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Abstract: In this research, we develop an affective computing method based on machine learning
for emotion recognition using a wireless protocol and a wearable electroencephalography (EEG)
custom-designed device. The system collects EEG signals using an eight-electrode placement on the
scalp; two of these electrodes were placed in the frontal lobe, and the other six electrodes were placed
in the temporal lobe. We performed experiments on eight subjects while they watched emotive
videos. Six entropy measures were employed for extracting suitable features from the EEG signals.
Next, we evaluated our proposed models using three popular classifiers: a support vector machine
(SVM), multi-layer perceptron (MLP), and one-dimensional convolutional neural network (1D-CNN)
for emotion classification; both subject-dependent and subject-independent strategies were used. Our
experiment results showed that the highest average accuracies achieved in the subject-dependent
and subject-independent cases were 85.81% and 78.52%, respectively; these accuracies were achieved
using a combination of the sample entropy measure and 1D-CNN. Moreover, our study investigates
the T8 position (above the right ear) in the temporal lobe as the most critical channel among the
proposed measurement positions for emotion classification through electrode selection. Our results
prove the feasibility and efficiency of our proposed EEG-based affective computing method for
emotion recognition in real-world applications.

Keywords: electroencephalogram (EEG); affective computing; emotion recognition; entropy
measures; support vector machine (SVM); multi-layer perceptron (MLP); one-dimensional
convolutional neural network (1D-CNN)

1. Introduction

Emotions play an essential role not only in human communication, but also in human
perceptions; emotions also influence decision making [1]. Researchers have paid consider-
able attention to studying emotions in a vast number of interdisciplinary fields [2], such as
affective neuroscience, computer science, psychology, and sociology of emotions. However,
research on identifying emotional states automatically and accurately remains largely un-
explored. Affective computing, also known as emotion AI [3], applies modern technology
of human–computer interactions to human emotions [4]. Emotion AI has been proposed
and developed in various applications, especially marketing, healthcare, driver assistance,
and education [5]. In the field of marketing, emotion AI would include measuring cus-
tomer reactions to products and services to optimize strategies, satisfy customers, and
enhance productivity and profits [6]. An excellent example of the application of affective
computing in healthcare is the early detection of a negative emotional state while reading
social media news [7]. The extensive development of the Internet has led to the appearance
of social media sites that provide users with convenient and quick access to information
sources. However, young people are particularly vulnerable to inappropriate content that
can lead to emotional disorders with prolonged exposure. Therefore, the development
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of emotion recognition systems is essential for preventing undesirable exposure to toxic
online content. Some other applications of emotion recognition discussed in other studies
are as follows. N. Murali Krishna et al. [8] described an approach based on the generalized
mixture distribution model to identify the emotion recognitions by mentally impaired
persons. Justas Salkevicius et al. [9] developed a virtual reality exposure therapy (VRET)
system for handling multiple anxiety disorders using physiological signals like blood
volume pressure (BVP), galvanic skin response (GSR), and skin temperature. However, the
familiar point of these studies is that they all employ available datasets or apply expensive
commercial devices with big sizes for data acquisition, so it is hard to be suitable for specific
applications. Our study proposes a self-made device with compact size and lightweight
that can be worn for a long time, verified in terms of data acquisition in our experiments.

Studies have shown that multiple factors can be used to recognize emotions, such
as facial expressions, heart rate, body temperature, and electromyography [10–14]. Elec-
troencephalography (EEG) signals have drawn considerable attention because of their high
efficiency and objectivity [15]. In addition, EEG is a fast and non-invasive method [16] that
provides reasonably precise brain responses to internal or external stimuli, especially for
emotional stimuli [17]. Most previous investigations employed commercial equipment
with a high cost and large size; in this research, we investigated and developed a low-cost,
compact, wireless, and wearable device to collect EEG signals. However, electromagnetic
interference is common in EEG data collection [18]. Therefore, signal preprocessing is vital
to enhance system performance. Numerous studies have verified the success of the en-
tropy measures because of the system’s sensitivity to variations in the physiological signal
properties [19]. Furthermore, researchers have applied the entropy concept to quantify the
amount of uncertainty or randomness in the pattern [20], which is exceptionally suitable
for signals, such as EEG, which contain a large amount of information. In this study, six
varieties of entropy measures were performed in both the time and frequency domains
for feature extraction: permutation entropy (PEE), singular value decomposition entropy
(SVE), approximate entropy (APE), sample entropy (SAE), spectral entropy (SPE), and
continuous wavelet transform entropy (CWE).

Several previous studies have proved that not all electrodes employed for collecting
EEG signals contained valuable information for emotion recognition [21]. Consequently,
some electrode selection approaches were proposed to drop the EEG electrodes that con-
tained unnecessary content [22]. This helped to decrease the computational complexity
and boost the system speed. One popular selection technique is to combine the analysis of
variance (ANOVA) [23] and Tukey’s honestly significant difference (HSD) tests [24]; we
have followed this methodology in our study. We explored T8 as the preferred measure-
ment position for EEG acquisition that holds valuable information for emotion recognition
through electrode selection. In the last section of our system, we implemented the classifi-
cation models that take on the role of automatically and precisely identifying the emotional
states. In this study, we evaluated the performance of our proposed system using three
popular classifiers: support vector machine (SVM), multi-layer perceptron (MLP), and
one-dimensional convolutional neural network (1D-CNN). Moreover, we enhanced the
processing speed by applying and weighing three dimensionality reduction techniques:
principal component analysis (PCA), t-distributed stochastic neighbor embedding (t-SNE),
and uniform manifold approximation and projection (UMAP). In addition to the benefits of
price, portability, and ease of use, we also examined our wireless and wearable EEG device
for feasibility and reliability through eye-closed and eye-opened testing. Moreover, with
the obtained results from this study in emotion recognition, our system proved its ability
to be employed for various purposes toward human life and the research community, such
as entertainment, e-learning, or e-healthcare purposes.

In summary, the significant contributions of this study are as follows:

• We proposed a novel end-to-end affective computing based on machine learning for
emotion recognition utilizing a wireless and wearable custom-designed EEG device
with a low-cost and compact design.
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• The combination of sample entropy feature extraction and 1D-CNN was introduced
and achieved the best performance among the proposed entropy measures and ma-
chine learning models for two kinds of EEG emotion recognition experiments, includ-
ing the subject-dependent and subject-independent cases.

• We also investigated that T8 in the temporal lobe was adopted most frequently through
the electrode selection method, implying that this position would have further valu-
able information than other locations for emotion recognition.

The remainder of this paper is organized as follows: Section 2 describes the materials
and methods. Next, the experimental results and the outcome of this study are presented
in Section 3. Finally, Section 4 presents the conclusions of the paper.

2. Materials and Methods
2.1. Eight-Channel EEG Recording

In this study, we developed a complete EEG-based affective computing method for
emotion recognition. The system consists of two main parts: an EEG headset and the
software. The main function of the headset is to collect EEG signals at the sampling rate
of 256 Hz from the 8-channel electrode cap. Then, the headset transfers the signals to the
software set up on a computer so that all the data are managed and processed using the
Bluetooth wireless protocol. The proposed EEG device is shown in Figure 1. We used “dry”
active sensors with pre-amplification circuits to solve the high electrode–skin interfacial
impedances when collecting EEG signals from the brain through the hair. In this study,
we used sensors in the range of 100–2000 kOhm on the unprepared leathers produced by
Cognionics, Inc., San Diego, USA [25]. ADS 1299 is an 8-channel, 24-bit analog-to-digital
converter that specializes in EEG applications [26] used to digitalize the obtained signals.
Before the digitized data were sent to a computer via the wireless protocol using the HC-05
Bluetooth module, the data were conveyed to the Teensy 3.2 board used as a microcontroller.
The EEG data were gathered and displayed continuously by self-programmed and pre-
installed software on our computer. Previous studies have explained how the frontal and
temporal lobes are critical brain areas for research on emotions [27–29]. Therefore, we
collected EEG signals from the two frontal electrodes (AF3 and AF4) and the six temporal
electrodes (FT7, FT8, T7, T8, TP7, and TP8) in this study that were placed on the scalp
according to the international 10–20 system [30] (see Figure 2).
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Figure 2. Two frontal electrodes (AF3 and AF4) and six temporal electrodes (FT7, FT8, T7, T8, TP7,
and TP8) selected in the study.

There are multiple measures to evaluate the feasibility of a device for EEG acquisition,
such as using the attention/meditation level or eye blinking or eye-closed and eye-opened
testing [31]. This study assessed our device through eye-closed and eye-opened resting-
state signals (the outcomes are shown in Figure 3). Neural alpha wave is identified in
delivering a dominant peak of approximately 10 Hz in the occipital cortex during closing
eyes. O1–O2 positions are used to collect EEG signals from the occipital cortex. Welch’s
periodogram is adopted to compute PSD (Power Spectral Density) with a 1-s (256 data
points) window and a 50% overlap.
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Figure 3. (a) Experimental setup for EEG device testing; (b) power spectral densities (PSDs) during
eyes-closed and eyes-opened resting state from O1-O2 locations.

2.2. Stimulus and Protocol

It is important to design reliable stimuli for emotion elicitation. Different stimu-
lants have been employed in emotion investigations in recent years, such as images,
music, movies, and games. Databases, such as International Affective Picture System [32],
Database for Emotion Analysis Using Physiological Signals [33], Geneva Affective Picture
Database [34], Nencki Affective Picture System [35], and EmoMadrid [36], have been used.
Studies have underlined the importance of the practicability and effectiveness of images in
discovering emotional states [37–39]. In our experiments, we selected pictures from the
EmoMadrid dataset to produce emotions in the participants. This dataset contains over
700 photos across a wide variety of genres; the dataset contents have normative ratings
for three categories of emotions: negative, neutral, and positive [36]. We carefully chose
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images from this dataset to create 30 videos, and the same number of images were shown
to each participant for each of the three emotional states.

A total of eight persons (all males) in the age group of 25 to 40 years participated in
this study. They were all students from Pukyong National University, Busan, Korea. Some
previous studies revealed little or almost no significant difference in the gender-based
emotion classification on EEG signals [7,40,41]. Hence, in this study, we will not concentrate
on judging the impact of gender on EEG signals in emotion recognition. All the participants
were both physically and mentally healthy without any eyesight problems. They were
instructed not to use any stimulants, such as alcohol or drugs, a day before the experiment
to avoid any adverse effects on the test accuracy. Note that the experiments on human
subjects were performed by the approval of the Institutional Review Board at Pukyong
National University for biomedical research. Each participant read a clear description of
the research paper and agreed to sign a consent form. They were comfortably seated in an
upright position in front of the computer screen, and they wore the EEG headsets. In each
experiment, a participant watched 30 short videos. In each video, 10 s were given for the
hint, 50 s for viewing pictures, and 10 s for rest. Figure 4 shows the detailed protocol.
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2.3. Feature Extraction

The obtained EEG signals were cleaned with a band-pass filter at 1–50 Hz to reject
all unwanted noise. For a trial of the signal collection process, the EEG signals were seg-
mented with a sliding window of 0.5 s (128 data points) having an overlap rate of 50%; this
segmentation ensured that there was no lack of valuable information because of the tempo-
ral correlation of the data points. Next, we applied the six variants of entropy measures
to extract useful features from the preprocessed EEG data for classifying the emotional
states. Entropy is a measure of uncertainty. The level of disturbance in biomedical signals,
including EEG, can be estimated by employing the system’s entropy. A higher entropy
implies more significant uncertainty and a more chaotic approach. Entropy is given as
follows:

Entropy = x(n)
∫ max(x)

min(x)
Px log

(
1

Px

)
dx, (1)

where Px is the probability density function of the signal x(n).

2.3.1. Permutation Entropy (PEE)

PEE [42] is a robust nonlinear statistical tool for time-series data, which determines
the order relationships between its values to measure quantitative complexity of a dynamic
system. Then, this tool extracts the probability distribution of a set of ordinal patterns. Some
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notable features of the method are non-parametric, robust, flexible, and computationally
efficient.

2.3.2. Singular Value Decomposition Entropy (SVE)

SVE [43] symbolizes the numerous eigenvectors required for a sufficient description
of the time-series data. SVE is a powerful tool to measure the signal uncertainty, and it has
a vast and vital application in signal processing.

2.3.3. Approximate Entropy (APE)

APE [44] is a technique used to quantify the volume of consistency and the unpre-
dictability of changes across the time-series signals. It was first introduced as a variant of
the Kolmogorov–Sinai entropy by Steve M. Pincus in 1991 to investigate medical signals,
such as heart rate and EEG. Then, it was widely implemented in multiple diverse fields,
including economics, physiology, and climate sciences.

2.3.4. Sample Entropy (SAE)

SAE [45] is an improvement over APE; it eliminates the existing limitations of APE.
Richman and Moorman proposed assessing the complexity of the physiological time-series
signals with data length independence and achieved relatively trouble-free implementation.

2.3.5. Spectral Entropy (SPE)

SPE [46] is a measure of the signal irregularities in Shannon entropy. Most physiolog-
ical signals, including EEG signals, are nonlinear; therefore, SPE as a nonlinear method
is ideal for analyzing neural signals. It employs spectral analysis methods, such as the
Fourier transform and Welch periodogram, to transform signals from the time domain to
the frequency domain. Then, the SPE method implements the Shannon entropy concept to
distribute the spectral power.

2.3.6. Continuous Wavelet Transform Entropy (CWE)

Wavelet transform (WT) [47] is considered the most accurate approach for time-
frequency analysis to overcome the constraints of short-time Fourier transform in window
size selection. The WT overcomes the drawbacks by decomposing the signal in both the
time and frequency domains for multiple resolutions. It applies a modulated window
moved along with the signal at various scales. In this study, we adopted a continuous WT
using Morlet for EEG signal analysis and obtained the probability distributions of each of
the individual wavelet energies and the total wavelet energy. Then, these distributions are
used to characterize the Shannon entropy.

2.4. Electrode Selection

EEG signals were collected from multiple electrodes attached to the various measure-
ment positions on the scalp. However, not all the obtained data from the measurement
positions provided critical and necessary information; in fact, the data collected depended
on the purpose of the particular study. Various studies focus on the issue and determine the
optimal electrode locations for emotion recognition. Sofien Gannouni et al. [48] described a
zero-time windowing-based proper electrode selection method to identify emotional states.
We used ANOVA to select electrode locations with crucial content for emotion classification.
ANOVA was developed by Sir Ronald A. Fisher (1925) [23]; it is a statistical technique
to determine whether there are any statistically significant differences between the mean
values of three or more independent groups. However, one drawback of using ANOVA
was that it could not detect the specific difference between each pair of groups [49]. To
obtain details about the differences between any two groups, we need to append Tukey’s
HSD test [24], known as the mathematical test, for obtaining mean values significantly
distinct from each other. This study employs ANOVA and Tukey’s HSD test as an elec-
trode selection method for each feature type and each measurement location to determine
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whether there is a significant difference in emotion classification between each pair of
emotional states (Positive–Negative, Negative–Neutral, and Neutral–Positive). Then, a
decision is made to select or reject the measurement position. This method helps lessens
the computational complexity of the models, which boosts the system’s speed.

2.5. Dimensionality Reduction

Data with high dimensionality introduces computational complexity into the classifi-
cation process and yields unexpectedly low results. For real-world applications, dimension-
ality reduction aims to convert data from a high-dimensional space into a low-dimensional
space to increase the classifier’s speed and stability. An advantage of dimensionality reduc-
tion is to make data visualization more apparent using a two- or three-dimensional space;
this visualization becomes a complex challenge when a large number of dimensions are
involved. In this study, we compare three popular approaches: PCA, t-SNE, and UMAP.

PCA [50] is considered a statistical technique that enables the extraction of informa-
tion content from an extensive original dataset into an uncorrelated variable called the
principal component. PCA applies a linear transformation to arrange the components with
the highest possible variance generated from the input data. PCA reduces the dataset’s
dimension and identifies the artifactual components from the EEG signals to eliminate the
unwanted signals.

Additionally, t-SNE [51] is a nonlinear technique for dimensionality reduction; it is
a helpful tool for the visualization of high-dimensional datasets. It was developed in
2008 by Laurens van der Maatens and Geoffrey Hinton; t-SNE calculates the similarities
between the pairs of instances in high-dimensional space and low-dimensional space. PCA
is employed for maximizing the variance with large pairwise distances, whereas the t-SNE
would only consider small pairwise distances or local similarities.

UMAP [52] is an algorithm based on manifold learning techniques; this algorithm
depends on the ideas obtained from topological data analysis for data reduction. In
application and research, UMAP is superior to t-SNE because of its faster processing speed.
Furthermore, UMAP tends to work on data-dimensionality reduction, which is suitable for
machine learning preprocessing, whereas t-SNE is mainly suitable for data visualization.

2.6. Classification
2.6.1. Support Vector Machine (SVM)

SVM is a simple classifier [53] that finds an optimal hyperplane between the data of
two classes so that the distance between the closest data points to that hyperplane is the
greatest. The nearest points are called the support vectors, whereas the distance that needs
to be maximized is called the margin. The SVM is a binary classifier that can be extended
into a multi-class classifier by using the one-to-rest approach. This approach determines a
hyperplane that separates a class from all other classes at once. This study employs the
radial basis function, which is most commonly used as a kernel in SVM.

2.6.2. Multi-Layer Perceptron (MLP)

MLP is a feed-forward artificial neural network (ANN) pattern [54] known as a
“vanilla” neural network because it possesses only one hidden layer. We propose an MLP
model with three layers: one input layer, one hidden layer, and one output layer (see
Figure 5a). The size of the input layer is that of each extracted feature. The hidden layer
consists of 128 neurons followed by the rectified linear activation unit (ReLU), which
executes a ReLU nonlinear function. Finally, the SoftMax function, which is a normalized
exponential function, is used to normalize a network’s output to a probability distribution
over the predicted output classes.
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2.6.3. 1-D Convolutional Neural Neworks (1D-CNN)

Convolutional neural network (CNN) [55] is a great ANN technique applied in var-
ious fields ranging from image classification to bio-signal processing. CNN models are
widely used when working with images in which the input of the model is two- or three-
dimensional data that represent the pixels and channels of the pictures. 1D-CNN, as
a variant of CNN, is also often applied to one-dimensional data sequences suitable for
biomedical signals, such as EEG, electrocardiogram, and heart rate. We propose a 1-D CNN
model with a 1D-Convolution (1D-CONV) layer with 256 neurons and two hidden layers
with 128 neurons each (see Figure 5b). The 1D-CONV filter is considered the most critical
part of 1D-CNN because it uses kernels to convolve the input data. In MLP and 1D-CNN,
we initiated the supervised learning rate as 0.001, the optimizer as the Adam, and the loss
function as the categorical cross-entropy.

3. Results

Figure 6 shows the workflow diagram of our proposed system. The methods and
algorithms used in this study are described concisely in each block.

3.1. EEG Features

First, we applied the band-pass filter (1–50 Hz) for the raw EEG signals. Then, before
using the six entropy measures for feature extraction, we split the EEG signals into segments
of 0.5 s with an overlapping rate of 50%. The entropy measures used in this study include
PEE, SVE, APE, SAE, SPE, and CWE. The assessed values after feature extraction are
normalized from 0 to 1 to promote computation in the following steps.

Figure 7 presents the mean and the standard deviation values of the different entropy
measures for three emotional states. From Figure 7, we can see that the effect of each
feature type is distinct in both magnitude and the distribution of values. PEE and CWE
have the highest mean values, and their standard values are the least. In contrast, SAE has
a minor mean, and its standard deviation is the highest. Nevertheless, by depending only
on their mean and standard deviation values, it is difficult to determine which of these six
features are suitable for emotion recognition.

In this study, each participant watched a total of 30 videos for eliciting their emotions,
10 videos for each type of emotional state corresponding to 3 labels (Negative, Neutral,
and Positive). Each video lasts 50 s. Data segmentation is done with a 0.5 s window and
50% overlap. Therefore, in the case of 30 videos per participant, we have 30 (videos) ∗ 8
(channels) ∗ [50 s (each video) ∗ 2 (0.5 s window) ∗ 2 (50% overlap) − 1] = 47,760 segments
utilized for feature extraction. After feature extraction, 8 (channels) ∗ 5970 (features) are
used as the dataset for building models. We apply 5-fold cross-validation for training,
validation, and evaluation of the models in the subject-dependent case. Additionally, in
the subject-independent case, we employ leave-one (subject)-out cross-validation, which
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handles a subject’s sample data as a test set for evaluating the model after it has been
trained and validated on the data sample of the remaining subjects.
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3.2. EEG Electrode Selection and Rejection

Not all the EEG signals obtained from the electrode positions on the head provide the
information necessary for emotion classification. Electrode selection not only eliminates
irrelevant noise, but also speeds up the computation of classifiers. Some previous studies
have focused on identifying the optimal electrode placement in emotion recognition. In this
study, we used ANOVA and Tukey’s HSD test for electrode selection. Figure 8 describes
the distribution of the data points of three emotional states over each electrode. It is
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not complicated to determine the electrode that provides helpful information about the
significant differences between the three emotional states. Table 1 lists the p-values of the
various pairs of emotional states on all the eight channels and shows which position needs
to be chosen or removed. For each electrode to be selected, no pair of emotional states
should have a p-value greater than 0.05. For example, for electrode 1 (placed on the AF3
location), the p-value of the negative–neutral and neutral–positive groups is equal to 0.001
(p < 0.05). However, the p-value of the negative–positive couple was 0.8130 (p > 0.05),
which implied that there was no significant difference between these two groups; therefore,
we removed the AF3 location.
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Table 1. EEG electrode selection for SAE over Subject 2.

Electrode

p-Value
(ANOVA and Tukey’s HSD Test) Decision

(p ≤ 0.05)
neg-neu neg-pos neu-pos

1 0.001 0.8130 0.001 reject

2 0.001 0.001 0.001 adopt

3 0.5900 0.0365 0.2916 reject

4 0.001 0.001 0.001 adopt

5 0.1053 0.001 0.001 reject

6 0.001 0.001 0.001 adopt

7 0.0029 0.001 0.8367 reject

8 0.0225 0.001 0.001 adopt
Note that: 1-AF3, 2-AF4, 3-FT7, 4-FT8, 5-T7, 6-T8, 7-TP7, 8-TP8.

Figure 9 shows notable variations in the mean and standard deviation values of
the data before and after removing the unnecessary electrodes. The average values of
the negative and neutral groups increase simultaneously; however, the average value in
the positive data group shows a decrease. We performed electrode selection on all the
six features across the eight subjects (see Table 2). The outcomes show that the selected
electrodes depended on the types of features, and the outcomes varied from subject to
subject. Figure 10 shows the rate of selection of electrodes using a topographical plot. The
dark position shows the areas where more electrodes are preferred. Clearly, the T8 in the
temporal lobe has been chosen most frequently, which implies that this position would
have more helpful information than other positions for classifying the emotional states.
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Table 2. EEG electrode selection for six entropy measures across eight subjects.

Subject
Selected Electrodes

PEE SVE APE SAE SPE CWE

1 1, 3, 4, 5, 6, 7, 8 6, 7 2, 4, 5, 6, 8 4, 5, 6, 7, 8 1, 2, 3, 6, 7 1, 2, 6, 7

2 2, 5 1, 3, 4, 5, 8 2, 4, 5, 8 2, 4, 6, 8 2, 4, 5, 6, 8 1, 2, 4, 5, 6

3 4, 8 All electrodes 3, 4, 6 1, 2, 3, 4, 6, 7, 8 1, 2, 3, 4, 7, 8 2, 4, 6, 7

4 6, 7 1, 6 4, 6 1, 7 1, 3, 6 1, 2, 6

5 1, 3, 4, 5, 6, 7, 8 2, 4, 6 2, 4, 6, 7 2, 3, 4, 6, 7 1, 2, 5 6, 8

6 5, 6, 7 1, 2, 4, 5, 6, 7, 8 4, 6 1, 2, 4, 5, 6, 7, 8 1, 2, 5, 6, 7, 8 1, 3, 6, 8

7 4, 8 1, 2, 4, 5, 6, 7, 8 7, 8 3, 4, 7, 8 7, 8 1, 4, 6

8 2, 5, 6 1, 3, 7 1, 7 1, 2, 7, 8 1, 7 1, 2, 5

Note that: 1-AF3, 2-AF4, 3-FT7, 4-FT8, 5-T7, 6-T8, 7-TP7, 8-TP8.
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3.3. Classification Results

The features extracted after using electrode selection would be accepted as the input
to the SVM classifier. Figure 11b shows that the accuracy result obtained by using SAE
from Subject 2 is 87.79%; it is described in detail with the confusion matrix. Accuracy,
sensitivity, and specificity are calculated as follows based on the confusion matrix:

Accuracy =
TP + TN

TP + TN + FP + FN
, (2)

Sensitivity =
TP

TP + FN
, (3)

Specificity =
TN

TN + TP
, (4)

where TP, TN, FP, and FN represent the true positive, true negative, false positive, and false
negative, respectively.
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To visualize the performance of the multi-class classification problem, we also used
the area under the curve (AUC)–receiver operating characteristics curve [56], as a graphical
plot using the true positive rate against the false positive rate at various threshold settings.
When the AUC increases, the model will have greater capacity to distinguish between
classes. In this case, the AUC with SVM results for the three categories negative, neutral,
and positive are 0.93, 0.90, and 0.92, respectively, as shown in Figure 11a. Table 3 lists the
classification results using SVM for all the six features; the highest average accuracy using
SAE across eight subjects is 79.36%.
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Table 3. Comparison of classification accuracy (%) between SVM, MLP, 1D-CNN with six features across eight subjects.

Subject

EEG Features

PEE SVE APE

SVM
(%)

MLP
(%)

1D-CNN
(%)

SVM
(%)

MLP
(%)

1D-CNN
(%)

SVM
(%)

MLP
(%)

1D-CNN
(%)

1 83.33 70.22 79.64 73.14 74.14 81.97 69.17 78.33 75.88

2 85.93 76.54 83.46 81.87 70.28 77.78 74.92 72.59 75.39

3 69.45 67.92 69.44 87.52 89.72 90.35 65.89 65.83 66.58

4 68.57 70.04 70.65 72.99 71.03 82.22 67.67 68.22 68.56

5 75.92 75.65 80.98 81.58 78.17 84.05 74.27 75.56 76.25

6 70.54 71.39 71.27 81.25 79.72 84.62 66.95 67.84 68.01

7 71.75 72.45 71.55 79.49 79.04 83.70 63.47 65.48 69.16

8 68.98 71.13 70.42 72.67 79.80 84.44 68.50 69.57 68.09

Mean 74.31 71.92 74.68 78.81 77.74 83.64 68.85 70.43 70.99

Std 6.73 2.71 5.30 5.04 5.78 3.28 3.69 4.35 3.82

Subject

EEG Features

SAE SPE CWE

SVM
(%)

MLP
(%)

1D-CNN
(%)

SVM
(%)

MLP
(%)

1D-CNN
(%)

SVM
(%)

MLP
(%)

1D-CNN
(%)

1 70.89 80.95 86.75 78.38 75.45 86.12 68.72 71.63 72.18

2 87.79 92.90 93.89 87.50 84.72 84.90 73.29 72.61 72.37

3 83.70 81.28 86.26 79.97 84.98 80.56 66.92 65.95 66.88

4 73.61 81.83 83.06 79.82 82.57 81.50 64.74 65.52 66.76

5 84.06 80.81 84.75 73.10 77.17 76.26 75.23 75.63 76.55

6 79.33 79.76 85.94 72.59 74.44 77.59 68.56 67.93 68.25

7 78.19 75.65 82.17 74.57 77.22 76.99 65.62 66.84 67.87

8 77.32 78.97 83.68 75.93 80.05 80.78 69.54 70.97 72.91

Mean 79.36 81.52 85.81 77.73 79.58 80.59 69.08 69.64 70.47

Std 5.27 4.67 3.41 4.56 3.87 3.37 3.39 3.38 3.31

Note: SVM was used for features with electrode selection whereas MLP and 1D-CNN were used for features without electrode selection.

This study also employs two additional state-of-the-art classifiers, MLP and 1D-CNN,
for EEG-based emotion recognition. To evaluate the performances of the MLP and 1D-CNN
models, we used the extracted features without using electrode selection as the input data
to keep all the information from all electrodes. As discussed earlier, electrode selection
is applied to hold relevant information and reject unnecessary information for emotion
recognition. Thus, it makes model computation less complicated and faster, suitable
for traditional machine learning models like SVM. However, from Table 1, we take the
rejected electrodes into deep consideration. Take electrode 1 as an example; it is dropped
because there is no notable difference between the negative–positive pair (p = 0.8130 > 0.05);
however, the two remaining pairs still meet the condition p < 0.05. Hence, if removing
these electrodes, there is a high probability that critical information for classification will
disappear, causing the system’s accuracy to be reduced. Moreover, neural networks are
well-known for the advantages of fast computation and the ability to work competently
in extracting valuable features from the input data. Therefore, in the case of MLP and
1D-CNN, we take all the features obtained as input to these models to ensure that no vital
information is lost, which increases the system’s accuracy. Using 5-fold cross-validation,
the proposed models were trained and evaluated in the study. We split the dataset into five
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subsets of which one subset was used as the test set; the other four subsets were adopted
for training the model. This process was iterated over each subset. The final result was
the average of the performance accuracy on each subset. Table 3 shows that the highest
average results using the three proposed models SVM, MLP, and 1-CNN over eight subjects
are 79.36%, 81.52%, and 85.81%, respectively; all the models used SAE as the feature input.
Figure 11c shows the loss curve and confusion matrix of 1D-CNN’s performance using
SAE on Subject 2; this model achieves the highest accuracy of 93.89%.

3.4. Subject-Dependent and Subject-Independent

To make our system more practical for real-world applications, we trained the pro-
posed models across all subjects with the data used for the subject-independent strategy.
For the subject-dependent case, we developed a new model consisting of the training
and testing data from each subject’s dataset; high accuracy was achieved by this method,
but it could not be generalized. For the subject-independent strategy, we used a subject’s
data sample for testing the proposed models, and the datasets of the remaining subjects
were used for training. Figure 12 shows a comparison of the results obtained for subject-
dependent and subject-independent cases using SVM, MLP, and 1D-CNN with SAE. As
mentioned, the average accuracies achieved in the subject-independent case using SVM,
MLP, and 1D-CNN with SAE were 72.65%, 75.14%, and 78.52%, respectively; these values
are lower than the average accuracies obtained for the subject-dependent case (79.36%,
81.52%, and 85.81%, respectively). Even with this comparatively high level of accuracy,
the subject-independent models demonstrated that our proposed system for EEG-based
emotion recognition is practically feasible.
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Figure 12. Comparison of the classification accuracies of the three classifiers for three emotions with
both subject-dependent and subject-independent cases for eight subjects using SAE.

3.5. Dimensionality Reduction and Data Visualization

Speed is one of the most critical factors for assessing whether or not a system is feasible
in real-world applications. Dimensionality reduction helps reduce the computational
complexity for classifiers and thereby improves their stability. In addition, dimensionality
reduction is a helpful tool for data visualization, which becomes challenging with multi-
dimensional data. In this study, a comparative analysis is made of the three approaches
PCA, t-SNE, and UMAP to reduce the number of EEG data dimensions. We evaluated
the processing speed of each method. Figure 13a shows the runtime values of the three
approaches when they are applied to the resampled dataset using SAE on Subject 2.
Dimensionality reduction was performed three times for each subject using multiple
dataset sizes to ensure that the evaluation was objective. PCA is always the fastest option
for all different dataset sizes. When working on small datasets, t-SNE is more robust
than UMAP. However, as the dataset size gradually increases, UMAP outperforms t-SNE.
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Figure 13b–d show the results obtained by applying the three methods. Based on the
data visualization, it is clear that data distribution with UMAP is the most useful as
compared with the other two classification methods. However, to precisely evaluate their
performances in classifying EEG-based emotion states, we implemented these approaches
for the datasets of the six types of features on eight subjects with SVM as a simple classifier.
Figure 14 shows the obtained results. Although the PCA speed is the highest, it has the
least accuracy for classification. UMAP has demonstrated its strength in its high speed
and accuracy on all six types of features across eight subjects; it has the highest average
accuracy of 76.78% with SAE. Therefore, UMAP will be suitable for real-world emotion
recognition applications.
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(b) Data visualization after using PCA with n_components = 2, svd_solver = auto. (c) Data visual-
ization after using t-SNE with n_components = 2, metric = ‘Euclidean’. (d) Data visualization after
using UMAP with n_components = 2, metric = ‘Euclidean’. Data were obtained by using SAE on
Subject 2.
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4. Conclusions

This study proposed an EEG-based affective computing method for emotion recog-
nition with three categories of emotions (negative, neutral, and positive). We collected
8-channel EEG signals using our wireless and wearable custom-designed device. A total
of 30 trials were conducted on eight participants while they watched emotive videos. In
this study, six entropy measures were employed for feature extraction, and three standard
classifiers (SVM, MLP, and 1D-CNN) were implemented for emotion classification. After
feature extraction, we classified the emotion states by electrode selection to retain all the
important information and remove all the unnecessary information. The results proved
that T8 in the temporal lobe contained much valuable content for emotion recognition.

We completed the classification process with subject-dependent and subject-independent
strategies using six features and three classifiers across eight subjects. The accuracy values of
our proposed system for detecting emotion states as short as 0.5 s with subject-dependent and
subject-independent strategies were 85.81% and 78.52%, respectively; we used a combination
of SAE and 1D-CNN.

To meet the requirements of high-speed processing and stable accuracy during prac-
tical applications of a system, we compared three approaches (PCA, t-SNE, and UMAP)
for dimensionality reduction and applied SVM as a classifier. The achieved results demon-
strated our proposed system’s feasibility in real-life applications; the highest accuracy of
76.78% was obtained with UMAP.

Besides, our proposed system has some limitations that need to be considered in the
following steps. First, although the number of experiments (30 trials) on each subject is
moderately enough to create a complete dataset, the number of participants is still limited.
Additionally, our research still has not focused on the impact of gender and age on the
changes of EEG signals in emotion recognition. Hence, we will conduct experiments on
more subjects and assess other aspects such as age and gender. Another issue in this work is
that in the signal preprocessing, we currently apply a simplistic bandpass filter to eliminate
unwanted signals out of the frequency range of 1 to 50 Hz. However, filtering like this has
constraints in not handling different types of artifacts associated with the participant well,
such as electromyography (EMG) caused muscle movements. Therefore, in the following
study, we will implement more advanced and efficient techniques in signal processing
such as blind source separation (BSS) or independent component analysis (ICA) to reduce
eye movements, blinks, muscle, heart, and line noise. Furthermore, our future work will
concentrate on building and deploying robust machine learning models on our embedded
device and then connect to IoT-connected healthcare platforms; this makes our system
straightforward and convenient to achieve in real-world applications.
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