot

graph with the measured unbound plasma drug concentration

plotted against the relevant PD response (in vivo); this generates

the effective drug dosage concentration based on the ratio of mean

unbound plasma drug concentration/half-maximal inhibitory con-

centration (IC50); Level 2 generates the PD response turnover rate,

Kout, in response to thenoticeable changes inthedrugandbiological

system; Level 3 (with the supportive pre-established models) unra-

vels the pharmacological response to the drug at various dosages

among the patients involved in the experimental study. The corre-

lation of biomarkers with the generated PK/PD models would also

provide amechanistic understandingof themechanismof actionof

the drugs to enable translational research and intersubject drug

evaluation on a wider scale [49].

Biological agents

Convalescent plasma therapy using clinically procured blood

plasma samples of patients with a particular virus has been

adopted to treat patients with SARS-CoV-2 [50]. It has been pro-

posed that convalescent blood plasma (CBP) infusion into such

patients would effectively attenuate the pathogenicity of the virus,

with its eventual removal from the patient’s blood. Although the

methodology of CBP transfusion has certain constraints for clini-

cal trials, clinical treatment using the CBP of patients with COVID-

19 has been considered to be both promising and effective for

treating patients critically ill with COVID-19. To test CBP transfu-

sion on a large scale, certain clinical factors must be taken into

consideration, such as the transmission of intermittent pathogens

between the donor and the recipient and the precise recruitment

of donors with sufficient immunoglobulin titers to produce no-

ticeable effects against the pathogenicity of that particular patho-

gen in the patients [51].

Bone marrow-derived mesenchymal stem cells (MSCs) have

been used to treat patients with acute respiratory distress syn-

drome (ARDS), with no adverse effects recorded during the rele-

vant trial [52]. To date, there are 13 clinical trials in progress to

manage SARS-CoV-2 using MSCs, with promising initial clinical

results in seven patients with COVID-19, who showed a remark-
1550 www.drugdiscoverytoday.com
able improvement in their clinical condition within 14 days of

treatment without any noticeable adverse effects.

Interferon-alpha (IFN-a), a potent immune cytokine released

during pathogen infection, improved pulmonary function when

coupled with other antiviral agents, such as lopinavir, ritonavir,

and remdesivir, in patients with MERS-CoV [53]. The therapeutic

combination of ribavirin and IFN-awas acknowledged in the sixth

edition of Guidelines for the Prevention, Diagnosis, and Treatment of

Novel Coronavirus-induced Pneumonia [XX].

Patients withCOVID-19 and other severe health conditions have

shown increased circulatory levels of proinflammatory cytokines,

especially interleukin 6 (IL-6), which might be responsible for ad-

verse clinical symptoms, such as septic shock, organ tissue damage

associatedwithheart, liver, andkidney, and respiratorydysfunction

[54]. In one ongoing clinical trial (ChiCTR2000029765), clinicians

are targeting the increased levels of IL-6 using the IL-6-specific

monoclonal antibody tocilizumab to treat patients critically ill with

COVID-19.Clinical results from21ChinesepatientswithCOVID-19

showed a reduced body fever after treatment improved their respi-

ratory function [55]. These results suggested targeting additional

circulatoryproinflammatorycytokines, suchas IL-1and IL-17,using

cytokine-specific neutralizing antibodies [55]. Following successful

results from these clinical trials, it would be possible to adopt a

proficient biological strategy to treat COVID-19 virulence in immu-

nocompromisedpatients.Amonoclonalantibodylabeled ‘CR3022’,

raised against the receptor-binding domain of the S membrane

glycoprotein of SARS-CoV-2, could benefit patients by disrupting

its colonization in the upper respiratory system [56]. Also, mono-

clonal antibodies generated specifically against the functional pro-

teins of SARS-CoV-2 and/or its potential agonist ACE2, which

controls viral entry, would significantly benefit patients in terms

of a quick recovery and a restricted transmission rate.

Future clinical strategies for COVID-19 management
TotackletheCOVID-19outbreakwithinashorttimeframe,treatment

usingdrugrepurposingagainst thevirus-andhost-basedtargetscould

resolve similar clinical issues in the future. In the long term, the

development of novel-multifaceted-pan-CoV antiviral drugs against

coronavirusesmight result in an efficacious treatment for SARS-CoV-

2. A profound activation of the bitter taste receptors [taste 2 receptor

member4(T2R4); taste2receptormember38(T2R38); taste2receptor

member 43 (T2R43) and taste 2 receptor member 46 (T2R46)] using

bitter taste compounds, includingnicotine (as agonists), could atten-

uateCOVID-19virulencewith increased intracellularcalcium-depen-

dentnitric oxide (NO)productionaccompaniedby reduced secretion

oftheproinflammatorycytokinesintheupperrespiratorysystem[57–

59].This increasedNOproduction further strengthens theciliarybeat

frequency with the resulting mucociliary clearance of the invading

pathogens [57].The ideaof triggering the innate immune responseby

theactivationofbitter taste receptors, andreducing theproductionof

proinflammatory cytokinesby the stimulationofACE2andneuronal

acetylcholine receptors using nicotine, will be validated in patients

with COVID-19 in the near future.

Concluding remarks
All of proposed therapeutic strategies discussed herein, including the

on-going clinical trials ofCOVID-19management, have to overcome

substantial obstacles, suchas thepossibilityof spontaneousmutation
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of SARS-CoV-2, restricted animal models for preclinical studies, a

lack of patients for clinical study, the high maintenance costs

of experimental set-ups, and retention of the sustainability of clini-

cal-based therapeutic study outcomes. In addition, all the basic

criteria of each clinical trial must be well studied and abide by the

proper clinical guidelines, regardless of study type. Only with such

concerted research efforts is the research community likely to be

successful in its search for a therapeutic with proven effects against

COVID-19.
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