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OBJECTIVE—Insulin-induced phosphatidylinositol 3-kinase
(PI3K)/Akt signaling and interleukin-6 (IL-6)-instigated JAK/
STAT3-signaling pathways in the liver inhibit the expression of
gluconeogenic genes to decrease hepatic glucose output. The
insulin receptor (IR) and JAK1 tyrosine kinases and STAT3 can
serve as direct substrates for the T-cell protein tyrosine phos-
phatase (TCPTP). Homozygous TCPTP-deficiency results in peri-
natal lethality prohibiting any informative assessment of
TCPTP’s role in glucose homeostasis. Here we have used
Ptpn2�/� mice to investigate TCPTP’s function in glucose
homeostasis.

RESEARCH DESIGN AND METHODS—We analyzed insulin
sensitivity and gluconeogenesis in chow versus high-fat–fed
(HFF) Ptpn2�/� and Ptpn2�/� mice and insulin and IL-6
signaling and gluconeogenic gene expression in Ptpn2�/� and
Ptpn2�/� hepatocytes.

RESULTS—HFF Ptpn2�/� mice exhibited lower fasted blood
glucose and decreased hepatic glucose output as determined in
hyperinsulinemic euglycemic clamps and by the decreased blood
glucose levels in pyruvate tolerance tests. The reduced hepatic
glucose output coincided with decreased expression of the
gluconeogenic genes G6pc and Pck1 and enhanced hepatic
STAT3 phosphorylation and PI3K/Akt signaling in the fasted
state. Insulin-induced IR-�–subunit Y1162/Y1163 phosphoryla-
tion and PI3K/Akt signaling and IL-6–induced STAT3 phosphor-
ylation were also enhanced in isolated Ptpn2�/� hepatocytes.
The increased insulin and IL-6 signaling resulted in enhanced
suppression of G6pc and Pck1 mRNA.

CONCLUSIONS—Liver TCPTP antagonises both insulin and
STAT3 signaling pathways to regulate gluconeogenic gene ex-
pression and hepatic glucose output. Diabetes 59:1906–1914,

2010

T
ype 2 diabetes has reached epidemic propor-
tions, afflicting roughly 170 million people world-
wide. Although the underlying genetic causes
and the associated pathologic symptoms are

heterogenous, a common feature is high blood glucose due
to peripheral insulin resistance. Circulating insulin re-
leased from �-cells in the pancreas serves to lower blood
glucose by triggering the translocation of the facilitative
GLUT4 to the plasma membrane in muscle and adipose
tissue (1). Insulin also acts in the liver to promote glycogen
synthesis and lipogenesis and to suppress hepatic glucose
production (HGP) by inhibiting gluconeogenesis and gly-
cogenolysis (1). Elevated HGP caused by defective sup-
pression of gluconeogenesis is one of the primary defects
contributing to fasting hyperglycemia in patients with type
2 diabetes (2–4).

Glucose-6-phosphatase (G6Pase; encoded by G6pc) and
phosphoenolpyruvate carboxykinase (PEPCK; encoded by
Pck1) are key enzymes involved in the rate-limiting steps
of gluconeogenesis (1). The overexpression of PEPCK or
G6Pase in rodent models results in hyperinsulinaemia,
insulin resistance, and glucose intolerance (5–7), and in at
least one instance, PEPCK overexpression has been
shown to promote weight gain (8). PEPCK catalyzes the
conversion of oxaloacetate to phosphoenolpyruvate,
whereas G6Pase catalyzes the dephosphorylation of glu-
cose 6-phosphate to free glucose, the final step of both
gluconeogenesis and glycogenolysis. The expression of
these key gluconeogenic enzymes is controlled by signal-
ing pathways that are activated by insulin, glucagon, and
IL-6. Although insulin and IL-6 suppress G6pc and Pck1
expression, glucagon stimulates their expression (1,9–11).
Insulin exerts its effects via the PI3K/Akt pathway. Insulin
binds to its cell surface receptor to stimulate intrinsic
protein tyrosine kinase (PTK) activity, resulting in the
phosphorylation of the insulin receptor (IR) and several IR
substrates (IRS), such as IRS-1. IRS-1 tyrosine phosphor-
ylation allows for the recruitment of PI3K, which catalyzes
the formation of lipid phosphatidylinositol-3,4,5-triphos-
phate (PIP3) at the plasma membrane (1). Increases in
PIP3 activate several Ser/Thr protein kinases, including
Akt, which phosphorylates and prevents the translocation
of the transcription factor Foxo1a to the nucleus, where it
otherwise functions in concert with peroxisome prolifera-
tor-activated receptor g coactivator 1a (PGC1a) to in-
crease the transcription of the gluconeogenic genes G6pc
and Pck1 (1,12,13). Several studies have also implicated
signal transducer and activator of transcription-3 (STAT3)
in the PGC1a-independent suppression of hepatic glu-
coneogenic gene expression (11,14). In particular, hypo-
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thalamic control of hepatic IL-6 generation and JAK
(Janus activated kinase)/STAT3 signaling has emerged
as an important mechanism for the regulation of HGP
(11,15–17).

Several protein tyrosine phosphatases (PTPs) have been
implicated in the modulation of glucose homeostasis in
vivo, including the prototypic protein tyrosine phospha-
tase 1B (PTP1B) (18–22). PTP1B dephosphorylates the IR
PTK in liver and muscle to regulate glucose homeostasis
(18,19,21,22). PTP1B also dephosphorylates and inacti-
vates the JAK2 PTK in the hypothalamus to antagonize
leptin-induced JAK2/STAT3 signaling and thus leptin’s
effects on body mass and peripheral insulin sensitivity
(20,23). PTP1B dephosphorylates the IR-� subunit Y1162/
Y1163 autophosphorylation site, which is necessary for IR
activation, as well as the Y972 site that contributes to IRS-1
recruitment (24). Muscle or liver-specific PTP1B knockout
mice exhibit increased insulin-induced IR Y1162/Y1163
phosphorylation and PI3K/Akt signaling and concomitant
improved glucose tolerance associated with enhanced
glucose uptake and decreased HGP respectively (21,22).

The T-cell protein tyrosine phosphatase (TCPTP) (en-
coded by Ptpn2) is a ubiquitous tyrosine-specific phospha-
tase (25). The catalytic domains of PTP1B and TCPTP
share a high degree of primary (72% identity) and tertiary
structure similarity and have similar active sites. In partic-
ular, both PTPs share a second “phosphotyrosine-binding
pocket” that allows for the selective recognition of
tandem tyrosyl phosphorylated substrates (26,27), such
as the IR (24,26,28) and JAK PTKs (JAK1–3 and TYK2)
(29). Despite their similarity, TCPTP and PTP1B exhibit a
high degree of substrate selectivity and cooperativity in a
cellular context. PTP1B can dephosphorylate JAK2, but
not JAK1/3, whereas TCPTP dephosphorylates JAK1/3, but
not JAK2 (23,29). Moreover, using cell-based approaches,
we previously identified the IR as a bona fide substrate for
TCPTP (24,28). We reported that PTP1B and TCPTP could
act in concert to regulate IR-� Y1162/Y1163 and Y972
phosphorylation and PI3K/Akt signaling (24). Additional
substrates for TCPTP include STAT family members such
as STAT-3 (25,30,31). Despite TCPTP’s potential to regu-
late IR and JAK/STAT3 signaling, it remains unclear
whether TCPTP regulates glucose homeostasis in vivo.
This is due to the morbidity and lethality that is associated
with a global deficiency in TCPTP (32); Ptpn2�/� mice
develop inflammatory disease and hematopoietic defects
and succumb at 2–3 weeks of age due to a bone marrow
stromal cell defect (32,33). In this study we have explored
the potential of TCPTP to regulate glucose homeostasis in
Ptpn2�/� mice that have a normal life expectancy and an
unaltered inflammatory response (32,33). Our studies
point toward TCPTP acting as an integral negative regula-
tor of gluconeogenesis and fasting blood glucose.

RESEARCH DESIGN AND METHODS

Antibodies and reagents. JAK PTK inhibitor CMP6 (2-tert-butyl-9-fluoro-3,6-
dihydro-7Hbenz[h]-imidaz[4,5-f]isoquin-oline-7-one) was from Calbiochem
(San Diego, CA), and dexamethasone and insulin from Sigma-Aldrich
(St Louis, MO). Rabbit �-phospho-Akt-S473, �-phospho-STAT3-Y705, �-Akt
and �-STAT3 were from Cell Signaling (Beverly, MA); �-actin (sc-1616) was
from Santa Cruz Biotechnology (Santa Cruz, CA); rabbit �-phospho-IR�-
Y1162/Y1163, �-phospho-IR�-Y972 and �-phospho-JAK1-Y1022/Y1023 from
Biosource International (Camarillo, CA); mouse �-IR� (Ab-5) and �-actin were
from Thermo Scientific (Fremont, CA), and mouse �-tubulin from Sigma-
Aldrich (St Louis, MO). The mouse IL-6 ELISA kit was from eBiosciences (San
Diego, CA), and recombinant human and murine IL-6 from PeproTech (Rocky
Hill, NJ).

Mice. Mice were maintained on a 12-h light-dark cycle with free access to food
and water. Age- and sex-matched mice were used for all experiments.
Ptpn2�/� mice on a 129sv x BALB/c mixed background (32) were back-
crossed onto BALB/c background for six generations and genotyped as
described previously (32). Mice were fed a standard chow diet (19% protein,
4.6% fat, and 4.8% crude fiber; Specialty Feeds, Australia) or a high-fat diet
(19% protein, 60% fat, and 4.7% crude fiber; Specialty Feeds, Australia) as
indicated.
Metabolic measurements. Insulin tolerance tests and pyruvate or glucose
tolerance tests were performed on 4- and 6-h fasted mice, respectively, by
injecting human insulin (0.75–1.5 mU/g body weight), D-glucose (1–2 mg/g
body weight), or pyruvate (1–2 mg/g body weight) intraperitoneally and
measuring glucose in tail blood as described previously (34). Euglycemic
hyperinsulinemic clamps were performed on overnight-fasted and anesthe-
tized mice as described previously (34). Fed and fasted blood glucose and
corresponding plasma insulin levels were determined as described previ-
ously (34).
Cell culture. The generation and culture conditions of control HeLa cells and
those expressing TCPTP-specific shRNA have been described previously (31).
Hepatocytes from 8- to 12-week-old Ptpn2�/� and Ptpn2�/� mice were
isolated by a two-step collagenase A (0.05% wt/vol; Roche Diagnostics,
Germany) perfusion as described previously (34). Hepatocytes were cultured
in M199 medium (Invitrogen, Carlsbad, CA) containing 10% (vol/vol) heat-
inactivated FBS, 100 units/ml penicillin, 100 �g/ml streptomycin, 10 nmol/l
dexamethasone, 50 nmol/l insulin and 20 ng/ml EGF (R&D Systems, Minne-
apolis, MN) for no more than 3 days. Cells were starved in M199 medium alone
for 4 h, and then stimulated with 10 nmol/l insulin or 1 ng/ml IL-6, as indicated.
Biochemical analyses. Tissues were mechanically homogenized in ice cold
RIPA lysis buffer (50 mmol/l Hepes [pH 7.4], 1% (vol/vol) Triton X-100, 1%
(vol/vol) sodium deoxycholate, 0.1% (vol/vol) SDS, 150 mmol/l NaCl, 10%
(vol/vol) glycerol, 1.5 mmol/l MgCl2, 1 mmol/l EGTA, 50 mmol/l sodium
fluoride, leupeptin (5 �g/ml), pepstatin A (1 �g/ml), 1 mmol/l benzamadine, 2
mmol/l phenylmethysulfonyl fluoride, 1 mmol/l sodium vanadate) and clarified
by centrifugation (100,000g for 20 min at 4°C). Tissue and cell lysates were
resolved by SDS-PAGE and immunoblotted. Lipid analyses were performed as
described previously (34).
RT-PCR. Liver was dissected and immediately frozen in liquid N2, and RNA
extracted using Trizol reagent (Invitrogen, Carlsbad, CA). mRNA was reverse
transcribed using a High Capacity cDNA Reverse Transcription Kit (Applied
Biosystems, Foster City, CA) and quantitative RT-PCR performed using the
TaqMan Universal PCR Master Mix and Gene Expression Assays (Applied
Biosystems) for G6pc, Pck1, Fbp1, Srebf1, Fasn, and Il6; Gapdh or 18S were
used as internal controls. Reactions were performed in quadruplicate and
relative quantification achieved using the DDCt method.

RESULTS

Decreased gluconeogenesis and hepatic glucose pro-
duction in Ptpn2�/� mice. Ptpn2�/� (BALB/c) mice
are healthy and fertile and do not show any overt his-
topathologies (32). To assess the impact of TCPTP het-
erozygous deficiency on glucose homeostasis, 8- to 10-
week-old Ptpn2�/� versus �/� littermate male mice
were fed a standard chow diet for 20 weeks or a high-fat
diet (60% fat; 74% energy from fat) for 15 weeks to induce
insulin resistance and fasting hyperglycemia (Fig. 1; sup-
plementary Fig. 1 which is available in the online appendix
at http://diabetes.diabetesjournals.org). Food intake (high-
fat diet) and body and tissue weights were determined,
and insulin sensitivity and glucose homeostasis assessed
in insulin tolerance tests (ITTs) and glucose tolerance
tests (GTTs) and by monitoring blood glucose and insulin
levels. Food intake (high-fat diet), body weights, and liver
and fad-pad masses remained unaltered in �/� versus
�/� mice on either diet (Fig. 1A; supplementary Fig. 1A).
Similarly, no significant differences were noted in ITTs or
GTTs (Fig. 1C–D; supplementary Fig. 1C–D). However,
fasted blood insulin levels were significantly reduced in
chow-fed mice, and this trended with reduced fasted blood
glucose (supplementary Fig. 1B). More importantly, fasted
blood glucose levels were significantly reduced in high-
fat–fed (HFF) Ptpn2�/� versus Ptpn2�/� mice (Fig. 1B),
approximating those seen in fasted chow-fed �/� mice.
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Therefore, these results indicate that a reduction in
TCPTP protein may be sufficient to prevent the fasting
hyperglycemia that is associated with high-fat feeding-
induced insulin resistance.

TCPTP is expressed in liver, white adipose tissue
(WAT), and skeletal muscle (Fig. 2A), the key insulin
responsive tissues responsible for the control of glucose
homeostasis. TCPTP protein levels were not overtly al-
tered in liver, WAT, or muscle in HFF (data not shown) or
Ob/Ob obese mice (supplementary Fig. 2). The liver is the
primary tissue responsible for the control of blood glucose
levels in the fasted state, generating glucose from noncar-
bohydrate sources in a process known as gluconeogenesis
during periods of fasting, starvation, or intense exercise
(35). Fasting hyperglycemia in type 2 diabetes is linked to
elevated gluconeogenesis and HGP (2–4). One possibility
is that the lower fasted blood glucose levels in the HFF
Ptpn2�/� mice may be caused by decreased gluconeo-
genesis. To assess this, we performed pyruvate tolerance
tests (PTTs); administration of the gluconeogenic sub-
strate pyruvate increases blood glucose levels by pro-
moting gluconeogenesis in the liver. Administration of
pyruvate (1 mg/g body weight) significantly enhanced
blood glucose levels in Ptpn2�/� mice, but this was
attenuated in HFF Ptpn2�/� mice (Fig. 2B), indicating
reduced gluconeogenesis; no differences were noted in
PTTs in chow-fed mice (supplementary Fig. 3A). To fur-
ther characterize the apparently reduced gluconeogenesis
in HFF mice, whole-body glucose disappearance and pro-
duction were measured in HFF Ptpn2�/� versus �/�
mice by performing hyperinsulinemic euglycemic clamps
(Fig. 2C). The rate at which glucose was infused to
maintain euglycaemia during the clamps was increased

by �30% in Ptpn2�/� mice (Fig. 2C), indicative of
enhanced insulin sensitivity. Although glucose disap-
pearance (mainly in muscle and fat) remained unaltered,
the ability of insulin to suppress whole-body (mainly
hepatic) glucose production was increased in Ptpn2�/�
mice (Fig. 2C). Taken together, these results indicate that
insulin sensitivity was increased in HFF Ptpn2�/� mice
and that this was ascribed to decreased HGP.
Decreased gluconeogenic and increased lipogenic
gene expression in Ptpn2�/� mice. To further assess
the potential of TCPTP to regulate hepatic gluconeogene-
sis, we examined the expression of the rate-limiting glu-
coneogenic genes G6pc and Pck1 in livers from fasted HFF
Ptpn2�/� mice and from those subjected to clamps by
quantitative RT-PCR (��Ct) using Gapdh (Fig. 3) or 18S
(data not shown) for normalization. We also measured the
expression of genes encoding the lipogenic enzymes
SREBP-1c (sterol regulatory element-binding protein 1c;
encoded by Srebf1) and Fas (fatty acid synthase; encoded
by Fasn) that are normally increased in expression in
response to insulin (1). We found that G6pc and Pck1 were
reduced in both fasted (Fig. 3A) and clamped HFF
Ptpn2�/� mice (Fig. 3B), whereas Fasn and Srebf1 were
increased in clamped (Fig. 3D), but not fasted mice (Fig.
3C); hepatic G6pc and Pck1 were not altered in chow-fed
Ptpn2�/� versus �/� mice (supplementary Fig. 3B).
Given the increased lipogenic gene expression in clamped
HFF Ptpn2�/� mice, we monitored for hepatic steatosis
by histologic means and by measuring ceramide, diglycer-
ide (DAG), and triglyceride (TAG) levels in HFF
Ptpn2�/� versus Ptpn2�/� mice. Histologically, steato-
sis appeared to be decreased in HFF Ptpn2�/� mice (Fig.
3E), and this coincided with a trend for reduced hepatic
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ceramides, TAGs, and significantly reduced DAGs (Fig.
3F), consistent with the overall enhanced insulin sensitiv-
ity evident in hyperinsulinemic euglycemic clamps. Taken
together, these results indicate that hepatic insulin signal-

ing was enhanced, in line with repressed gluconeogenesis
and HGP in HFF Ptpn2�/� mice.
Enhanced hepatic STAT3 phosphorylation and PI3K/
Akt signaling Ptpn2�/� mice. Next we examined the
molecular basis for the decreased fasting blood glucose
levels and decreased gluconeogenic gene expression and
HGP in HFF Ptpn2�/� mice. We reported previously that
TCPTP can dephosphorylate the IR PTK to suppress
insulin signaling (24,28,36), whereas others have used
overexpression approaches to identify STAT3 as a putative
TCPTP substrate (30). Insulin-instigated PI3K/Akt signal-
ing and IL-6-induced STAT3 pathways suppress gluconeo-
genic gene expression and HGP (1,10,11). Accordingly, we
assessed the activation of these pathways in the livers of
4-h fasted HFF Ptpn2�/� versus �/� mice by immuno-
blot analysis. We found that STAT3 Y705 phosphorylation
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was significantly enhanced in livers from fasted Ptpn2�/�
mice (Fig. 4A). Importantly, IL-6 in blood or liver was not
altered in HFF Ptpn2�/� mice (Fig. 4B and C). We also
noted that PI3K/Akt signaling, as monitored by Akt Ser-473
phosphorylation, was elevated in livers from fasted HFF
Ptpn2�/� mice, and this coincided with a trend for

elevated IR-� subunit Y1162/Y1163 phosphorylation (Fig.
4A; supplementary Fig. 4A) and IRS-1 tyrosine phosphor-
ylation (supplementary Fig. 4B). There were no significant
increases in STAT3 or Akt phosphorylation in muscle or
WAT from HFF Ptpn2�/� versus �/� mice (supplemen-
tary Fig. 4C). Moreover, neither STAT3 phosphorylation
nor PI3K/Akt were elevated in the livers of fasted chow-fed
Ptpn2�/� mice (supplementary Fig. 3C). Interestingly,
although hepatic insulin signaling in fasted HFF Ptpn2�/�
mice appeared to be elevated, we found no significant
difference in IR and IRS-1/2 phosphorylation or PI3K/Akt
signaling in response to bolus insulin (2 mU/g, 10 min)
administration (supplementary Fig. 4A–B), indicating that
TCPTP heterozygous deficiency does not alter the acute
response to insulin. To further assess the impact of TCPTP
heterozygous deficiency on insulin signaling, we moni-
tored for hepatic Akt Ser-473 phosphorylation in over-
night-fasted (8 h) and refed (4 h), and thereon refasted (4
h) HFF Ptpn2�/� mice. Although we noted no overt
difference in PI3K/Akt signaling in �/� versus Ptpn2�/�
mice after refeeding, Akt Ser-473 phosphorylation was
significantly elevated in HFF Ptpn2�/� mice that were
refed and subsequently refasted (Fig. 4D), consistent with
TCPTP heterozygous deficiency prolonging the insulin signal;
convincing increases in IR-� subunit Y1162/Y1163 phosphor-
ylation in either �/� or �/� mice after fasting and refeeding
could not be detected with the reagents at hand (data not
shown). Nevertheless, these results are consistent with
TCPTP-deficiency enhancing insulin signaling.
Enhanced insulin and IL-6 signaling and decreased
gluconeogenic gene expression in Ptpn2�/� hepato-
cytes. Our results suggest that the lower fasted blood
glucose levels and the decreased gluconeogenic gene
expression and HGP in HFF Ptpn2�/� mice might result
from elevated basal PI3K/Akt and STAT3 signaling. Al-
though the liver is comprised primarily of hepatocytes, we
cannot formally exclude the possibility that the elevated
STAT3 phosphorylation may be attributed to altered he-
patic cellularity. To determine whether the enhanced
STAT3 phosphorylation was intrinsic to hepatocytes and
to further assess TCPTP’s potential to regulate hepatic IR
activation and signaling, we isolated hepatocytes from
Ptpn2�/� versus �/� mice, and stimulated them either
with insulin or IL-6 (Fig. 5). Basal and insulin-induced IR-�
Y1162/Y1163 phosphorylation and downstream Akt Ser-
473 phosphorylation were enhanced in �/� versus �/�
hepatocytes (Fig. 5A). Furthermore, IL-6-induced STAT3
phosphorylation was enhanced, but the activation of the
upstream JAK1 (Y1022/Y1023) PTK was not altered (Fig.
5B), consistent with TCPTP acting directly on STAT3.
Although we have previously established that TCPTP
deficiency is associated with elevated IR phosphorylation
and signaling in mouse embryo fibroblasts (MEFs) and
HepG2 hepatoma cells (24,28,36), the impact of TCPTP
deficiency on IL-6 signaling has not been previously exam-
ined. To establish an independent model by which to
examine the role of TCPTP in IL-6 signaling, we stably
knocked down TCPTP by RNA interference in HeLa cells
(31). Knockdown of TCPTP resulted in enhanced IL-6–
induced STAT3 phosphorylation (Fig. 5C). Taken together,
these results affirm the capacity of TCPTP to negatively
regulate STAT3 signaling, including that mediated by IL-6,
which in hepatocytes contributes to the suppression of
gluconeogenesis.

Next we assessed the impact of elevated insulin-insti-
gated IR phosphorylation and PI3K/Akt signaling and
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IL-6–induced STAT3 signaling on the expression of glu-
coneogenic genes by quantitative RT-PCR. We found that
the elevated basal IR/PI3K/Akt signaling in serum-starved
�/� hepatocytes coincided with decreased G6pc and Pck1
expression that could be further suppressed by insulin

(Fig. 6A). IL-6 also suppressed G6pc and Pck1 expression
(Fig. 6B), and this could be prevented by pretreating cells
with the JAK PTK inhibitor CMP6 (Fig. 6C). Pretreating
serum-starved �/� hepatocytes with CMP6 did not revert
the already reduced G6pc and Pck1 expression to that
seen in �/� cells (data not shown), indicating that the
decreased basal gluconeogenic gene expression was inde-
pendent of the JAK/STAT pathway and most likely attrib-
utable to elevated basal IR signaling. These results are
consistent with TCPTP heterozygous deficiency promoting
both IR and STAT3 signaling in hepatocytes to suppress
gluconeogenic gene expression.

DISCUSSION

An increased rate of hepatic gluconeogenesis is primarily
responsible for the enhanced HGP and fasting hyperglyce-
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mia that is characteristic of patients with type 2 diabetes
(2–4). The regulation of gluconeogenesis is dependent
largely on the control of PEPCK and G6Pase expression.
Although the absolute levels of HGP are only moderately
increased in the diabetic state, PEPCK, G6Pase, and HGP
are inadequately suppressed by glucose and insulin (2–4).
In this study, we have identified TCPTP as a novel regula-
tor of G6pc and Pck1 expression and HGP. Our studies
indicate that a heterozygous deficiency in TCPTP in the
liver may be sufficient to lower G6pc and Pck1 expression
and consequently lower HGP and ameliorate the fasting
hyperglycemia that is associated with high-fat feeding and
the development of insulin resistance.

TCPTP’s primary metabolic function may be in the
regulation of glucose production since whole-body glu-
cose production and gluconeogenesis, as assessed in
hyperinsulinemic euglycemic clamps and pyruvate toler-
ance tests, respectively, were reduced in fasted-HFF
Ptpn2�/� mice, whereas glucose disappearance, a mea-
sure of glucose uptake by muscle, remained unaltered.
Furthermore, we found no difference in IR signaling in
muscle or adipose tissue, and we see no overt difference
in insulin signaling in adipocytes differentiated from
Ptpn2�/� versus �/� mouse embryo fibroblasts (Deng
and Tiganis, unpublished observations). The liver is the
primary tissue responsible for whole-body glucose produc-
tion, with the kidney playing a smaller role (37). Although
we cannot formally exclude the possibility that TCPTP
may have a role in the kidney, several lines of evidence
support the theory that the liver is an important site of
action for TCPTP in the control of blood glucose. First, the
STAT3 and PI3K/Akt signaling pathways that suppress
gluconeogenesis were enhanced in the livers of fasted
Ptpn2�/� mice. Second, this coincided with decreased
hepatic gluconeogenic gene expression. And third, insulin
and IL-6–induced signaling were increased and down-
stream gluconeogenic gene expression decreased in
Ptpn2�/� hepatocytes. Although our analyses of 1) IR
phosphorylation and PI3K/Akt signaling in fasted livers, 2)
hepatic lipogenic gene expression in clamped mice, and 3)
insulin signaling in isolated hepatocytes all indicate that
TCPTP has the capacity to regulate insulin sensitivity,
surprisingly, we found that insulin-induced IR phosphory-
lation and downstream PI3K/Akt signaling in response to
bolus insulin administration were not overtly altered in
Ptpn2�/� livers. Previously we reported that TCPTP
serves to control the duration, rather than the intensity, of
IR Y1162/Y1163 phosphorylation and downstream PI3K/
Akt signaling, so that TCPTP-deficient fibroblasts exhibit
prolonged, but not enhanced, insulin signaling (24). There-
fore, one possibility is that TCPTP heterozygosity may
result in prolonged insulin signaling in vivo. This would be
evident in the livers of fasted mice, or after clamping, but
not after the short periods of acute stimulation used to
assess IR activation and signaling. Consistent with this
possibility, we found that PI3K/Akt signaling remained
significantly elevated in HFF Ptpn2�/� mice that were
fasted, refed, and fasted once more.

Recent studies have shown that IRS-1 and IRS-2 can
differentially contribute to the regulation of hepatic me-
tabolism, with IRS-1 being more closely linked to glucose
metabolism, and IRS-2 to lipid metabolism in the fasted
state (38,39). In our studies, hepatic IRS-1, but not IRS-2
tyrosine phosphorylation, trended higher in fasted-HFF
Ptpn2�/� mice in tune with the increased Akt phosphor-
ylation and the trend for elevated IR Y1162/Y1163 phos-

phorylation. Although we cannot formally exclude any
possible increase in basal IRS-1 tyrosine phosphorylation
contributing to the selective suppression of gluconeogen-
esis in the fasted state, we suggest that G6pc and Pck1 may
be primarily suppressed by the hyperphosphorylated
STAT3, since further repression of G6pc and Pck1 expres-
sion was not evident under conditions of hyperinsulin-
aemia when Fasn and Srebf1 were otherwise induced.
Previous studies have established the capacity of TCPTP
to dephosphorylate STAT3 (25,30), whereas our studies
demonstrate that TCPTP deficiency specifically enhances
IL-6–induced STAT3 signaling in hepatocytes and HeLa
cells. Several lines of evidence support the contribution of
STAT3 to the control of gluconeogenesis. Liver-specific
STAT3 knockout mice exhibit insulin resistance and ele-
vated blood glucose levels that are associated with in-
creased hepatic expression of G6pc and Pck1, whereas
STAT3 overexpression in lean or obese mice decreases
gluconeogenic gene expression and lowers blood glucose
levels (11,40). STAT3 is tyrosyl (Y705) phosphorylated and
activated by JAK PTKs downstream of all cytokines that
act via the gp130 receptor, including IL-6. It is known that
insulin signaling in AgRP neurons in the hypothalamus
promotes IL-6 release from Kupffer cells in the liver that
activates STAT3 in hepatocytes and thus suppresses glu-
coneogenesis and HGP (11,15–17). In our studies, we
found that hepatic IL-6 levels in HFF Ptpn2�/� mice were
not altered. In addition, food intake and body weight,
which are also suppressed by central insulin action
(41,42), were not altered in HFF Ptpn2�/� mice. Thus, the
impact of TCPTP heterozygous deficiency on HGP is most
likely attributable to the regulation of STAT3 phosphory-
lation in the liver, rather than the central control of insulin
signaling. Recently, STAT3 in hepatocytes has also been
shown to be controlled by sirtuin-1–mediated deacetyla-
tion (43). Sirtuin-1 is a NAD� dependent deacetylase that
is activated in response to fasting and caloric restriction
(44). In the liver, sirtuin-1 activates the stimulatory effects
of Foxo1 and PGC-1a on gluconeogenesis, while repress-
ing the inhibitory effects of STAT3 (45,46). In particular,
STAT3 deacetylation by sirtuin-1 coincides with STAT3
dephosphorylation (43). Previous studies have shown that
STAT1 dephosphorylation by TCPTP can be regulated by
STAT1 acetylation (47). It remains unknown whether
changes in STAT3 acetylation affect its dephosphorylation
status by TCPTP.

Previous studies have identified PTP1B as an important
regulator of hepatic IR signaling and HGP, and these
effects have been linked to the regulation of IR-� subunit
Y1162/Y1163 phosphorylation (22). Interestingly, although
liver-specific PTP1B knockout mice exhibited decreased
gluconeogenic gene expression and HGP, fasted blood
glucose levels were not overtly altered in liver-specific
PTP1B heterozygous mice (22), as seen in TCPTP het-
erozygous mice. Thus, despite the high degree of similarity
between the catalytic domains of PTP1B and TCPTP, it
appears that the two PTPs may differentially contribute to
the regulation of gluconeogenesis. We surmise that this
may be attributable, at least in part, to the capacity of
TCPTP to also regulate IL-6 signaling. Furthermore, de-
spite the enhanced IR activation, liver-specific PTP1B
knockout mice had diminished SREBP and Fas expression
in the fed state, and decreased hepatic and serum triglyc-
eride and cholesterol levels (22), consistent with the
theory that PTP1B regulates additional, insulin-indepen-
dent pathways pertinent to the control of lipogenesis. In
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HFF Ptpn2�/� mice, Srebf1 and Fasn were not altered
under fasted conditions and increased after clamps, con-
sistent with the idea that TCPTP deficiency enhances
insulin sensitivity. Despite the increased insulin-induced
expression of lipogenic genes, steatosis was not evident in
HFF Ptpn2�/� mice, but rather decreased, which is
consistent with the low hepatic lipid levels observed in
insulin-sensitive phenotypes.

PTP1B’s role in IR and leptin signaling has led to
considerable attention being focused on PTP1B as a target
for development of novel therapeutics for the treatment of
both type 2 diabetes and obesity. Antisense oligonucleo-
tides targeting PTP1B are in clinical trials, whereas drugs
that inhibit PTP1B activity are in preclinical development
(48–50). The lethality that is associated with TCPTP-
deficiency (32) has meant that specific attention has been
placed on generating PTP1B inhibitors that do not inhibit
TCPTP. However, our studies suggest that the partial
inhibition of TCPTP in the liver may be beneficial and
contribute to the suppression of fasting hyperglycemia
that is associated with high-fat-diet–induced insulin resis-
tance, by enhancing not only IR-dependent, but also
IR-independent STAT3-mediated pathways that may be
particularly pertinent under conditions of severe insulin
resistance. Therefore, we conclude that partial inhibition
of TCPTP in the liver, either alone, or in the context of
PTP1B inhibition, might be effective for the suppression of
gluconeogenesis and the attenuation of fasting hypergly-
cemia in type 2 diabetes and obesity.
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