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Abstract
Short-term memory dysfunction is a key early feature of Alzheimer’s disease (AD). Psychiatric patients may be at higher risk for
memory dysfunction and subsequent AD due to the negative effects of stress and depression on the brain. We carried out
longitudinal within-subject studies in male and female psychiatric patients to discover blood gene expression biomarkers that
track short term memory as measured by the retention measure in the Hopkins Verbal Learning Test. These biomarkers were
subsequently prioritized with a convergent functional genomics approach using previous evidence in the field implicating them
in AD. The top candidate biomarkers were then tested in an independent cohort for ability to predict state short-term memory,
and trait future positive neuropsychological testing for cognitive impairment. The best overall evidence was for a series of new,
as well as some previously known genes, which are now newly shown to have functional evidence in humans as blood
biomarkers: RAB7A, NPC2, TGFB1, GAP43, ARSB, PER1, GUSB, and MAPT. Additional top blood biomarkers include
GSK3B, PTGS2, APOE, BACE1, PSEN1, and TREM2, well known genes implicated in AD by previous brain and genetic
studies, in humans and animal models, which serve as reassuring de facto positive controls for our whole-genome gene
expression discovery approach. Biological pathway analyses implicate LXR/RXR activation, neuroinflammation, atherosclerosis
signaling, and amyloid processing. Co-directionality of expression data provide new mechanistic insights that are consistent with
a compensatory/scarring scenario for brain pathological changes. A majority of top biomarkers also have evidence for
involvement in other psychiatric disorders, particularly stress, providing a molecular basis for clinical co-morbidity and for stress
as an early precipitant/risk factor. Some of them are modulated by existing drugs, such as antidepressants, lithium and omega-3
fatty acids. Other drug and nutraceutical leads were identified through bioinformatic drug repurposing analyses (such as
pioglitazone, levonorgestrel, salsolidine, ginkgolide A, and icariin). Our work contributes to the overall pathophysiological
understanding of memory disorders and AD. It also opens new avenues for precision medicine- diagnostics (assement of risk) as
well as early treatment (pharmacogenomically informed, personalized, and preventive).

Introduction

“If you find ways to repair the memory damaged by Alz-
heimer’s disease or dementia and so forth, it is very likely
that the same methods could be used to upgrade the
memory of completely healthy people”

- Yuval Noah Harari
Alzheimer disease (AD) is a clear and present danger to

older adults, and has a profound socio-economic impact.
Existing therapies are limited in efficacy. Early identifica-
tion of individuals at risk may open the door to preventive
approaches. Short-term memory dysfunction is a key early
feature of AD. We proposed to identify blood biomarkers
that track a relevant related quantitative phenotype for
short-term memory, the retention measure of recall in
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Hopkins Verbal Learning Test (HVLT) (Fig. S1). Blood
biomarkers are easily accessible clinically, as opposed to
brain imaging or even CSF changes. The nervous and
immune system have some common developmental roots,
and there are bi-directional brain-immune interactions [1].
Similar gene expression changes in brain and blood cells
may also be due to similar gene promoter regulation in
response to shared internal milieu and external environment
changes [2–6]. Previous work by our group has identified
blood gene expression biomarkers that track suicidal idea-
tion using longitudinal within-subject designs, validated
them in suicide completers, and tested them in independent
cohorts for ability to assess state (suicidal ideation), and
ability to predict trait (future hospitalizations for suicidality)
[7–10]. Those biomarkers were also useful in pharmaco-
genomic and drug repurposing analyses. We recently suc-
cessfully used a similar approach for pain [11], and for
stress [12]. In the current study, we endeavored to use this
comprehensive step-wise approach to identify biomarkers
for short-term memory that may have relevance to AD.
We conducted our longitudinal studies in psychiatric

disorder subjects, a population enriched in memory reten-
tion abnormalities, and which may be at increased risk of
AD and other aging-related disorders, due at least in part to
the effects of stress and depression [13, 14]. The subjects
had blood gene expression data at multiple testing visits,
and were phenotyped at each visit, including with
HVLT. They also had electronic medical records for long
term follow-up of subsequent outcomes, including future
neuropsychological testing as part of standard clinical care.

Materials and methods

Cohorts

We used two independent cohorts of psychiatric disorders
patients, one for Discovery of candidate biomarkers, and one
for validation/testing of top biomarkers (for predicting mem-
ory state, and predicting future positive neuropsychological
testing for cognitive impairment) (Fig. 1, Table 1, and
Table S1).

Fig. 1 Steps 1-3: discovery,
prioritization and validation/
testing. a Cohorts used in study,
depicting flow of discovery,
prioritization, and testing of
biomarkers. b Differential gene
expression in the discovery
cohort -number of genes
identified with differential
expression (DE) and
absent–present (AP) methods
with an internal score of 2 and
above. Red—increased in
expression in high memory, blue
—decreased in expression in
high memory. Pyramid on the
left depicts the number of
discovery step probesets,
identified based on their score for
tracking memory, with a
maximum of internal points of 6
(33% (2 pt), 50% (4 pt) and 80%
(6 pt)). Pyramid on the right
depicts prioritization with CFG
for prior evidence of
involvement in AD. In the
prioritization step probesets are
converted to their associated
genes using Affymetrix
annotation and GeneCards.
Genes are prioritized and scored
using CFG for AD evidence with
a maximum of 12 external
points. Genes scoring at least ten
points out of a maximum
possible of 18 total internal and
external scores points are carried
to the testing step
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Similar to our previous studies [7–9], the psychiatric
subjects are part of a larger longitudinal cohort of adults that
we are continuously collecting. Subjects were recruited
from the patient population at the Indianapolis VA Medical
Center. All subjects understood and signed informed con-
sent forms detailing the research goals, procedure, caveats
and safeguards, per IRB approved protocol. Subjects com-
pleted diagnostic assessments by an extensive structured
clinical interview—Diagnostic Interview for Genetic Stu-
dies, and up to six testing visits, 3–6 months apart or
whenever a new psychiatric hospitalization occurred. At
each testing visit, they received a series of rating scales,
including a Hopkins Verbal Learning Test (HVLT-R), and
the blood was drawn. We collected whole blood (10 ml) in
two RNA-stabilizing PAXgene tubes, labeled with an
anonymized ID number, and stored at −80 °C in a locked
freezer until the time of future processing. Whole-blood
RNA was extracted for microarray gene expression studies
from the PAXgene tubes, as detailed below.

For this study, our within-subject longitudinal discovery
cohort, from which the biomarker data were derived, con-
sisted of 159 subjects (131 males, 28 females) with multiple
testing visits (a total of 496), who each had at least one 20%
change in the Retention measure of HVLT (Fig. S1) from
one consecutive testing visit to another.

Our independent test cohort for predicting state (low
memory retention) consisted of 127 subjects (97 males, 30
females), demographically matched with the discovery cohort,
with one or more testing visits in our lab (for a total of 238
visits). Low Memory Retention was defined as a score of ≤ 40
(Fig. 1, Table 1 and Table S1). Subjects were matched for age
between low memory group and the rest group.

Our test cohort for predicting trait (future positive neu-
ropsychological testing for cognitive impairment) is a sub-
set of the independent test cohort, that consisted of
56 subjects (47 males, 9 females), demographically matched
with the discovery cohort, with one or more testing visits in
our lab (for a total of 111 visits). Positive neuropsycholo-
gical testing was defined as a diagnosis of MCI, ADRD
(Alzheimer Disorder Related Dementia), or other dementia
upon neuropsychological testing done in a clinical setting,
triggered by clinical concerns as part of regular clinical care
(Fig. 1, Table 1, and Table S1). Subjects were matched for
age at time of lab visit between the positive neuropsycho-
logical testing group and the rest group.

Medications

The subjects in the discovery cohort were all diagnosed
with various psychiatric disorders (Table 1), and had var-
ious medical co-morbidities. Their medications were listed
in their electronic medical records, and documented by us at
the time of each testing visit. Medications can have a strongTa
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influence on gene expression. However, our discovery of
differentially expressed genes was based on within-subject
analyses, which factor out not only genetic background
effects but also minimizes medication effects, as the sub-
jects rarely had major medication changes between visits.
Moreover, there was no consistent pattern of any particular
type of medication, as our subjects were on a wide variety
of different medications, psychiatric and nonpsychiatric.
Furthermore, the independent validation/testing cohorts’
gene expression data was Z-scored by gender and diagnosis
before being combined, to normalize for any such effects.
Some subjects may be noncompliant with their treatment
and may thus have changes in medications or drug of abuse
not reflected in their medical records. That being said, our
goal is to find biomarkers that track memory retention,
regardless if the reason for it is endogenous biology or
driven by substance abuse or medication noncompliance. In
fact, one would expect some of these biomarkers to be
direct or indirect targets of medications, as we show in this
paper. Overall, the discovery, prioritization, and validation/
replication by testing in independent cohorts of the bio-
markers, with our design, occurs despite the subjects having
different genders, diagnoses, being on various different
medications, and other lifestyle variables.

Blood gene expression experiments

RNA extraction

Whole blood (2.5–5 ml) was collected into each PaxGene
tube by routine venipuncture. PaxGene tubes contain pro-
prietary reagents for the stabilization of RNA. RNA was
extracted and processed as previously described [7–9].

Microarrays

Microarray work was carried out using previously described
methodology [7–10].

The dataset is available at GEO (GSE127711).

Biomarkers

Step 1: Discovery

We have used the subject’s score from the HVLT- DR
Retention measure, assessed at the time of blood collection
(Fig. 1). Using a 20% change threshold in Retention, we
analyzed gene expression differences between visits, using
a powerful within-subject design, then an across-subjects
summation (Fig. 1).

We analyzed the data in two ways: an absent–present (AP)
approach, and a differential expression (DE) approach, as in
previous work by us on suicide biomarkers [7–9]. The AP

approach may capture turning on and off of genes, and the DE
approach may capture gradual changes in expression. We
used a within-subject design, then an across-subjects sum-
mation score for probesets. Analyses were performed as
previously described [8–10]. In brief, we imported all Affy-
metrix microarray data as CEL. files into Partek Genomic
Suites 6.6 software package (Partek Incorporated, St Louis,
MI, USA). Using only the perfect match values, we ran a
robust multi-array analysis (RMA) by gender and diagnosis,
background corrected with quantile normalization and a
median polish probeset summarization of all chips, to obtain
the normalized expression levels of all probesets for each
chip. Then, to establish a list of differentially expressed pro-
besets we conducted a within- subject analysis, using a fold
change in expression of at least 1.2 between high- and low-
memory visits within each subject. For each comparison,
probesets that have a 1.2-fold change are then assigned either
a 1 (increased in high memory) or a -1 (decreased in high
memory; 0.5 or −0.5 if the change is between 1.1 and 1.2
fold; and 0 if the change is less than 1.1 fold. These values
were then summed for each probeset across all the compar-
isons and subjects, yielding a range of raw scores. The raw
scores were converted into internal scores for the next step,
CFG prioritization: probesets above the 33.3% of raw scores
received an internal score of 2 points, those above 50% 4
points, and those above 80% 6 points [8–10]. This was done
in order to normalize and be able to easily combine internal
(discovery) and external evidence (prioiritzation) scores, and
to avoid over-fitting to the discovery cohort. We have
developed in our lab R scripts to automate and conduct all
these large dataset analyses in bulk, checked against human
manual scoring [10].

Gene Symbol for the probesets were identified using
NetAffyx (Affymetrix) for the Affymetrix HG-U133 Plus
2.0 Arrays which were used in this study, followed by
GeneCards to confirm the primary gene symbol. In addition,
for those probesets that were not assigned a gene symbol by
NetAffyx, we used GeneAnnot or UCSC to obtain gene
symbol for these uncharacterized probesets, followed by
GeneCard. Genes were then scored using our manually
curated CFG databases as described below (Fig. 1).

Step 2: Prioritization using Convergent Functional
Genomics (CFG)

Databases We have established in our laboratory
(Laboratory of Neurophenomics, www.neurophenomics.
info) manually curated databases of the human gene
expression/protein expression studies (postmortem brain,
peripheral tissue/fluids: CSF, blood and cell cultures),
human genetic studies (association, copy number variations
and linkage), and animal model gene expression and genetic
studies, published to date on psychiatric disorders. Only
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findings deemed significant in the primary publication, by
the study authors, using their particular experimental design
and thresholds, are included in our databases. Our databases
include only primary literature data and do not include
review papers or other secondary data integration analyses
to avoid redundancy and circularity. These large and
constantly updated databases have been used in our CFG
cross validation and prioritization platform (Fig. 1). For this
study, data from 213 papers on AD were present in the
databases at the time of the CFG analyses (August 2018)
(human genetic studies-62, human brain tissue studies-49,
human peripheral tissue/fluids- 83, nonhuman genetic
studies-4, nonhuman brain tissue studies-13, nonhuman
peripheral tissue/fluids- 2). Analyses were performed as
previously described, using these databases [8, 9].

CFG scoring For CFG analyses [15, 16], external cross-
validating lines of evidence were weighted such that find-
ings in human studies are prioritized over animal model
studies, and brain studies are prioritized over peripheral
fluid or genetic findings, by giving them twice as many
points. Each line of evidence is capped in such a way that
any positive findings within that line of evidence result in
maximum points, regardless of how many different studies
support that single line of evidence, to avoid potential
popularity biases. Thus, genetic data had a maximum of two
points, human brain expression data 4 points, human per-
ipheral expression data 2 points, nonhuman genetic data 1
point, nonhuman brain expression data 2 points, and non-
human peripheral expression data had 1 point, for a total of
12 points (Table S2). In addition to our external score, we
also prioritized genes based upon the initial differential
expression analyses used to identify them. Probesets iden-
tified by within-subject differential expression analyses can
receive a maximum of 6 internal points. Thus, the max-
imum possible total CFG score for each gene is 18 points
(6 points for the internal score and 12 points for the external
score), with the external evidence weighted twice as much
as the internal evidence to prevent a fit to cohort effect. It
has not escaped our attention that other ways of scoring the
lines of evidence may give slightly different results in terms
of prioritization, if not in terms of the list of genes per se.
Nevertheless, this simple scoring system provides a good
separation of genes based on differential expression and on
independent cross-validating evidence in the field.

Choice of biomarkers to be carried forward

We carried forward into testing the candidate biomarkers after
the prioritization step, using as threshold a CFG score ≥ 10
(n= 138 probesets, 112 genes). A CFG score of 10 or above
reflects an empirical cutoff of over half of the maximum
possible total CFG score of 18, and permits the inclusion of

potentially novel genes (with a maximal internal score of 6)
and with some solid external prior literature evidence for
involvement in AD. Of these, the top candidate biomarkers
had a CFG score ≥ 12 (n= 23 probesets, 18 genes). In Step 3,
testing, we then predict in independent cohorts state (low
memory retention), and trait (future positive neuropsycholo-
gical testing for cognitive impairment).

Diagnostics

In Step 3, testing, the test cohort for predicting low memory
retention (state), and the test cohort for predicting Future
Positive Neuropsychological Testing (trait), were completely
independent from the discovery and validation cohorts; there
was no subject overlap with them. They were assembled out
of data that was RMA normalized by gender and diagnosis.
The expression values of markers used for predictions were
furthermore Z scored by gender and diagnosis in order to
avoid potential artefacts due to different ranges of expression
in different gender and diagnoses, and to be able to combine
different markers into panels. Markers in panels were com-
bined by simple summation of the increased risk markers
minus the decreased risk markers. Predictions were performed
using R-studio. For cross-sectional analyses, we used marker
expression levels, z-scored by gender and diagnosis. For
longitudinal analyses, we combined four measures: marker
expression levels, slope (defined as ratio of levels at current
testing visit vs. previous visit, divided by time between visits),
maximum levels (at any of the current or past visits), and
maximum slope (between any adjacent current or past visits).
For decreased markers, we used the minimum rather than the
maximum for level calculations. All four measures were each
Z-scored by gender and diagnosis, then combined in an
additive fashion into a single measure. The longitudinal
analysis was carried out in a sub-cohort of the testing cohort
consisting of subjects that had at least two test visits.

Predicting state—low memory

Receiver-operating characteristic (ROC) analyses between
marker levels and memory state were performed by
assigning subjects visits with a HVLT Retention score of
≤40 into the Low Memory category. We used the pROC
package of R [17] (Fig. 2).

Predicting trait-future positive neuropsychological testing
for cognitive impairment

We conducted analyses for predicting future positive neu-
ropsychological testing performed as part of routine clinical
care in subjects that had follow-up in the VA system, in
which we have access to complete electronic medical
records, using electronic medical records follow-up data of
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our study subjects (up to 12.81 years from initial visit at
the time of the analyses). Analyses between marker mea-
sures (cross-sectional, longitudinal) at a specific testing visit
and future positive neuropsychological test were performed

a as described below, based on assigning if subjects had
a future positive neuropsychological test for cognitive
impairment or not. A Cox regression was performed using
the time in days from the lab testing visit date to the positive

Fig. 2 Best predictive
biomarkers. a For state-low
memory retention state. b For
trait-future positive
neuropsychological testing.
From among the top candidate
biomarker list (CFG score ≥ 10,
n= 138 probesets). Bold- top
CFG scoring biomarkers on the
list (CFG ≥ 12, n= 23
probesets). Bar graph shows best
predictive biomarkers in each
group. * Nominally significant
p < 0.05. Table underneath the
figures displays the actual
number of biomarkers for each
group whose ROC AUC p-
values (a) and Cox Regression
Odds Ratio p-values (b) are at
least nominally significant.
Some female diagnostic group
are missing from the graph as
they did not have subjects to be
tested or any significant
biomarkers. Cross-sectional is
based on levels at one visit.
Longitudinal is based on levels
at multiple visits (integrates
levels at most recent visit,
maximum levels, slope into
most recent visit, and maximum
slope). Dividing lines represent
the cutoffs for a test performing
at chance levels (white), and at
the same level as the best
biomarkers for all subjects in
cross-sectional (gray) and
longitudinal (black) based
predictions. All biomarkers
perform better than chance.
Biomarkers performed better
when personalized by gender
and diagnosis

1656 A. B. Niculescu et al.



neuropsychological testing date. The hazard ratio was cal-
culated such that a value greater than 1 always indicates
increased risk for positive neuropsychological testing,
regardless if the biomarker is increased or decreased in
expression.

Biological understanding

Clock gene database

We compiled a database of genes associated with circadian
function, by using a combination of review papers and
searches of existing databases CircaDB, GeneCards, and
GenAtlas. Using the data we compiled from these sources
we identified a total of 1468 genes that show circadian
functioning. We further classified genes into “core” clock
genes, i.e. those genes that are the main engine driving
circadian function (n= 18), “immediate” clock genes, i.e.,
the genes that directly input or output to the core clock (n=
331), and “distant” clock genes, i.e., genes that directly
input or output to the immediate clock genes (n= 1119).

Pathway analyses

IPA (Ingenuity Pathway Analysis, Qiagen), David Func-
tional Annotation Bioinformatics Microarray Analysis
(National Institute of Allergy and Infectious Diseases), and
Kyoto Encyclopedia of Genes and Genomes (KEGG)
(through DAVID) were used to analyze the biological roles,
including top canonical pathways and diseases (Table 2), of
the candidate genes resulting from our work. We conducted
analyses for the 112 unique genes (from 138 probesets) that
came out of the prioritization step, and for the top 18 unique
genes (from 23 probesets). For Network analysis of the 112
unique genes we performed STRING Interaction Network
by inputting the genes into the search window and per-
formed Multiple Proteins Homo sapiens analysis.

CFG beyond Alzheimer’s: evidence for involvement
in other psychiatric and related disorders

We also used a CFG approach to examine evidence from
other psychiatric and related disorders, for the list of top
biomarkers after Step 3 testing (n= 36 genes, from 42
probesets) (Table S3).

Therapeutic

Pharmacogenomics

We analyzed which of our top biomarkers from Table 3
(n= 36 genes, from 42 probesets) are known to be

modulated by existing drugs using our CFG databases, and
using Ingenuity Drugs analyses (Table 3 and Table S4).

New drug discovery/repurposing

We also analyzed which drugs and natural compounds are
a match for the gene expression profiles of panels of our
top biomarkers, using the Connectivity Map (https://portals.
broadinstitute.org, Broad Institute, MIT), and the NIH
LINCS L1000 database (Table 4).

Convergent functional evidence (CFE)

For the top biomarkers (Table 3 and Fig. 3), we tabulated
into a convergent functional evidence (CFE) score all the
evidence from discovery (up to 6 points), prioritization (up
to 12 points), testing (state, trait - up to 6 points each if
significantly predicts in all subjects, 4 points if predicts by
gender, 2 points if predicts in gender/diagnosis). The total
score can be up to 30 points: 18 from our data and 12 from
literature data. We weigh our data more than the literature
data, as ours is direct functional evidence for the involve-
ment of the gene/biomarker in the phenotype. The goal is to
highlight, based on the totality of our data and of the evi-
dence in the field to date, biomarkers that have all around
evidence: track memory, are reflective of AD and related
pathology, and predict it. Such biomarkers merit priority
evaluation in future clinical trials.

Results

In Step 1 Discovery, we identified blood gene expression
biomarkers that track memory using the Retention measure
from HVLT. At a phenotypic level, the Retention measure
normalizes memory retention measurements in each subject
during a testing visit, comparing the latter delayed recall
trials with the earlier ones in that particular testing visit. We
then used a powerful within –subject design in a cohort of
subjects who displayed at least a 20% change in the
Retention measure between different testing visits (n=
159 subjects, with 496 visits), to identify differentially
expressed genes that track memory retention. Using our
33% of maximum raw score threshold (internal score of 2
pts, we had 10,941 unique probesets (Fig. 1). These were
carried forward to the prioritization step. This represents
approximately a 5-fold enrichment of the 54,625 probesets
on the Affymetrix array.

In Step 2 Prioritization, we used a Convergent Functional
Genomics (CFG) approach to prioritize the the candidate
biomarkers identified in the discovery step (33% cutoff,
internal score of ≥ 2 pt.) by using published literature
evidence (genetic, gene expression and proteomic), from
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Table 3 Top biomarkers. Convergent functional evidence for relevance to short-term memory tracking and Alzheimer disease (AD)

Genesymbol/Gene name Probeset Step 1
Discovery in blood
(Direction of
change tracking
increased memory)
method/
score/
%
up to 6pts

Step 2
External CFG
evidence for
involvement in
AD
score
up to 12 pt

Step 3
Best
significant
prediction of
state
Low
memory
retention
ROC AUC/
p-value
up to 6 pts
ALL
4pts gender
2pts gender
/Dx

Step 3
Best significant
predictions of trait
future positive
neuropsych
OR/OR p-value
Up to 6 pts ALL
4pts gender
2pts gender /Dx

Other
psychiatric and related
disorders evidence(change
in opposite direction to
increased me
mory)

Pharmacogenomics
Drugs that modulate the biomarker
(Change in Same Direction to
Increased Memory)

CFE
polyevidence
score

RAB7A
RAB7A, member RAS
oncogene family

227602_at (I)
AP/2
43.8%
(I)
DE/4
69.6%

7 ALL
L: (17/111)
0.66/1.7
3E−02
Gender Dx
F-BP
L: (2/9)
1/2.02
E−02
M-BP
L: (1/27)
1/4.76E−02
M-
PSYCHOSIS
L: (8/27)
0.76/1.68E
−02
M-SZ
L: (5/14)
0.8/3.59E
−02
M-SZA
C: (12/33)
0.67/4.98E
−02

Gender
Male
C: (7/91)
2.51/3.08E−02

BP
Brain arousal
depression
MDD
neuropathic pain

TCA
Valproate

21

NPC2
Niemann-Pick disease, type
C2

200701_at (D)
DE/6
80.8%

8 ALL
L: (17/111)
0.65/2.38E
−02
Gender
Male
L: (12/79)
0.65/4.65E
−02
Gender Dx
M-MDD
L: (3/18)
0.96/7.58E
−03
M-SZA
L: (3/13)
0.9/2.13E
−02

Aging alcohol
SZ

20

TGFB1
transforming growth factor
beta 1

203084_at (I)
AP/4
54.5%

9 ALL
C: (68/238)
0.58/2.88E
−02
Gender
Male
C: (53/176)
0.6/2.29E
−02
Gender Dx
M-PTSD
C: (4/10)
1/5.26E−03
M-SZ
C: (15/34)
0.68/3.99E
−02

Aging
ASD
BP
Chronic stress
Depression
Longevity
Pain
Phencyclidine
PTSD
Suicide
SZ

Omega-3 fatty acids 19

GAP43
growth associated protein 43

204471_at (I)
DE/4
50.8%

7 Gender Dx
M-SZA
L: (3/13)
0.867/3.15E
−02

ALL
C: (11/111)
2.07/2.08E−02
L: (3/50)
6.14/1.51-02
Gender
Male
C: (7/91)
2.94/1.17E−02
L: (3/43)
5.54/1.47-02
Gender-Dx
M-Psychosis
L: (2/22)
5.4/2.96-02
M-SZ
L: (2/13)
4.08/3.83-02

BP
depression
SZ
stress

Valproate
Benzodiazepines

19
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Table 3 (continued)

Genesymbol/Gene name Probeset Step 1
Discovery in blood
(Direction of
change tracking
increased memory)
method/
score/
%
up to 6pts

Step 2
External CFG
evidence for
involvement in
AD
score
up to 12 pt

Step 3
Best
significant
prediction of
state
Low
memory
retention
ROC AUC/
p-value
up to 6 pts
ALL
4pts gender
2pts gender
/Dx

Step 3
Best significant
predictions of trait
future positive
neuropsych
OR/OR p-value
Up to 6 pts ALL
4pts gender
2pts gender /Dx

Other
psychiatric and related
disorders evidence(change
in opposite direction to
increased me
mory)

Pharmacogenomics
Drugs that modulate the biomarker
(Change in Same Direction to
Increased Memory)

CFE
polyevidence
score

ARSB
arylsulfatase B

1554030_at (I)
DE/6
91.7%

6 ALL
L:
(17/111)
0.72/2.19E
−03
Gender
Male
L: (12/79)
0.74/4.92E
−03
Gender Dx
F-BP
L: (2/9)
0.93/3.95E
−02
M-
PSYCHOSIS
L: (8/27)
0.88/1.04E
−03
M-SZ
L: (5/14)
0.8/3.59E
−02
M-SZA
L: (3/13)
1/5.61E−03

Alcohol
Depression
MDD
Suicide

18

PER1
period circadian clock 1

242832_at (I)
DE/4
61.3%

6 Gender
Female
C:(15/62)
0.7/9.17E
−03
Gender Dx
F-BP
C: (6/19)
0.83/1.13E
−02
M-BP
L: (1/27)
1/4.76E−02

Gender
Male
L:(3/43)
5.2/4.97E−03

Alcohol
Anxiety
ASD
Autism
BP
Circadian abnormalities
Depression
MDD
PTSD
Sleep Duration
Suicide
SZ

Lithium
Clozapine
Quetiapine
Avibactam

18

GUSB
glucuronidase, beta

202605_at (D)
DE/4
55.7%

8 ALL
L: (17/111)
0.65/2.16E
−02
Gender
Female
L:
(5/32)
0.79/2.29E
−02
Gender Dx
F-BP
C: (6/19)
0.81/1.76E
−02
M-MDD
L: (3/18)
0.89/1.91E
−02

Aging
Methamphetamine

Clozapine 18

MAPT
microtubule associated
protein tau

203930_s_at (I)
DE/2
33.7%

10 ALL
L: (11/111)
1.96/2.95E−02
Gender
Male
C: (7/91)
3.54/4.62E−02
Gender Dx
M-PSYCHOSIS
C: (5/47)
2.84/3.34E−02
M-SZ
C: (4/27)
4.65/4.06E−02

Aging
Alcohol
Intellect
MDD
Methamphetamine
Phencyclidine
Stress
Suicide
SZ

Lithium
Omega-3 fatty acids

18

FCGR1A
Fc fragment of IgG, high
affinity Ia, receptor (CD64)

216951_at (I)
DE/4
64.6%

7 ALL
L: (3/49)
20/3.50-02
Gender

17
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Table 3 (continued)

Genesymbol/Gene name Probeset Step 1
Discovery in blood
(Direction of
change tracking
increased memory)
method/
score/
%
up to 6pts

Step 2
External CFG
evidence for
involvement in
AD
score
up to 12 pt

Step 3
Best
significant
prediction of
state
Low
memory
retention
ROC AUC/
p-value
up to 6 pts
ALL
4pts gender
2pts gender
/Dx

Step 3
Best significant
predictions of trait
future positive
neuropsych
OR/OR p-value
Up to 6 pts ALL
4pts gender
2pts gender /Dx

Other
psychiatric and related
disorders evidence(change
in opposite direction to
increased me
mory)

Pharmacogenomics
Drugs that modulate the biomarker
(Change in Same Direction to
Increased Memory)

CFE
polyevidence
score

Male
L: (3/40)
15.4/4.37E−02

UBE2L3
ubiquitin conjugating enzyme
E2L 3

200682_s_at (D)
DE/6
91%

4 ALL
L: (17/111)
0.63/4.13E
−02
Gender
Male
L: (12/79)
0.65/4.92E
−02
Gender Dx
M-BP
C: (10/54)
0.7/2.25E
−02
M-SZA
L: (3/13)
0.9/2.13E
−02

Aging
Alcohol
ASD
Depression
Stress
SZ

Clozapine 16

NKTR
natural killer cell triggering
receptor

1570342_at (D)
AP/6
85%

4 ALL
C: (68/238)
0.59/1.40E
−02
Gender
Male
C: (53/176)
0.62/5.55E
−03
Gender Dx
M-BP
C: (10/54)
0.68/3.56E
−02
M-
PSYCHOSIS
C: (27/67)
0.63/3.19E
−02
M-
PSYCHOSIS
L: (8/27)
0.72/3.55E
−02
M-SZ
C: (15/34)
0.72/1.38E
−02
M-SZ
L: (5/14)
1/1.35E−03

Alcohol
BP
Depression
MDD
Social Isolation
Stress
Suicide
SZ

16

243008_at (D)
AP/6
84.4%
(D)
DE/4
64.1%

4 ALL
C: (11/111)
1.51/3.05E
−02
Gender
Male
C: (7/91)
1.63/2.46E
−02
Gender Dx
M-
PSYCHOSIS
C: (5/47)
2.12/5.45E
−03
L: (2/22)
9.69/1.68E
−02
M-SZ
C: (4/27)
1.82/1.78E
−02
L: (2/13)
6.22/3.32E
−02

Suicide
Pain
SZ

Antidepressants 16
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Table 3 (continued)

Genesymbol/Gene name Probeset Step 1
Discovery in blood
(Direction of
change tracking
increased memory)
method/
score/
%
up to 6pts

Step 2
External CFG
evidence for
involvement in
AD
score
up to 12 pt

Step 3
Best
significant
prediction of
state
Low
memory
retention
ROC AUC/
p-value
up to 6 pts
ALL
4pts gender
2pts gender
/Dx

Step 3
Best significant
predictions of trait
future positive
neuropsych
OR/OR p-value
Up to 6 pts ALL
4pts gender
2pts gender /Dx

Other
psychiatric and related
disorders evidence(change
in opposite direction to
increased me
mory)

Pharmacogenomics
Drugs that modulate the biomarker
(Change in Same Direction to
Increased Memory)

CFE
polyevidence
score

PTGS2
prostaglandin-endoperoxide
synthase 2 (prostaglandin G/
H synthase and
cyclooxygenase)

1554997_a_at (D)
DE/4
76%

10 Gender Dx
M-PTSD
C: (4/10)
0.88/2.75E
−02

Aggression
Alcohol
ASD
BP
Chronic Fatigue Syndrome
Depression
Depression-Related
MDD
Neurological
Pain
Phencyclidine
Social Isolation
Stress
Stress
Substances/Addictions
Suicide

Antipsychotics Lithium
Vorinostat

16

RGS10
regulator of G-protein
signaling 10

214000_s_at (I)
DE/4
63.5%

6 ALL
L: (17/111)
0.7/3.89E
−03
Gender
Male
L: (12/79)
0.74/4.73E
−03
Gender Dx
F-BP
L: (2/9)
0.93/3.95E
−02
M-BP
L: (1/27)
1/4.76E−02
M-MDD
L: (3/18)
0.87/2.53E
−02
M-SZ
C: (15/34)
0.68/3.70E
−02

Aging
BP
Female specific
interpersonal-traumas
Methamphetamine
Post-Deployment PTSD
PTSD
Stress
Suicide
SZ

16

MAPT
microtubule associated
protein tau

203928_x_at (I)
DE/4
57.5%

10 Gender Dx
F-BP
C: (6/19)
0.81/1.76E
−02

Aging
Alcohol
Intellect
MDD
Methamphetamine
Phencyclidine
Stress
Suicide
SZ

Lithium
Omega-3 fatty acids

16

ITPKB
inositol-trisphosphate 3-kinase
B

232526_at (I)
DE/4
51.9%

6 ALL
L: (17/111)
0.73/1.60E
−03
Gender
Male
L: (12/79)
0.7/1.44E
−02
Female
L:(5/32)
0.79/2.29E
−02
Gender Dx
M-BP
L: (1/27)
1/4.76E−02

Aging
Alcohol
MDD
Phencyclidine
Stress
Suicide,SZ
SZ

16

KIDINS220
kinase D-interacting substrate
220 kDa

214932_at (I)
DE/4
51.9%

6 Gender Dx
F-BP
L: (2/9)
0.93/3.95E
−02

Gender
Male
C: (7/91)
2.49/3.78E−02
Gender-Dx
M-BP
C: (2/16)
6.06/4.18-02

Alcohol
MDD
Psychosis
Pain
Suicide
Stress

Clozapine 16

209945_s_at 10 16
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Table 3 (continued)

Genesymbol/Gene name Probeset Step 1
Discovery in blood
(Direction of
change tracking
increased memory)
method/
score/
%
up to 6pts

Step 2
External CFG
evidence for
involvement in
AD
score
up to 12 pt

Step 3
Best
significant
prediction of
state
Low
memory
retention
ROC AUC/
p-value
up to 6 pts
ALL
4pts gender
2pts gender
/Dx

Step 3
Best significant
predictions of trait
future positive
neuropsych
OR/OR p-value
Up to 6 pts ALL
4pts gender
2pts gender /Dx

Other
psychiatric and related
disorders evidence(change
in opposite direction to
increased me
mory)

Pharmacogenomics
Drugs that modulate the biomarker
(Change in Same Direction to
Increased Memory)

CFE
polyevidence
score

GSK3B
glycogen synthase kinase 3
beta

(D)
DE/4
50.3%

Gender Dx
M-SZA
L: (3/13)
0.93/1.40E
−02

Aging
Alcohol
ASD
BP
BP,SZ
MDD
Stress
Suicide
SZ

Astaxanthin-DHA
Antipsychotics
Lithium
Omega-3 fatty acids
Ketamine
lipoteichoic acid
Valproate
enzastaurin, glycogen synthase
kinase-3beta inhibitor

SERTAD3
SERTA domain containing 3

219382_at (D)
DE/6
81.4%

5 Gender
Female
L:
(5/32)
0.79/2.29E
−02
Gender Dx
F-BP
C: (6/19)
0.81/1.76E
−02
F-
PSYCHOSIS
L: (2/13)
1/1.50E−02
F-SZA
L: (2/8)
1/2.28E−02

Alcohol
ASD
Aging

15

APOE
apolipoprotein E

212884_x_at (D)
AP/2
34.1%

11 Gender Dx
M-PTSD
C: (4/10)
0.88/2.75E
−02
Gender Dx
M-SZ
L: (5/14)
0.89/9.82E
−03

Aggression
Aging
Alcohol
Anxiet
ASD
BP
Brain arousal
MDD
PTSD
Stress
Suicide
SZ
TBI

Omega-3 fatty acids 15

UBE2I
ubiquitin conjugating
enzyme E2I

233360_at (D)
DE/6
86.8%

6 Gender Dx
F-
PSYCHOSIS
L: (2/13)
0.91/3.78E
−02
F-SZA
L: (2/8)
0.92/4.78E
−02

Aging
Alcohol
ASD
Hallucinations
Mood State
Stress

Clozapine 14

FOXO3
forkhead box O3

231548_at (I)
AP/2
38.9%
(I)
DE/6
82.3%

4 Gender Dx
F-SZA
C: (5/15)
0.78/4.32E
−02

Gender Dx
M-PSYCHOSIS
C: (5/47)
4.14/4.58E−02

BP
Cocaine
Longevity
PTSD
Stress
Suicide

Clozapine 14

THRA
thyroid hormone receptor,
alpha

214883_at (I)
DE/4
61.3%

8 Gender Dx
F-BP
C: (6/19)
0.79/2.18E
−02
M-BP
L: (1/27)
1/4.76E−02

Alcohol
PTSD
Stress
Suicide
SZ

3,5-diiodothyropropionic acid,
denosumab/levothyroxine,
amiodarone,levothyroxine,
dextrothyroxine,L-triiodothyronine

14

ITPKB
inositol-trisphosphate 3-kinase
B

1554306_at (D)
AP/4
61.1%
(D)
DE/4
55.7%

6 Gender
Female
L:(5/32)
0.81/1.37E
−02
Gender Dx
F-BP
C: (6/19)
0.91/2.50E
−03
F-BP
L: (2/9)
1/2.02E−02

Acute Stress
Aging
Alcohol
ASD
BP
MDD
Neurological
Suicide
SZ

Omega-3 fatty acids 14
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Table 3 (continued)

Genesymbol/Gene name Probeset Step 1
Discovery in blood
(Direction of
change tracking
increased memory)
method/
score/
%
up to 6pts

Step 2
External CFG
evidence for
involvement in
AD
score
up to 12 pt

Step 3
Best
significant
prediction of
state
Low
memory
retention
ROC AUC/
p-value
up to 6 pts
ALL
4pts gender
2pts gender
/Dx

Step 3
Best significant
predictions of trait
future positive
neuropsych
OR/OR p-value
Up to 6 pts ALL
4pts gender
2pts gender /Dx

Other
psychiatric and related
disorders evidence(change
in opposite direction to
increased me
mory)

Pharmacogenomics
Drugs that modulate the biomarker
(Change in Same Direction to
Increased Memory)

CFE
polyevidence
score

IGF1
insulin-like growth factor 1
(somatomedin C)

209542_x_at (I)
DE/4
54.1%

8 Gender Dx
F-BP
C: (6/19)
0.79/2.18E
−02

Aggression
Aging
Alcoho
Anxiety
BP
Depression
Longevity
PTSD
SZ

Lithium
Clozapine
Fluoxetine (SSRI), Venlafaxine
(SNRI)
MEDI-573,BI 836845

14

NPTX2
neuronal pentraxin II

213479_at (I)
DE/4
52.5%

8 Gender Dx
F-BP
L: (2/9)
0.93/3.95E
−02

Alcohol
Brain arousal
Cocaine
Depression
MDD
MDD,SZ
Mood Disorders NOS
Stress
Suicide

Clozapine
Fluoxetine

14

GSTM3
glutathione S-transferase mu
3 (brain)

235867_at (D)
DE/4
52.1%

8 Gender Dx
F-SZA
C: (5/15)
0.78/4.32E
−02

BP
MDD
SZ

14

BACE1
Beta-Secretase 1

222463_s_at (I)
DE/2
44.8%

8 Gender
Male
C: (7/91)
1.97/3.78E−02

MDD
Stress
Suicide

14

PSEN1
presenilin 1

203460_s_at (D)
DE/4
54.5%

9 Aging
Alcohol
Autism
Depression
Emotional Stability
Neuroticism
Suicide
SZ

Omega-3 fatty acids 13

GFAP
glial fibrillary acidic protein

203540_at (I)
DE/2
34.3%

9 Gender Dx
F-BP
C: (6/19)
0.77/3.28E
−02

Addictions
Alcohol
BP
MDD
Stress
Suicide
SZ
Yohimbine

Omega-3 fatty acids
Clozapine

13

TREM2
triggering receptor expressed
on myeloid cells 2

219725_at (I)
DE/2
37.6%

11 BP
SZ

13

NOCT
nocturnin

220671_at (D)
AP/4
69.5%

6 Gender Dx
F-PTSD
C: (3/9)
1/1.01E−02

PTSD
Post-Deployment PTSD

12

CEP350
centrosomal protein 350 kDa

204373_s_at (D)
DE/4
67.1%

6 Gender Dx
M-PSYCHOSIS
L: (2/22)
54.6/3.77E−02

Autism
BP
Cocaine
Depression
PTSD
Stress
Suicide
SZ

Antidepressants, Fluoxetine 12

PPP2R2B
protein phosphatase 2,
regulatory subunit B, beta

205643_s_at (I)
DE/4
63.5%

6 Gender Dx
F-BP
L: (2/9)
1/2.02E−02

ADHD
Aging
Alcohol
ASD
Circadian abnormalities
Longevity
PTSD
Suicide
SZ

12

NRP2
neuropilin 2

222877_at (I)
DE/4
61.3%

6 Gender Dx
M-MDD
L:(3/18)
0.98/5.43E
−03

Longevity
MDD
Phencyclidine
Stress

Clozapine 12

CTSS
cathepsin S

232617_at 8 Aging
Alcohol

Omega-3 fatty acids 12
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human and animal model studies, for involvement in AD
(Fig. 1 and Table S2). There were 138 probesets that had a
CFG score (combined internal and external score) of 10 and
above. These were carried forward to the testing in

independent cohorts step (see Supplementary Information-
Complete Data and Analyses). This represents approxi-
mately a 400-fold enrichment of the probesets on the
Affymetrix array.

Table 3 (continued)

Genesymbol/Gene name Probeset Step 1
Discovery in blood
(Direction of
change tracking
increased memory)
method/
score/
%
up to 6pts

Step 2
External CFG
evidence for
involvement in
AD
score
up to 12 pt

Step 3
Best
significant
prediction of
state
Low
memory
retention
ROC AUC/
p-value
up to 6 pts
ALL
4pts gender
2pts gender
/Dx

Step 3
Best significant
predictions of trait
future positive
neuropsych
OR/OR p-value
Up to 6 pts ALL
4pts gender
2pts gender /Dx

Other
psychiatric and related
disorders evidence(change
in opposite direction to
increased me
mory)

Pharmacogenomics
Drugs that modulate the biomarker
(Change in Same Direction to
Increased Memory)

CFE
polyevidence
score

(D)
DE/4
56.9%

ASD
BP
Brain arousal
Pain
Suicide

VEGFA
vascular endothelial growth
factor A

211527_x_at (I)
DE/2
45.3%

8 Gender Dx
M-MDD
C: (11/38)
0.7/2.57E
−02

Alcohol
Anxiety
BP
Chronic Stress
Depression
Hallucinations
Intellect
MDD
Pain MSK
Stress
Suicide
SZ

Antipsychotics Fluoxetine
Steroids

12

MAPT
microtubule associated
protein tau

233117_at (I)
DE/2
44.2%

10 Aging
Alcohol
Intellect
MDD
Methamphetamine
Phencyclidine
Stress
Suicide
SZ

Lithium
Omega-3 fatty acids

12

GSK3B
glycogen synthase kinase 3
beta

240562_at (I)
DE/2
39.2%

10 Aging
Alcohol
ASD
BP
MDD
Methamphetamine
Psychological Stress
Stress
Suicide
SZ
Yohimbine

Antipsychotics
Antipsychotics Pregnenolone sulfate
Fluoxetine (SSRI)
Lithium
mood stabilizing drugs
Valproate

12

GSK3B
glycogen synthase kinase 3
beta

242336_at (D)
AP/2
34.1%

10 Aging
Alcohol
ASD
BP
BP,SZ
MDD
Stress
Suicide
SZ

Astaxanthin-DHA
Antipsychotics
Lithium
Omega-3 fatty acids
Ketamine
lipoteichoic acid
Valproate
enzastaurin, glycogen synthase
kinase-3beta inhibitor

12

BACE1
Beta-Secretase 1

224335_s_at (I)
DE/2
43.1%

8 MDD
Stress
Suicide

10

Bold—top biomarkers after discovery and prioritization (n= 23, CFG ≥ 12)). Underlined—best predictor in a category after testing of the longer
list candidate biomarkers after discovery and prioritization (n = 138, CFG ≥ 10), as depicted in Fig. 2. We tabulated into a convergent functional
evidence (CFE) score all the evidence from discovery (up to six points), prioritization (up to 12 points), testing (State Memory Retention State
and Trait Future Positive Neuropsychological Testing (up to six points each if significantly predicts in all subjects, four points if predicts by
gender, two points if predicts in gender/diagnosis subgroups). The goal is to highlight, based on the totality of our data and of the evidence in the
field to date, biomarkers that have all around evidence: track memory, are implicated in AD, and predict memory state and future dementia. Such
biomarkers merit priority evaluation in future clinical trials. Red—increased in expression (I) in high memory states, blue—decreased in
expression (D). DE—differential expression, AP—absent/present. C—cross-sectional analyses; L—longitudinal analyses, using levels and slopes
from multiple visits. In all, by gender, and personalized by gender and diagnosis (gender/Dx), DE—differential expression, AP—absent/present.
For Step 3 predictions, C-cross-sectional (using levels from one visit), L-longitudinal, M-males, F-females. MDD-depression, BP-bipolar, SZ-
schizophrenia, SZA-schizoaffective, PSYCHOSIS- schizophrenia and schizoaffective combined, PTSD-post-traumatic stress disorder. This is a
summary table—the Supplementary Information contains 336 references related to the data summarized here
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Table 4 Therapeutics. New drug discovery/repurposing. A, B. Connectivity Map [40, 41] (CMAP) analysis. Query for signature is done using
exact Affymetrix probesets and direction of change. Drugs that have same gene expression profile effects to our high memory retention biomarkers
signatures. A score of 1 indicates the perfect match, i.e. the best potential therapeutic for increasing memory retention. C, D. NIH LINCS analysis
using the L1000CDS2 (LINCS L1000 Characteristic Direction Signature Search Engine) tool. Query for signature is done using gene symbols and
direction of change. Shown are compounds mimicking direction of change in high memory. A higher score indicates a better match

Rank CMAP name Score Description

A. Top biomarkers CFG ≥ 12 (n= 23 probesets; 7 increased and 6 decreased were present in HG-U133A array used by CMAP).

1 Verteporfin 1 A benzoporphyrin derivative, is a medication used as a photosensitizer for photodynamic therapy to eliminate the abnormal
blood vessels in the eye associated with conditions such as the wet form of macular degeneration.

2 Pioglitazone 0.987 A drug of the thiazolidinedione (TZD) class with hypoglycemic (antihyperglycemic, antidiabetic) action, used to treat
diabetes

3 Salsolidine 0.972 A tetrahydroisoquinoline isolated from plants of the genus Salsola. Tetrahydroisoquinolines are steroselective competitive
inhibitors of the enzyme monoamine oxidase. They are also a competitive inhibitors of catechol-O-methyltransferase.

4 Sulfadimidine 0.97 A sulfonamide antibacterial.

5 SB-203580 0.968 Specific inhibitor of p38MAPK

6 Ronidazole 0.966 An antiprotozoal agent used in veterinary medicine

7 Mesalazine 0.961 Anti-inflammatory salycilate derivative used to treat ulcerative colitis

8 Dioxybenzone 0.946 An organic compound used in sunscreen to block UVB and short-wave UVA rays. It is a derivative of benzophenone.

9 Metamizole 0.942 A nonsteroidal anti-inflammatory drug

10 8-Azaguanine 0.936 A purine analog with antineoplastic activity

B. Top Biomarkers CFG ≥ 10 (n= 138 probesets; 45 increased and 38 decreased were present in HG-U133A array used by CMAP).

1 Levonorgestrel 1 Progesterone derivative used as contraceptive. Progesterone and its derivatives have some evidence for promoting brain cell
growth, at least in adult rats, and some studies have shown that it can improve cognitive performance in the aging mouse.

2 Aminohippuric acid 0.955 Nontoxic diagnostic tool to measure effective renal plasma flow

3 Meglumine 0.933 Meglumine, also known as megluminum or methylglucamine, belongs to the class of organic compounds known as hexoses.
Often used as an excipient in pharmaceuticals. Methylglucamine orotate is a memory-improving drug, altough the ortoate
component was though to be the active compound.

4 mesalazine 0.932 Nonsteroidal antiinflamatory drug used to treat inflammatory bowel diseases

5 Lymecycline 0.92 Tetracycline antibiotic; tetracyclines have been shown to have beneficial effects in neurodegenerative diseases

6 Torasemide 0.918 diuretic

7 Dioxybenzone 0.916 Sunscreen compound

8 Ginkgolide A 0.915 A natural compound with neuroprotective and possible AD preventing effects

9 Rimexolone 0.907 Rimexolone is a derivative of prednisolone, a synthetic glucocorticoid with anti-inflammatory and immunosuppressive
property.

10 Ketanserin 0.905 Ketanserin is a selective serotonin receptor antagonist with weak adrenergic receptor blocking properties. The drug is
effective in lowering blood pressure in essential hypertension. It also inhibits platelet aggregation. It is well tolerated and is
particularly effective in older patients.

Rank Score Drug Description

C. Top biomarkers CFG ≥ 12 (n= 23 probesets, 18 unique genes; 8 increased and 10 decreased).

1 0.2941 BRD-K03371390 7-fluoro-6-methoxy-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-1-one

2 0.2941 NCGC00185923-01 3-[[4-(2,6-Difluoro-4-methoxyphenyl)sulfonyl-1,4-diazepan-1-yl]sulfonyl]aniline

3 0.2353 BENZANTHRONE dye that binds to amyloid fibrils

4 0.2353 SQ 22536 adenylyl cyclase inhibitor

5 0.2353 ICARIIN prenylated flavanol glycoside from Epimedium sagittatum

6 0.2353 YM 90709 IL-5 receptor antagonist

7 0.2353 QUIPAZINE MALEATE binds to serotonin receptors, particularly to 5HT2A and 5HT3

8 0.2353 Cisapride serotonin 5-HT4 receptor agonist

9 0.2353 LEUCINE ENKEPHALIN enkephalin

10 0.2353 BRD-K15318909 Prima-1, anticancer agent

D. Top biomarkers CFG ≥ 10 (n= 112 unique genes; 68 increased and 64 decreased).

1 0.1048 Proparacaine hydrochloride Local anesthetic

2 0.0952 BRD-K00944562 [(4S,5S)-5-(2-Azidophenyl)-4-[2-(benzenesulfonyl)ethyl]-2-[4-(3-hydroxypropoxy)phenyl]-5H-1,3-oxazol-4-yl]-
piperidin-1-ylmethanone

3 0.0952 BRD-A80151636 (6Ar)-5-bromo-N-[(1S,4R)-2-hydroxy-7-(2-methylpropyl)-5,8-dioxo-4-propan-2-yl-3-oxa-6,9-diazatricyclo[7.3.0.02,6]
dodecan-4-yl]-7-methyl-6,6a,8,9-tetrahydro-4H-indolo[4,3-fg]quinoline-9-carboxamide

4 0.0952 BRD-K05361803 5-Chloro-N-heptylnaphthalene-1-sulfonamide PKC activator

5 0.0952 BRD-K82137294 1-[(2S,3S)-2-[[Benzenesulfonyl(methyl)amino]methyl]-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-6-oxo-3,4-dihydro-
2H-1,5-benzoxazocin-8-yl]-3-[4-(trifluoromethyl)phenyl]urea

6 0.0952 BRD-K34206396 N-[(2S,3S)-2-[[1,3-Benzodioxol-5-ylmethyl(methyl)amino]methyl]-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-6-oxo-
3,4-dihydro-2H-1,5-benzoxazocin-8-yl]-2-(1-methylindol-3-yl)acetamide

7 0.0952 Pioglitazone A drug of the thiazolidinedione (TZD) class with hypoglycemic (antihyperglycemic, antidiabetic) action, used to treat
diabetes

8 0.0857 TENOXICAM Nonsteroidal anti-inflammatory drug

9 0.0857 BRD-K64642496 Tert-butyl 3-[(2S,5S,8S)-14-methoxy-2-(2-methylpropyl)-4,7-dioxo-3,6,17-triazatetracyclo[8.7.0.03,8.011,16]
heptadeca-1(10),11,13,15-tetraen-5-yl]propanoate Inhibitor of breast cancer resistance protein

10 0.0857 BRD-K18364651 N-[(3R,9S,10S)-9-[[Cyclohexanecarbonyl(methyl)amino]methyl]-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-
oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]pyridine-4-carboxamide

Bold—drugs known to have pro-cognitive effects, which thus serve as a de facto positive control for our approach. Italic—natural compounds.
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In Step 3 Testing, we examined in an independent cohort
(n= 127) from the one used for discovery whether the
longer list of biomarkers prioritized in Step 2 (n= 138,
CFG ≥ 10) are predictive of memory retention measure
(state), and of future positive neuropsychological testing for
MCI, AD or other dementia (trait), using electronic medical
records follow-up data of our study subjects (up to 12.81
years from initial visit at the time of the analyses- December
2018) (Fig. 1, Table 1, and Table S1). The gene expression
data in the test cohorts was normalized (Z-scored) across
genders and various psychiatric diagnoses, before those
different demographic groups were combined. We used
biomarker levels information cross-sectionally, as well as
expanded longitudinal information about biomarker levels
at multiple visits, as predictors. We tested the biomarkers in
all subjects in the independent test cohort, as well as in a
more personalized fashion by gender and psychiatric diag-
nosis. We were successful in identifying gene expression
biomarkers that were predictive in the independent cohorts
for memory state, and for future neuropsychological testing
positive for cognitive decline. We show increased accuracy
with the personalized approach. In general, the longitudinal
information was more predictive than the cross-sectional
information.

Top predictive biomarkers for state were ITPKB, NKTR,
RGS10, and PER1 (Fig. 2a and Table 3). The AUC ROCs
ranged from over 0.6 for all subjects tested, to over 0.8
personalized by gender, and over 0.9 personalized by gen-
der and diagnosis. NKTR is illustrative in this regard. It has
a very modest AUC across all (0.59/p= 1.40E−02), higher
in males (0.62/p= 5.55E−03), even more so in males with
schizophrenia using cross-sectional levels of the biomarker

(0.72/p= 1.38E-02), and the highest in male with schizo-
phrenia using longitudinal levels of the biomarker (1/p=
1.35E−03). NKTR (Natural Killer Cell Triggering Recep-
tor) is increased in expression in blood in low memory
states in our study. There is some previous evidence
showing it is increased in expression in the hippocampus in
Alzheimer [18], but not as a top finding, and there is no
previous functional evidence as a blood biomarker for
memory or AD. Interestingly, it is a top biomarker for
stress, increased in expression in high stress states stress
states in a recent study from our group [12]. NKTR was also
reported increased in expression in blood in studies of social
isolation in humans [19], and in brain in studies of chronic
variable stress in mice by Nestler and colleagues [20].
NKTR is also increased in expression in our previous
blood biomarker studies of suicide, in both males [8, 21],
and females [22], as well as increased in expression
in postmortem brain studies in depression [23] and in
schizophrenia [24], possibly underlying the effect of stress
on those disorders and, based on our new data, on
decreasing memory retention and promoting AD.

Top predictive biomarkers for trait were FCGR1A,
GAP43, and MAPT (Fig. 2b and Table 3). Their Cox
Regression Odds Ratios are at least 2-fold or higher, and
significant. Caution should be used in interpreting these results
because of the small Ns. We illustrate the virtues of perso-
nalization by gender and diagnosis with the example of RHEB
in male schizophrenia, as our only future ADRD conversion
to date was a male with schizophrenia (Figure S2A, B).

Based on our studies and analyses, the biomarkers with
the best overall convergent functional evidence (CFE) for
relevance to memory and AD were some new genes such as
RAB7A, NPC2, TGFB1, GAP43, ARSB, PER1, GUSB,
and MAPT (tau), as well as the well-known GSK3B,
PTGS2, APOE, BACE1, PSEN1, and TREM2 (Table 3 and
Fig. 3), with previous genetic and/or animal model evi-
dence, that now have functional evidence in humans from
our studies. The fact that key genes for AD brain pathology
came out of our unbiased whole-genome discovery step
tracking memory is reassuring, and they serve as de facto
positive controls for our approach. Some of our new genes
have previous supportive convergent evidence, buried
in previous datasets; they were not considered strong can-
didate genes to be involved in AD before, and had no
functional evidence as blood biomarkers for memory. An
example is ARSB, a top biomarker from discovery, and our
strongest predictor for low memory state in subjects with
psychosis (SZ, SZA), with an AUC of 0.88/p-value 1.04E-
03. ARSB (arylsulfatase B) is decreased in expression in
blood low memory states in our studies. It has previous
evidence for being decreased in expression in hippocampus
and other brain regions in MCI [25], and genetic evidence
for association with hippocampal volume in AD [26].

Fig. 3 Convergent functional evidence for involvement in memory and
AD. Genes from Table 3
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Additional new genes/biomarkers, with strong evidence for
tracking memory state in the discovery step, are NKTR
(natural killer cell triggering receptor), RHEB (Ras homo-
log enriched in brain), UBE2L3 (ubiquitin conjugating
enzyme E2L 3), FOXO3 (forkhead box O3), SERTAD3
(SERTA domain containing 3), and UBE2I (ubiquitin
conjugating enzyme E2I).

Some of the biomarkers are targets of existing drugs,
such as lithium, antidepressants, and omega-3 fatty acids
(Fig. 4, Table S4), of potential utility in patient stratification
and pharmacogenomics approaches. Moreover, the top
biomarkers gene expression signature, upon bioinformatics
drug repurposing analyses (Table 4), yielded new drug
candidates (such as pioglitazone and levonorgestrel), and
natural compounds (such as salsolidine, ginkgolide A and
icariin). The signature could be used for targeted enrollment
of patients in clinical trials for these compounds, which
would increase the odds of success, and for objectively
measuring response to treatment.

Discussion

We describe a novel approach for discovering blood bio-
markers of relevance to AD, and testing them in indepen-
dent cohorts. The biomarkers also open a window into
understanding the biology of memory disorders in general,
and of AD and related disorders in particular.

Brain–blood

Blood biomarkers offer real-world clinical practice advan-
tages. As the brain cannot be readily biopsied in live indivi-
duals, and CSF is less easily accessible than blood, we have
endeavored over the years to identify blood biomarkers for

neuropsychiatric disorders. A whole–blood approach facilities
field deployment of sample collection. The assessment of
gene expression changes focuses our approach on immune
cells. The ability to identify peripheral gene expression
changes that reflect brain activities is likely due to the fact that
the brain and immune system have developmental common-
alities, marked by shared reactivity and ensuing gene
expression patterns. There is also a bi-directional interaction
between the brain and immune system. Not all changes in
expression in peripheral cells are reflective of or germane to
brain activity. By carefully tracking a phenotype with our
within subject design, and using convergent functional
genomics prioritization, we are able to extract the peripheral
changes that do track and are relevant to the brain activity
studied, in this case memory and AD.

Power considerations

Based on our work for the last two decades in genetics and
gene expression, along with the results of others in the field,
we estimate that the within-subject longitudinal design, by
factoring out all genetic and some environmental variability,
is up to 3 orders of magnitude more powerful than an inter-
subject case-control cross-sectional design. Moreover, gene
expression, by integrating the effects of many SNPs and
environment, is up to 3 orders of magnitude more powerful
than a genetic study. Combined, our approach may be up to
6 orders of magnitude more powerful than a GWAS study,
even prior to the CFG literature-based prioritization step.

As an illustration of this, after the completion of our
analyses, two major genetic studies came out. The first was
a large scale genetic meta-analysis of clinically diagnosed
AD and AD-by-proxy (71,880 cases, 383,378 controls)
(Jansen et al. Nature Genetics 2019) [27]. 14 of their 29
genome-wide significant loci/ genes were present in the
candidate gene expression biomarkers for memory list that
had survived our initial whole-genome unbiased within-
subject Discovery step, before any CFG literature prior-
itization (APOE, TREM2, ABCA7, APH1B, BIN1,
MS4A6A, PICALM, SLC24A4, HLA-DRB1, CNTNAP2,
CASS4, CD33, CD2AP, and ADAM10). Two more of the
29 had anti-sense transcripts in our candidate biomarker
list from Discovery (EPHA1-AS1 and ABI3-AS1)
(see Supplementary Information- Complete Data and Ana-
lyses). The second was a large scale genetic meta-analysis
of clinically diagnosed late-onset Alzheimer’s Disease
(94,437 individuals) [28]. 15 of their 24 genome-wide
significant loci/ genes were present in the candidate bio-
marker for memory list that had survived our initial whole-
genome unbiased within-subject Discovery step, before any
CFG literature prioritization (TREM2, ABCA7,INPP5D,
BIN1, MS4A6A, PICALM, FERMT2, SLC24A4, HLA-
DRB1, CASS4, CD2AP, IQCK, WWOX, ACE and

Fig. 4 Pharmacogenomics: Top biomarkers (from Table 3) modulated
by existing drugs
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ADAM10). One more of the 24 had anti-sense transcripts in
our candidate biomarker list from Discovery (EPHA1-AS1)
(see Supplementary Information- Complete Data and
Analyses). This independent reproducibility of findings
between our studies and the genetic studies, which are done
in independent cohorts from ours, with independent meth-
odologies, is reassuring, and provides strong convergent
evidence for the validity and relevance of our approach and
of the GWAS approach. Our work also provides functional
evidence for some of the GWAS top hits. For example,
APOE, a strong finding from genetic studies of AD, seems
to be involved in pathology by levels of expression also, not
just mutant forms. In fact, there is prior evidence that APOE
promoter region SNPs may be involved in the pathology of
AD [29]. APOE may be involved in particular in memory
impairment [30].

Pathophysiological insights

A number of top biomarkers identified by us have biological
roles that are related to the circadian clock (Table S3). To be
able to ascertain all the genes in our dataset that were cir-
cadian and do estimates for enrichment, we compiled from
the literature a database of all the known circadian genes,
numbering a total of 1468 genes. Using an estimate of about
21 000 genes in the human genome, that gives about 7%
of genes having some circadian pattern. Out of our
112 candidate biomarker genes, 19 had circadian evidence
(16.96%), including the clock core gene PER1, suggesting a
2.4-fold enrichment for circadian genes. This provides a
molecular underpinning for the epidemiological data
between disrupted sleep and risk of AD [31, 32], and for the
clinical phenomenology of “sundowning”.

The top candidate biomarkers also had prior evidence of
involvement in other psychiatric and related disorders
(Table S3), providing a molecular underpinning for the
possible precursor effects of these disorders in AD. In
particular, a majority of them have an overlap with stress
(84%), aging (49%) and suicide (75%), consistent with
them being part of the effects of stress on aging and the “life
switch”, as described in a previous study by us [14]. The
primary medications used to treat stress disorders are ser-
otonin reuptake inhibitors (SSRIs). A recent study has
shown that long-term SSRI treatment may delay progress
from MCI to AD [33].

The top biological pathways where the candidate bio-
markers from discovery and prioritization map were related to
LXR/RXR activation, neuroinflammation signaling and
atherosclerosis signaling (Table 2B). Agonists of nuclear
receptors LXR:RXR and PPAR:RXR are known to amelio-
rate AD-related cognitive impairment and amyloid accumu-
lation in murine models of AD. Interestingly, the ω-3 fatty
acid docosahexaenoic acid (DHA), in combination with RXR

agonist bexarotene, enhances LXR:RXR target gene expres-
sion of Abca1 and ApoE, reduces soluble forms of Aβ, and
abrogates release of pro-inflammatory cytokines and media-
tors both in vitro and in a mouse model of AD [34]. Neu-
roinflammation is postulated to be a central mechanism in AD
[35]. Atherosclerosis, and more general cardiovascular dis-
orders, are recognized clinical risk factors for AD. The
STRING gene interaction analysis (Fig. S3) revealed at least 3
networks. Network 1 (red) includes TREM2, along with
ITPKB and FCGR1A; it may be involved in reactivity and
inflammatory responses. Network 2 (green) includes GSK3B,
along with MAPT (tau) and BACE1; it may be involved in
activity and cellular trophicity. Network 3 (blue) includes
PSEN1, along with FOXO3 and RHEB; it may be involved in
connectivity and synaptic integrity. APOE is at the overlap of
Networks 1 and 2. It is conceivable mechanistically that
stress can lead to inflammation, followed by neuronal death
(apoptosis) and synaptic connectivity loss, resulting in
decreased memory and ultimately dementia.

The majority of top blood biomarkers we have identified
have prior evidence in postmortem brain datasets from AD,
which indicates their relevance to the pathophysiology of
AD (Table S2). The co-directionality of blood changes in
our work and brain changes reported in the literature needs
to be interpreted with caution, as it may depend on brain
region and on disease stage. Nevertheless, it is intriguing
that three well known genes for AD, TREM2, MAPT (tau),
and BACE1 are changed in the same direction (increased in
expression) in blood in high memory states in our cohorts as
they are in AD samples (Table S2). Consistent with the
above discussion, RHEB is also changed in same direction
(decreased) in high memory states in our data, and in AD
brains in previous datasets, which increases BACE1 levels
and amyloid β generation [36]. APP itself does not make the
threshold as a candidate biomarker for memory in our dis-
covery approach, but BACE 1 does, and it is increased in
expression in high memory states. So is the APP-related
gene APLP2 (data not shown). This opens the possibility
that these genes are part of normal memory function, and
their increase in AD is compensatory and/or excessive, like
a scar formation. If so, treatments that target them may
backfire in early stages of the disease, or need to be very
carefully dosed in later stages of the disease. It is notable
that various efforts to target amyloid accumulation have not
been successful in multiple clinical trials to date.

The fact that GSK3B is a top candidate biomarker, has
interesting neurobiological and therapeutic implications.
GSK3B is decreased in expression in high memory states in
our current work, and is mostly increased in expression in
psychiatric disorders, including depression and stress rela-
ted ones (Table S3), suggesting an avenue to their impact on
memory and on later life AD. It is a known target of lithium
[37], a medication that could be used for memory disorders

Blood biomarkers for memory: toward early detection of risk for Alzheimer disease, pharmacogenomics,. . . 1669



improvement and prevention of AD, particularly in indivi-
duals with mood disorders earlier in life. Lithium is known
to have anti-apoptotic roles [38, 39], so it is possible that it
may prevent the neuronal loss of viability that is a precursor
and part of AD, and which in turn triggers and is accen-
tuated by the scar-like deposition of MAPT and APP.

Pharmacogenomics and drug repurposing

Besides GSK3B, lithium also modulates expression of
MAPT, PER1, PTGS2 and IGF1 (Fig. 4). GSK3B and
MAPT are also modulated by omega-3 fatty acids. Such
information could be useful for personalized treatment
selection, and for monitoring response to treatment. More-
over, the drug repurposing analyses using the biomarker
signatures from our studies (Table 4) yielded drug candi-
dates such as pioglitazone (a diabetes medication, pre-
viously studied for AD prevention in clinical trials that may
have been too heterogeneous in enrollment), levonorgestrel
(a progesterone derivative), and the natural compounds
salsolidine (a natural compound with acetylcholinesterase
inhibitory properties), ginkgolide A (a natural compound
with neuroprotective effects) and icariin (a natural com-
pound reported to improve memory impairment in Alzhei-
mer’s disease model mice). We now have human functional
data-based evidence for the potentially utility of these
drugs. Various abbreviated signatures present in individual
patients could be used in the future to choose the best
repurposed drug fit for each patient.

Diagnostics

Our data for assessment and predictions needs to be inter-
preted with caution, particularly for the trait predictions, due
to the small Ns. Nevertheless, the results are obtained in an
independent cohort from the one used in discovery, and
suggest interesting leads, as well as the fact that gender
differences will be important for clinical applications. We
would propose that a panel of our top genes, such as those
in Table 3, be tested for predictions in other independent
cohorts, and potentially be used in clinical settings. A
comination of phenomic data (clinical information, ima-
ging) and and biomarker data may work best. Of note,
however, the HVLT was not a significant trait predictor in
our cohort (data not shown).

Conclusions

Our work has provided evidence for novel possible preci-
sion medicine approaches, diagnostic and therapeutic. In
particular, it may lead to improved early objective assess-
ment of state, of future risk, and to targeted preventive

treatments (in essence, a risk evaluation and mitigation
system) for memory disorders in general, and AD in parti-
cular, that result in decreased quality and quantity of life, at
a massive cost to individuals, families and society. It also
opens a novel window into disease pathophysiology, and
may lead to new targets for drug development. Given the
growing world-wide burden of AD, and the unsuccessful
approaches to date, such new avenues should be pursued
with vigor and alacrity.
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