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Abstract: (1) Background: In this research, we aimed to investigate a computational model of repetitive
reaction time (RT) and virtual reaction time (VRT) testing. (2) Methods: The study involved 180 subjects
(50 men, 130 women, mean age 31.61± 13.56 years). The data were statistically analyzed through the
coefficient of variation (CV) and the Poincaré plot indicators. (3) Results: We obtained an excellent
level of reliability for both sessions of testing and we put into evidence a relationship of association
of the RT and VRT with the subjects’ age, which was more pregnant for RT (p < 0.05). For both RT
and VRT data series, we determined a consistent closer association between CV and the Poincaré plot
descriptors SD1, SD2 (SD—standard deviation), and the area of the fitting ellipse (AFE) (p < 0.01). We
reported an underestimation of the time interval of 2 s during the VRT session of testing, with an
average value of CV of VRT, the equivalent of the Weber fraction, of 15.21± 8.82%. (4) Conclusions: The
present study provides novel evidence that linear and nonlinear analysis of RT and VRT variability
during serial testing bring complementary insights to the understanding of complex neurocognitive
processes implied in the task execution.

Keywords: reaction time; time estimation; Weber fraction; temporal variability; nonlinear analysis;
Poincaré plot

1. Introduction

As a complex neurocognitive function, time estimation is fundamental for human
beings because it conditions the adaptative behavior in everyday life settings [1]. The
process of time estimation has been intensively studied in animals and humans, but the
results of this research are often controversial regarding the precision of different tasks
and are interpreted in terms of multiple neuropsychological models, depending on the
subject’s age, gender, and interval duration [2,3], type of sensorial stimuli applied [4] or
contextual factors during testing [5]. Most studies put into evidence the existence of an
internal clock, according to the Scalar Timing Theory, which states that the behavior of
an animal is a function of the time since a stimulus began [6–8]. On the subject of the
short time estimation, within a range of seconds, this process involves complex cognitive
functions, which depend on multiple brain regions, a special role assigned to the short-term
and working memory [9].

The average timing precision and variability measured by the coefficient of variation
(CV) are parameters used in time estimation [10], in accordance with the Scalar Timing
Theory [6]. CV has been also used to estimate the dynamics of the Weber fraction (WF) in
time estimation tasks because the standard deviation of interval estimation is proportional
to the absolute time interval, according to Weber’s law or the hypothesis of a scalar property
for time [11]. However, some authors consider the WF as inconstant in multiple interval
testing or during special conditions of testing (when very short durations, <100 ms, were
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timed or when timing tasks varied in difficulty) [12,13]. Additionally, a violation of the
scalar property between 1 and 1.9 s was put into evidence, with an improvement of accuracy
in tests with multiple intervals required [13].

The link between time estimation and reaction time (RT) has been demonstrated over
time through numerous experimental research [14]. Thus, intricate neuropsychological
mechanisms surround these physiological processes, humans being susceptible to neutrally
and temporal predictability in response times [15]. A recent generous research perspective
was provided by the application of mathematical models for interpreting the variability of
RT in different influential test conditions [16]. A general conclusion of such a study, based
on the processing of cortical biosignals, consists of the fact that variations in RT, as a specific
characteristic of human behavior, are due to temporal variations of neural activity [17]. In
a recent study, the approach of which we want to continue with, we demonstrated the
usefulness of applying the Poincaré plot method for the study of nonlinear dynamics of RT
during a repetitive computerized visual test [18].

The Poincaré plot is a statistical technique used to analyze, from a geometrical point of
view, the correlation between two consecutive data points in a time-series, with large appli-
cations in the study of fluctuations in physiological rhythms of biological systems [19,20].
The resulting plot is an ellipse that puts into evidence the nonlinear dynamics of the inves-
tigated variable, based on four descriptors: SD1, SD2, the area of the fitting ellipse (AFE),
and the fraction between SD1 and SD2 (SD1/SD2). Practically, SD1 represents the small
axis of the geometrical elliptical representation of a time series of data and indicates their
variation on a short time scale, while SD2 is the large axis of the ellipse and shows the data
variation on a long-term scale [19–21]. The SD1/SD2 parameter, as the relative balance
between SD1 and SD2, reflects the clarity and linearity of the scatter pattern, with regards
to the ratio between short- and long-term variabilities of the time series of data, associated
with the degree of the system’s physiological disorder depth [22,23]. The resulted ellipse is
the geometrical plot of a system with internal fluctuations, and the decrease of AFE reflects
the concentration of data and a greater stability of the system. In reverse, a larger AFE
indicates a system irregularity or poor control of the physiological variable [24].

In this paper, we wanted to complete the experimental research towards an interval
timing approach and the investigation of computational models of time estimation, based
on the Poincaré plot method, which proved to be feasible for the study of RT variability [18].
We also wanted to determine the relationship between the linear conventional measure of
RT and time estimation variability during serial testing (CV) and the nonlinear indexes
of the Poincaré plot (SD1, SD2, SD1/SD2, and AFE), taking into account some categorical
variables of the subjects, such as age, sex, health status, and anxiety level.

2. Materials and Methods
2.1. Study Design

We conducted a cross-sectional research on a sample of 180 subjects (50 men and
130 women, mean age 31.61± 13.56 years, minimum age 18 years, maximum age 80 years),
selected from the Romanian population, based on voluntary acceptance to perform a
computerized test. Each subject completed an online informed consent form for participants
before the test, taking into account the ethical principles for research in human beings. The
research was approved by the Ethics Committee of the Research Center for Promoting
Excellence in Professional Training, University of Pitesti (reference number 1341/ 30 August
2021). Initially, a group of 75 students from the University of Pitesti was trained to apply
the test. They each selected 3–5 acquaintances (family members, friends), who were tested
according to the proposed procedure. We tried to cover a range as wide as possible in terms
of the age of the subjects enrolled in the study. All participants had normal visual accuracy
(with or without optical correction) and they did not report antecedents of important
diseases (chronic or acute neuromotor pathology, somatosensory disorders, cognitive
illness, etc.).
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2.2. Data Acquisition

The study design was based on a web browser software program, developed for
serial RT and time estimation testing. Thus, data gathering was based on a web platform,
using the software PsyToolkit (https://www.psytoolkit.org/) (accessed on 4 November
2021) [25,26]. We used an online testing procedure for desktop computers or laptops, with
two successive sections: a survey and the experiment, accessed by each participant through
a specific link. The survey contained the informed consent form for participants and five
items with closed ended questions for age, sex, self-reported health (SRH), self-reported
anxiety (SRA), and laterality. The coded answers for each item were the following:

• Sex: male—1, female—2.
• Professional status: pupil/student—1, employee—2, unemployed—3, retired—4,

household—5.
• SRH: excellent—1, very good—2, good—3, satisfactory—4, poor—5.
• SRA: not at all anxious—1, slightly anxious—2, moderately anxious—3, very anxious—4,

extremely anxious—5.
• Laterality (hand used for writing): right—1, left—2.

The experiment consisted of two sessions of testing: one for RT (Figure 1) and another
for time estimation (called virtual reaction time—VRT) (Figure 2), each of them including a
training block (with five repetitions, designed for the subject to become familiar with the
test interface), followed by the test block itself (60 repeated tasks). The subject needs about
8–10 min to complete the test. For the first session (RT), the subject must press the space bar
key very quickly, using the dominant hand, when the color of a circle from red to green is
perceived on the screen. The time between two successive tasks was set to 2 s after pressing
the spacebar key, the maximum allowed response time being 3 s. The program displays on
the screen at the end of the first session the average value of the RT for 60 repetitive tasks.
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Figure 1. Schematic of the session 1 of the experiment—RT testing.

For the VRT test, each subject must imagine that the color of the circle will change
from red to green every 2 s. The subject must answer 60 times repeatedly, every estimated
2 s, by pressing the spacebar key. After pressing the spacebar key, for a fraction of a second,
the color of the circle changes from red to green. The red color then reappears and a new
interval starts, which must be estimated at 2 s. At the end of session 2, participants receive
immediate feedback expressed as the average value for the estimated time intervals. For
both sessions, the timing interval was set to 2 s to build up a stable reference memory of
the standard duration of the task.

To remove outliers in the data set, for the RT test, subjects with any answer lasting
more than 3 s were eliminated. Additionally, for the VRT test, we excluded from the analysis
the subjects with any estimated interval larger than 7 s. Only the subjects who answered

https://www.psytoolkit.org/
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correctly and completed the experiment and who did not show a lack of attention or gave
accidental responses were selected. To carry out the test, it was recommended to place
the subject in an environment without sound or other disturbances, which would offer
conditions of optimal concentration on the work task. Subjects were seated comfortably in
a chair behind a table, facing a computer screen.
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2.3. Statistical Analysis of Data

Data analysis was performed using the software IBM SPSS 20.0 (IBM Corp., Armonk,
NY, USA) [27]. Thus, we calculated the mean, the standard deviation (SD), and the coeffi-
cient of variation (CV) of data, and we applied the Shapiro–Wilk test for data distribution
and a test for reliability of the RT and VRT sessions of testing (the Cronbach’s alpha). We
then realized a correlational analysis of data, based on parametric (the Pearson’s corre-
lations) and non-parametric methods (Spearman’s rank correlation), followed by simple
linear regression analysis.

We also calculated for VTR the Relative Reproduction Error (RRE) as the difference
between the response (VRT) and the interval duration (2000 ms), normalized by the interval
duration (2000 ms):

RRE =
(VRT− 2000)

2000
× 100 (1)

This metric provides a measure of the degree of the estimation bias [11].
The statistical analysis was completed by applying the Poincaré plot method for the

series of data, by determining the indicators that are needed: SD1, SD2, SD1/SD2, and AFE,
according to the following formulas [21,22,28,29]:

SD1 =

√
2

2
∗ SD(xn − xn+1) (2)

SD2 =

√
2SD(xn)

2 − 1
2

SD(xn − xn+1)
2 (3)

AFE = π ∗ SD1 ∗ SD2 (4)

In these formulas, SD(xn−xn+1) is the SD of the differences xn−xn+1 from the string of
data, and, respectively, SD(xn) represents the SD of xn.

3. Results
3.1. Descriptive Statistics for the Study Group

The sampling bias was managed by using appropriate inclusion and exclusion criteria
for the selection of participants [30]. Additionally, the involvement of subjects in testing
tasks can be a possible source of bias response, caused by a variety of sequential effects
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observed in serial RT tasks [31], which can be managed by removing outliers [32]. In our
case, the recruitment of the subjects was based on their assumed availability to carry out
the testing procedure, and the recorded outliers determined the exclusion of the respective
subjects.

From the initial number of study subjects (234) who accessed the experiment, we
selected 180 valid participants (76.92%), according to the inclusion and exclusion criteria
mentioned above. For the final study group, no outliers or missing values were reported.
The main results of the data gathered are presented in Tables 1–3 as descriptive statistics
(mean and standard deviation).

Table 1. Descriptive parameters of the experimental group, based on the questionnaire answers
(n = 180).

Variable Age Years SRH SRA

Mean 31.61 2.32 1.77
SD 13.56 0.80 0.79

Abbreviations: SRH, self-reported health; SRA, self-reported anxiety; SD, standard deviation; n, group size.

Table 2. Descriptive parameters of the experimental group, based on the RT session of testing
(n = 180).

Variable RT
ms

CV
%

SD1
ms

SD2
ms

AFE
ms2 SD1/SD2

Mean 263.94 33.04 80.60 87.76 28,070.77 0.93
SD 69.17 15.91 42.90 47.59 36,014.82 0.16

Abbreviations: RT, reaction time; CV, coefficient of variation; SD, standard deviation; SD1, SD2, AFE, SD1/SD2,
Poincaré plot descriptors; n, group size.

Table 3. Descriptive parameters of the experimental group, based on the VRT session of testing
(n = 180).

Variable VRT
ms

CV
%

RRE
%

SD1
ms

SD2
ms

AFE
ms2 SD1/SD2

Mean 1540.80 15.21 −22.96 170.88 265.34 191,331.54 0.69
SD 592.63 8.82 29.63 109.59 189.00 305,745.98 0.24

Abbreviations: VRT, virtual reaction time; CV, coefficient of variation; RRE, Relative Reproduction Error; SD,
standard deviation; SD1, SD2, AFE, SD1/SD2, Poincaré plot descriptors; n, group size.

After checking the type of distribution of data by using the Shapiro–Wilk test, we
determined that the data was not normally distributed. Overall, for the experimental group,
the health status of the subjects (average score of SRH 2.32 ± 0.80) was between very good
and good, while the anxiety level (average score of SRA 1.77 ± 0.79) showed no anxiety to
slight anxiety.

3.2. Reliability of the RT and VRT Serial Tests

The internal consistency for the set of data obtained through each session of testing
was excellent (Cronbach’s Alpha 0.97 for RT and 0.99 for VRT).

3.3. Correlation and Regression Analysis of Data

To measure the strength and direction of association existing between the recorded
variables, we applied a parametric correlation analysis (Pearson’s correlation) for the ratio
scale variables and a non-parametric correlation analysis (Spearman’s rank correlation) for
ordinal variables (Table 4).
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Table 4. Correlation output and level of statistical significance p (n = 180).

Variable Age Sex SRH SRA RT CV RT SD1 RT SD2 RT AFE RT SD1/SD2
RT VRT CV VRT RRE SD1 VRT SD2 VRT AFE VRT SD1/SD2

VRT

Age 1.00 b

Sex −0.12 a 1.00 a

SRH 0.15 a* 0.14 a 1.00 a

SRA −0.12 a 0.11 a 0.29 a* 1.00 a

RT 0.49 b* 0.13 a 0.12 a −0.04 a 1.00 b

CV RT −0.15 b* −0.05 a −0.06 a 0.14 a −0.24 b* 1.00 b

SD1 RT 0.10 b 0.03 a 0.00 a 0.14 a 0.32 b* 0.79 b* 1.00 b

SD2 RT 0.15 b* 0.03 a −0.03 a 0.10 a 0.46 b* 0.71 b* 0.92 b* 1.00 b

AFE RT 0.19 b* 0.03 a −0.01 a 0.12 a 0.51 b* 0.61 b* 0.92 b* 0.93 b* 1.00 b

SD1/SD2 RT −0.17 b* 0.06 a 0.02 a 0.16 a* −0.31 b* 0.24 b* 0.24 b* −0.10 b 0.02 b 1.00 b

VRT −0.21 b* −0.01 a 0.03 a 0.07 a −0.09 b 0.04 b −0.01 b −0.03 b −0.06 b 0.01 b 1.00 b

CV VRT −0.03 b −0.15 a* −0.04 a 0.03 a 0.17 b* 0.00 b 0.14 b 0.13 b 0.16 b* 0.06 b −0.12 b 1.00 b

RRE −0.21 b* −0.01 a 0.03 a 0.07 a −0.09 b 0.04 b −0.01 b −0.03 b −0.06 b 0.01 b 1.00 b −0.12 b 1.00 b

SD1 VRT −0.15 b* 0.11 a 0.04 a 0.06 a 0.12 b −0.01 b 0.10 b 0.10 b 0.09 b 0.04 b 0.57 b* 0.49 b* 0.57 b* 1.00 b

SD2 VRT −0.14 b 0.02 a −0.02 a 0.03 a 0.11 b 0.03 b 0.12 b 0.12 b 0.11 b 0.02 b 0.49 b* 0.75 b* 0.49 b* 0.76 b* 1.00 b

AFE VRT −0.14 b 0.05 a 0.02 a 0.06 a 0.11 b 0.03 b 0.11 b 0.14 b 0.11 b −0.03 b 0.46 b* 0.61 b* 0.46 b* 0.90 b* 0.87 b* 1.00 b

SD1/SD2 VRT 0.06 b 0.08 a 0.15 a* 0.06 a −0.01 b −0.08 b −0.07 b −0.09 −0.08 b 0.05 b 0.02 b −0.27 b* 0.02 b* 0.16 b* −0.35 b* −0.07 b 1.00 b

Abbreviations: SRH, self-reported health; SRA, self-reported anxiety; RT, reaction time; VRT, virtual reaction time; CV, coefficient of variation; RRE, relative reproduction error; SD1, SD2,
AFE, SD1/SD2, Poincaré plot descriptors; a, Spearman’s rank correlation coefficient; b, Pearson’s correlation coefficient; *, p < 0.05 was considered statistically significant (2-tailed);
n, group size.
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Given the statistically significant correlations and importance in terms of intensity
obtained, we ran a regression analysis for linear models of relevant variables. This type
of regression is suitable for data with normal and non-normal distributions if the group
of subjects is large [33]. Even if our data did not have a normal distribution, the residuals
(errors) of the regression line were approximately normally distributed. This assumption
was checked through two methods: the histograms (with a superimposed normal curve)
and the normal P-P Plots. The assumption of normally distributed errors is important to
linear regression [34], but in large sample sizes (e.g., where the number of observations per
variable is higher than 10), violations of this rule have only limited effect on results [35,36].

The regression models for age (independent variable) significantly predict the depen-
dent variables RT and VRT (Table 5).

The same procedure was performed for the relation between CV of RT (independent
variable) and the Poincaré plot descriptors (dependent variables) (Table 6), respectively,
between CV of VRT (independent variable) and the Poincaré plot descriptors (dependent
variables) (Table 7).

The results showed that the overall regressions were statistically significant. To
estimate the effect size for the regression models, we analyzed the adjusted R square values.
According to Cohen (1988), an R-square value ≤0.12 indicates a small effect size, between
0.13 to 0.25 indicates a medium effect size, and >0.26 indicates a large effect size [37]. Thus,
we put into evidence a large effect size for the effect of the CV of RT on SD1, SD2, and AFE
and for the effect of the CV of VRT on SD2 and AFE. Additionally, a medium effect size
was reported for the effect of age on RT and for the effect of the CV of VRT on SD1. On the
other hand, a small effect size was recorded for the effect of age on VRT, the effect of the
CV of RT on SD1/SD2, and the effect of the CV of VRT on SD1/SD2.
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Table 5. Model summary, ANOVA report and coefficients for simple linear regression analysis—age versus RT and VRT (n = 180).

Variable R R Square Adjusted R Square SE F p β0 SE p 95%LB 95%UB β1 SE p 95%LB 95%UB

RT 0.49 0.24 0.23 60.65 54.84 0.001 185.67 11.49 0.001 162.99 208.36 2.48 0.33 0.001 1.82 3.14
VRT 0.21 0.04 0.04 581.16 8.13 0.005 1829.62 110.15 0.001 1612.25 2046.98 −9.14 3.20 0.005 −15.46 −2.81

Abbreviations: RT, reaction time; VRT, virtual reaction time; R, Pearson’s coefficient of correlation; SE, standard error; F, test for overall significance for the linear model; p, level of
statistical significance; β0, the intercept coefficient; β1, the regression coefficient; 95%LB and 95%UB, lower bound and upper bound of the 95% confidence interval; n, group size.

Table 6. Model summary, ANOVA report and coefficients for simple linear regression analysis—CV of RT versus Poincaré plot descriptors (n = 180).

Variable R R Square Adjusted R Square SE F p β0 SE p 95%LB 95%UB β1 SE p 95%LB 95%UB

SD1 0.79 0.62 0.62 26.45 292.91 0.001 10.32 4.55 0.025 1.34 19.32 2.13 0.12 0.001 1.88 2.37
SD2 0.71 0.51 0.50 33.55 182.18 0.001 17.48 5.78 0.003 6.08 28.88 2.13 0.16 0.001 1.82 2.44
AFE 0.61 0.37 0.36 28,713.49 103.61 0.001 −17,295.44 4944.17 0.001 −27,052.2 −7538.71 1373.2 134.9 0.001 1106.97 1639.42

SD1/SD2 0.24 0.06 0.05 0.16 10.78 0.001 0.85 0.03 0.001 0.79 0.9 0.002 0.001 0.001 0.001 0.004

Abbreviations: RT, reaction time; R, Pearson’s coefficient of correlation; SE, standard error; F, test for overall significance for the linear model; p, level of statistical significance; β0, the
intercept coefficient; β1, the regression coefficient; 95%LB and 95%UB, lower bound and upper bound of the 95% confidence interval; SD1, SD2, AFE, SD1/SD2, Poincaré plot descriptors;
n, group size.

Table 7. Model summary, ANOVA report and coefficients for simple linear regression analysis—CV of VRT versus Poincaré plot descriptors (n = 180).

Variable R R Square Adjusted R Square SE F p β0 SE p 95%LB 95%UB β1 SE p 95%LB 95%UB

SD1 0.49 0.24 0.24 95.60 57.23 0.001 77.72 14.23 0.001 49.64 105.8 6.13 0.81 0.001 4.53 7.73
SD2 0.75 0.56 0.56 125.47 228.15 0.001 21.21 18.67 0.001 −15.64 58.06 16.06 1.06 0.001 13.96 18.15
AFE 0.61 0.37 0.36 243,925.9 103.23 0.001 −127,906 36,301.7 0.001 −199,543.1 −56,268.9 20,995 2066 0.001 16,917 25,072.7

SD1/SD2 0.27 0.07 0.07 0.23 14.08 0.001 0.8 0.03 0.001 0.74 0.87 −0.007 0.002 0.001 −0.011 −0.003

Abbreviations: VRT, virtual reaction time; R, Pearson’s coefficient of correlation; SE, standard error; F, test for overall significance for the linear model; p, level of statistical significance;
β0, the intercept coefficient; β1, the regression coefficient; 95%LB and 95%UB, lower bound and upper bound of the 95% confidence interval; SD1, SD2, AFE, SD1/SD2, Poincaré plot
descriptors; n, group size.
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4. Discussion
4.1. The Study Implications

The results indicated the excellent level of internal consistency of the RT and VRT
serial testing as an indicator of the analogy of the repetitive responses for each session
(Cronbach’s Alpha 0.991 for RT session and 0.99 for VRT session). We validated two
instruments that could be effectively used for determining consistent response patterns
in reaction time and time estimation research. Other authors have also shown that the
process of time estimation represents a paradigm in terms of the reliability of the required
tasks [38].

Our data gathered through the proposed experimental design offered the opportunity
for a comparative approach of linear and nonlinear analysis. In addition, we included a
new method for nonlinear dynamic analysis of parameters’ variability in the form of the
method of the Poincaré plot. We have arguments to believe that this method was used
for the first time in our research, fully demonstrating its usefulness. Thus, we performed
statistical data processing using two types of recorded variables: categorical variables
(age, sex, SRH, SRA) and psychometric variables (RT and VRT). For these data series, we
measured indicators of central tendency and dispersion (mean, standard deviation, CV,
and RRE), and we then applied a nonlinear method of analysis for RT and VRT variability,
based on Poincaré plot descriptors (SD1, SD2, SD1/SD2, and AFE).

The Poincaré method has wide applications in the study of physiological and biome-
chanical parameters and assessment of autonomous control for data series that involve
dependency between consecutive observations or not [28,39]. Thus, a recent study has
proved the utility of the method to quantify physical activity variability by using Fitbit
devices, with the following trackers: steps per day, distance per day, daily minutes of
being lightly active, fairly active, and very active [40]. The authors took into consideration
relatively independent parameters, analyzed in a series of data with nonlinear dynamics. In
our study, we consider that serial testing of RT and VRT implied identical repetitive tasks,
performed with the same resources and involving the same neurophysiological mecha-
nisms. Therefore, the variability of the tested parameters could be successfully analyzed
through the Poincaré indices, which reflect the oscillations of the functioning of a biological
system during repetitive work tasks, conditioned by the intervention of neurocognitive
processes. Our model of analysis was designed, starting from the applicability of the
Poincaré plot in the study of heart rate and respiration patterns [22,41].

The matrix of correlations between the recorded variables (Table 4) put into evidence
a medium correlation between the subjects’ age and RT (p < 0.05) and a small correlation
between the subjects’ age and VRT (p < 0.05). From the output of linear regression anal-
ysis, 24% of the total variation in the dependent variable RT could be explained by the
independent variable age (p < 0.001), while only 4% of the total variation in the dependent
variable VRT could be explained by the independent variable age (p < 0.001). However, in
interpreting these results, we must take into account the structure of the sample depending
on age, 69.4% of subjects being under 40 years. As there was no homogeneity of the age
groups in the studied sample, some precautions must be kept in generalizing the results in
relation to the mentioned variables. From the same perspective of the characteristics of the
subjects, selected according to the assumed criteria, mostly with excellent, very good, or
good health (95.6% of subjects) and without anxiety or slight anxiety (83.3% of subjects),
the analysis of the association between RT and VRT with SRH and SRA loses its relevance.

The relationship of RT with age has been much studied, starting from the idea that RT
implies a neurophysiological mechanism of cognitive processing of information, which is
obviously correlated with age [42]. It is well established that simple RT is influenced by
age because the average values of RT and its variability grows with age, this being proven
by comparisons between young people, adults, and older people [43]. Additionally, RT is
a useful biomarker of physiological or pathological brain aging, neurogenesis, and neu-
roplasticity, which can be largely influenced by the interaction between social and health
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determinants [44]. On the other hand, the process of estimating time is also correlated
with the aging process. In this case, the mechanisms involved are much more complex,
the explanations offered by various authors varying very widely. In essence, it is about
taking into account the existence of the internal clock, functionally correlated with the
biological age of the individual [8]. Another perspective is provided by the attentional
counter theory, which assumes that there is a cognitive timer that counts subjective time
events [45]. Consequently, there is an age-related decline in temporal cognition that can
explain complex neurophysiological processes associated with age-related dysfunctionali-
ties of time estimation and time synchronization tasks, referring to intervals in the range of
milliseconds to a few minutes [46,47].

Another aspect to note is the very small correlation between RT and VRT, respectively,
between RT and RRE (r =−0.09). This result is in agreement with previous classical findings
of other authors, according to whom there is apparent independence of simple RT and
measured time-keeping ability [48]. In addition, simple motor RT and estimation of time
intervals succession and duration are commonly recognized as two different methods
for estimating perceptual latency [49]. However, beyond these differences, RT is widely
used to understand how individuals perceive and discriminate different forms of time
representations [50].

It should be noted that the average VRT in the experimental group was
1540.80.21 ± 592.63 ms, with an average RRE of −22.96 ± 29.63%, which indicates a
global underestimation of the time interval of 2000 ms that was imposed for repetitive
reproduction. The tendency to distort time intervals during their estimation is real and
has been the subject of numerous research. Traditionally, Vierordt’s law considers that
people tend to distort the length of reproduced time intervals of previous tasks, with lower
estimates values in case of short intervals and higher estimates values in case of long
intervals [51]. However, this applies when the experimental task imposes time intervals
of minutes [51]. The phenomenon described above is known as the “central tendency”
in time estimation [52]. In addition, the results of such tests depend on a multitude of
factors, especially related to the test conditions [9]. Studies focused on time perception
have also revealed inconsistent data when applying techniques to modify the excitability of
the brain via transcranial stimulation. In these cases, the differences could be interpreted in
the context of various experimental designs [53]. Thus, Koch et al., 2007, put into evidence
an overestimation of the length of time intervals, while Jones et al., 2004, found temporal
under-reproduction for time intervals ranging between 500 and 2000 ms [54,55].

The implicit or explicit nature of timing tasks also influences the way that time intervals
are perceived. This difference refers to the fact that, during implicit time estimation requests,
the subjects are not informed about the duration of the stimulus, while in the case of explicit
variants, the subjects are required to respect a known duration of the stimulus [56]. The
results of a relevant research revealed an overestimation of the implicit timing tasks for
intervals of 500, 1000, and 2000 ms, while during explicit tasks, subjects tend to have larger
estimations for time intervals of 500 ms and shorter estimations in case of intervals of 1000
and 2000 ms [57]. In our case, the repetitive task of estimating 2000 ms intervals in the form
of a virtual reaction time was explicit. Therefore, in our case, the recorded underestimation
of the time required for repetitive reproduction is actually in line with the above logic.

Next, the analysis of data was oriented towards the study of RT and VRT variability
in terms of CV and Poincaré plot indexes. We started from the idea that the Poincaré plot
method represents a complementary alternative to conventional tests for the study of the
variability of data [58]. Taken together, the results of this study indicated that the mean CV
of RT (33.04 ± 15.91%) was higher than the mean CV of VRT (15.21 ± 8.82%) for the same
number of repetitive tasks (60).

The CV in time estimation research is considered to be equivalent to the WF, according
to Scalar Timing Theory, and it is correlated with the process of neural coding in time
perception [6,11]. Our mean value for the CV of VRT can be compared with the mean
values of the WF reported by various studies. Usually, time estimation studies refer to the
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quantitative assessment of the length of time intervals during visual or auditory conditions
of stimulation, a situation in which the WF is applied. Thus, for experiments of time
estimation with filled auditory intervals, WFs were observed in the range of 10–13% for
durations between 400 and 2000 ms [59]. In the case of time estimation research with visual
stimuli, the WF varies between 12% and 16% for durations ranging from 150 to 900 ms [60].
Additionally, other authors have highlighted an inconsistency of the scalar property of time
estimation when the time intervals are in the range of 1–2 s, especially in the conditions of
variation of the number of reproduced intervals (from 1 to 5 intervals). From the mentioned
research, an average value emerged of the WF of 10–12.5% for an estimated duration of
1900 ms [13]. The WF for one interval discrimination is smaller for a duration of 200 ms
than for 2 s. Consequently, the interval of 2 s appears as a landmark for the cognitive
processes of temporal information processing. [61,62]. In addition, the violation of Weber’s
law is more obvious in the case of visual experimental tasks when compared with auditory
ones [59].

In the present paper, each subject was asked to fractionate the flow of time into
intervals of 2 s, based on visual stimuli, which is to estimate repeatedly short time intervals
with a fixed duration of 2 s. Our results confirm the hypothesis of the scalar property
of temporal representation by reporting the average value of CV of VRT to the existing
nomograms. The considered reference data sets resulted from studies on the effects of
interval length on time estimation precision in tests with repetitive tasks [63,64]. The
repetitive and rhythmic character of such a testing design requires a flexible use of attentive
functions in subjective time perception to reduce the process of time distortions [64].

Returning to our nonlinear analysis, the average Poincaré plot parameters for RT
and VRT showed that session 1 of the experiment produced data with a lower dynamic
variability than session 2. Linear regression analysis of Poincaré plot descriptors against
conventional metric of RT and VRT variability (CV) indicated that SD1, SD2, and AFE had
a consistently closer relationship with the CV of RT and with the CV of VRT (p < 0.01). The
best regression models were for the relationship between the CV of RT and SD1, which
explains 62% of the variability in SD1 (Table 5), and for the relationship between the CV of
VRT and SD2, which explains 56% of the variability in SD2 (Table 6).

Other authors have also demonstrated the close relationship between CV and dynamic
indices of the Poincaré plot in the case of other physiological variables, such as blood
pressure [65,66] or blood sugar levels [58]. Since there is an interest for the simultaneous
consideration of the mentioned parameters, as a novelty element, we proposed the applica-
tion of this comparative analysis in the case of RT and VRT variability to display nonlinear
aspects of the time-interval sequential patterns.

The CV represents a standardization of the standard deviation that allows comparison
of variability estimates [67], and the Poincaré index reflects an estimation of the variability
of a time-series as temporal aspects to the non-linear analysis [19]. The linear regression
between CV and the Poincaré not only tested for relationships between variables but also
quantified their direction and strength through the obtained regression coefficients [68].
Traditionally, CV is used in the studies of the variability of RT [69] and time estimation,
when it is superimposable with WF values [11]. Our regression models have shown that we
can extend the analysis of RT and VRT variability from the classic CV determination model
by calculating the Poincaré indices. The new method, applicable to various physiological
time-series of data to reveal the adaptation of a system that deals with environmental,
physiological, and sometimes pathological factors, is also relevant in the case of the study
of RT and VRT variability [19].

In conclusion, both CV and Poincaré plot descriptors are useful for a complementary
assessment of RT and VRT variability because the initial linear analysis of the data series
can then be completed by a nonlinear analysis. The demonstrated relationship between
CV and Poincaré plot indexes in the case of VRT allows, in addition, the description of
the nonlinear dynamics of the time estimation process and to put into evidence hidden
correlation patterns for a time series of data. This fact gives additional arguments to the idea
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that the subjective representation of time is a nonlinear mapping, with stochastic character,
and is possibly determined by the nonlinear neural representation of time intervals [13,70].

4.2. Limitations of the Study

Our study had some limitations, especially in terms of subject selection. Thus, we did
not use a randomization methodology in assigning subjects, but we found subjects based
on their willingness to participate in the study. Additionally, there are some methodological
limitations regarding the data collecting, such as the relevance of subjects’ answers for the
items of the questionnaire and their involvement and performance in the execution of the
required tasks. We also point out that the experimental design was based on the go RT
procedure (the subject press a button when one visual stimulus appears) and not the stop
RT procedure. Thus, the stop RT task measures inhibition of a response that has already
been initiated [71] and has proven to be an important indicator of the cognitive control
processes that are involved in stopping tasks [72]. The go RT is the classical response to
the stimulus presented on the computer screen [73]. Some authors claim the existence of a
common mechanism for inhibiting and switching reactions in both types of tasks, but it
seems that experiments with frequent go RT tasks determine greater response bias [74].

4.3. Future Research Directions

Our results can lead to new lines of research in the area of RT and VRT. Thus, the
mathematical modelling of data using the Poincaré method, and the facile use of the Web
testing platform, offer opportunities to expand research on larger samples of subjects,
across different age groups. Additionally, such research can be performed in the case of
subjects with different morbidities or occupational contexts, taking into account composite
variables.

5. Conclusions

The present study provides novel evidence that linear and nonlinear analysis of RT
and VRT variability during serial testing bring complementary insights to the understand-
ing of complex neurocognitive processes implied in the task execution. The mathematical
modeling of data allowed to put into evidence a similar significant relationship of asso-
ciation of the RT and VRT with the age of the subjects, which was more pregnant for RT
(p < 0.05). Our obtained results also showed that the dynamic of RT and VRT determined a
consistent closer association between CV and the Poincaré plot descriptors SD1, SD2, and
AFE (p < 0.01). Finally, our findings suggested an underestimation of the time interval of
2 s that was imposed for repetitive reproduction for the VRT session of testing. The average
value of CV of VRT (15.21 ± 8.82%) during the repetitive short-time estimation test, with
visual stimuli, as an equivalent of the WF, confirms the hypothesis of the scalar property of
temporal representation.
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Abbreviations

CV the coefficient of variation
RT reaction time
VRT virtual reaction time
SD standard deviation
AFE area of the fitting ellipse
WB Weber fraction
SRH self-reported health
SRA self-reported anxiety
RRE Relative Reproduction Error
R Pearson’s coefficient of correlation
SE standard error
F test for overall significance for the linear model
p level of statistical significance
β0 the intercept coefficient
β1 the regression coefficient
95%LB lower bound of the 95% confidence interval
95%UB upper bound of the 95% confidence interval
n group size
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