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Abstract

The objective of this study is to investigate the thermal efficiency and power

production of typical models of endoreversible heat engines at the regime of

minimum entropy generation rate. The study considers the Curzon-Ahlborn engine,

the Novikov’s engine, and the Carnot vapor cycle. The operational regimes at

maximum thermal efficiency, maximum power output and minimum entropy

production rate are compared for each of these engines. The results reveal that in an

endoreversible heat engine, a reduction in entropy production corresponds to an

increase in thermal efficiency. The three criteria of minimum entropy production,

the maximum thermal efficiency, and the maximum power may become equivalent

at the condition of fixed heat input.

Keyword: Engineering

1. Introduction

The Kelvin-Planck statement of the Second Law of Thermodynamics says that it is

impossible to construct a heat engine to receive heat and to convert it completely

into work. However, it does not indicate how much of heat is convertible into a

useful form of energy; i.e. work. The first mathematical formulation of the second

law is credited to Clausius, who showed that in a reversible Carnot cycle operating
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with an ideal gas QL=QH equals TL=TH , where QH is the amount of heat transfer

from a high temperature reservoir maintained at temperature TH to the cycle, and

QL is the amount of heat rejected from the cycle to a low temperature reservoir

whose temperature is TL. This conclusion led him to invent the thermodynamic

property Entropy defined as S ¼ Q=T . Clausius implied that if the Carnot engine is

the most efficient engine among all engines operating between the same thermal

reservoirs, QL=QH would be greater than the temperature ratio TL=TH in other

types of engine, hence expressing his well-known inequality; i.e.,
H
dQ=T ≤ 0.

Clausius therefore concluded that the real heat engines would result in production

of entropy.

It is natural to question whether there is any relationship between the entropy

produced by a heat engine and its thermal efficiency or power output. In 1975, Leff

and Jones [1] discussed by means of an analytical argument that an increase in the

thermal efficiency of an irreversible heat engine would not necessarily result in a

decrease in its entropy production. Salamon et al. [2] showed that the maximum

work and the minimum entropy production in heat engines might become

equivalent under certain design conditions. Haseli et al. [3] analyzed entropy

production of an integrated gas turbine and solid oxide fuel cell by accounting for

the component inefficiencies. Their results showed that the entropy generation rate

of the hybrid cycle did not correlate with the cycle efficiency.

Numerous articles have appeared in the literature claiming a direct relationship

between the entropy produced by a power producing system with its thermal

efficiency. However, there is a limited number of articles [1, 4, 5] which

investigate the possibility of correlation between the entropy production and the

thermal efficiency of a heat engine. In some cases, a relation between maximum

work production and minimum entropy has been observed [4, 6, 7, 8]. Haseli [4]

showed that in irreversible Otto, Diesel and Brayton cycles, minimum entropy

production neither correlates with maximum thermal efficiency design nor with

maximum work output criterion. An earlier attempt on this subject had revealed a

consistent relation between the entropy generation and the thermal efficiency of an

endoreversible Brayton cycle operating with or without a regenerative heat

exchanger [5].

The objective of the present article is to further investigate the equivalence of

maximum thermal efficiency and minimum entropy production in typical

endoreversible engines including the models of Curzon-Ahlborn [9], Novikov

[10], and Carnot vapor cycle. It is aimed to show that the thermal efficiency of a

heat engine may correlate with the entropy generation associated with the operation

of that engine if the engine is endoreversible. The thermal efficiency and power

output of the above mentioned engines at the condition of minimum entropy

generation rate will also be examined. Unlike many articles appeared in the
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literature which interpret entropy production as a measure of lost work, it will be

shown that this notion is invalid.

2. Analysis

The Curzon-Ahlborn engine [9] is depicted in Fig. 1 on a temperature-specific

entropy (T-s) diagram. It is a Carnot engine which experiences external

irreversibility due to finite heat exchange between the engine and the hot and

cold thermal reservoirs. Entropy is produced due to the finite time heat exchange

between the endoreversible engine (the green rectangle in Fig. 1) and the thermal

reservoirs. Hence, the rate of entropy generation is

_SGen ¼
_QH

TEH
�

_QH

TH

� �
þ

_QL

TL
�

_QL

TEL

� �
(1)

where _QH is the heat rate received by the engine from the high temperature thermal

reservoir, and _QL is the heat rate rejected by the engine to the low temperature

thermal reservoir.

_QH ¼ Kh TH � TEHð Þ (2)

_QL ¼ Kl TEL � TLð Þ (3)

Kh and Kl are thermal conductances (assumed to be constant) at hot-end and cold-

end sides, respectively. Also, TEH and TEL denote the highest and the lowest

temperatures of the engine; see Fig. 1.
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Fig. 1. The heat engine model of Curzon-Ahlborn on a T-s diagram.
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As the engine is endoreversible, we conclude that

TEL

TEH
¼

_QL
_QH

¼ Kl TEL � TLð Þ
Kh TH � TEHð Þ (4)

Solving for TEL gives

TEL ¼ TEHTLKl

TEH Kh þ Klð Þ � THKh
(5)

Using Eq. (4), Eq. (1) reduces to

_SGen ¼
_QL

TL
�

_QH

TH
(6)

A combination of Eqs. (2), (3), (5) and (6) allows us to express Eq. (6), after some

algebra, as

_SGen ¼ Kh TH � TEHð Þ 1

1þ Kh
Kl

� �
TEH � Kh

Kl
TH

� 1
TH

2
4

3
5 (7)

Solving ∂ _SGen=∂TEH ¼ 0 leads to TEHð Þopt ¼ TH . Substituting this result into

Eq. (5), we also find TELð Þopt ¼ TL. The minimization of the entropy generation

rate associated with Curzon-Ahlborn model suggests that any irreversibility

between the thermal reservoirs and the engine should be removed, which will

consequently lead to zero finite time power. On the other hand, the power produced

by the engine is _W ¼ _QH � _QL. Using Eqs. (2), (3) and (5), it can be shown that

_W ¼ Kh TH � TEHð Þ � Kl
TEHTLKl

TEH Kh þ Klð Þ � THKh
� TL

� �
(8)

Applying ∂ _W=∂TEH ¼ 0 leads to the optimum value of TEH for maximizing the

power.

TEHð Þopt ¼
ffiffiffiffiffiffiffiffiffiffiffi
THTL

p
Kl þ THKh

Kl þ Kh
(9)

The corresponding maximum power production of the engine is given by

_Wmax ¼ KlKh

Kl þ Kh

ffiffiffiffiffiffi
TH

p � ffiffiffiffiffiffi
TL

p	 
2
(10)

Curzon and Ahlborn [9] showed that the engine efficiency at maximum power is

ðηCAÞ _Wmax ¼ 1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TL=TH

p
, where the subscript CA refers to Curzon-Ahlborn

engine. To find out whether there is any relationship between the entropy

production of the Curzon-Ahlborn cycle and its thermal efficiency, we represent

Eq. (7) in a dimensionless form by dividing it by Kl.
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S� ¼ rK rT � T�
EH

	 
 1
1þ rKð ÞT�

EH � rTrK
� 1
rT

� �
(11)

where

S� ¼
_SGen
Kl

; rK ¼ Kh

Kl
; rT ¼ TH

TL
; T�

EH ¼ TEH

TL

Using Eq. (5), the efficiency of the engine may be represented as

ηCA ¼ 1� TEL

TEH
¼ 1� 1

T�
EH rK þ 1ð Þ � rTrK

(12)

We may also rewrite Eq. (8) in a normalized form as

W� ¼ 1þ rK rT � T�
EH

	 
� T�
EH

T�
EH rK þ 1ð Þ � rTrK

(13)

where W� ¼ _W= KlTLð Þ.

Fig. 2 shows the variation of the thermal efficiency, the normalized power output

and the normalized entropy production of the Curzon-Ahlborn engine with T�
EH for

typical values of rT ¼ 6 and rK ¼ 2. It is seen that the entropy production

monotonically decreases by increasing T�
EH , whereas the thermal efficiency

increases. On the other hand, the power output peaks at T�
EH ¼ 4:82. Note that as

T�
EH→rT , the efficiency approaches ηC; i.e., the Carnot efficiency, and the rate of

entropy produced by the engine approaches zero. However, at this condition, the

power output of the engine reaches zero. From this analysis, we conclude that for

the Curzon-Ahlborn engine, minimization of the entropy production rate is

equivalent to maximization of the thermal efficiency, but not to maximization of

power output.

[(Fig._2)TD$FIG]
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Fig. 2. Variation of the thermal efficiency, normalized power output and normalized entropy

production rate of the Curzon-Ahlborn engine with T�
EH ¼ TEH=TL (rT ¼ 6, rK ¼ 2).
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Note that the varying parameter in our thermodynamic optimization is T�
EH , and we

assumed rK is constant. One may treat T�
EH as a fixed parameter and optimize the

system by varying rK . This is also a possible situation; however, our conclusion

mentioned in the previous paragraph is still correct. In other words, even with

varying rK and fixed values of T�
EH and rT , it can be shown with a similar analysis

presented above that minimum entropy production correlates with only maximum

thermal efficiency, not with maximum power output. This is graphically

demonstrated in Fig. 3.

The Novikov engine [10] is depicted on a T-s diagram in Fig. 4. In this model, the

temperature at the cold-end side of the engine is the same as the low temperature

reservoir's temperature, TL. In other words, it is a Carnot engine which experiences

external irreversibility due to finite heat exchange between the engine and the hot

thermal reservoir. As the engine is internally reversible, its efficiency is

ηN ¼ 1� TL=TEH , a n d t h e p owe r p r o d u c e d b y t h e e n g i n e i s
_W ¼ _QH 1� TL=TEHð Þ. Using Eq. (2), we find

_W ¼ Kh TH � TEHð Þ 1� TL

TEH

� �
(14)

Assuming a constant Kh and fixed TH and TL, Eq. (14) has an optimal value with

respect to TEH. Applying ∂ _W=∂TEH ¼ 0 yields an equation whose solution gives

TEHð Þopt ¼
ffiffiffiffiffiffiffiffiffiffiffi
THTL

p
(15)

Eq. (15) allows us to find the efficiency and the power output of the Novikov

engine at maximum power condition.
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Fig. 3. Variation of the thermal efficiency, normalized power output and normalized entropy

production rate of the Curzon-Ahlborn engine with rK (rT ¼ 6, T�
EH ¼ 5).

Article No~e00113

6 http://dx.doi.org/10.1016/j.heliyon.2016.e00113

2405-8440/© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://dx.doi.org/10.1016/j.heliyon.2016.e00113


ðηNÞ _Wmax ¼ 1�
ffiffiffiffiffiffi
TL

TH

r
(16)

_Wmax ¼ Kh
ffiffiffiffiffiffi
TH

p � ffiffiffiffiffiffi
TL

p	 
 2
(17)

An interesting observation is that the efficiencies of the engine models shown in

Fig. 1 and Fig. 4 at maximum power output are the same. However, comparing

Eqs. (17) and (10), one may notice that the maximum power produced by the

Novikov engine is larger than that of the Curzon-Ahlborn engine. This is because

at the condition of maximum power, the highest temperature of the engine, TEH, of

the Curzon-Ahlborn engine is higher than that of the Novikov engine; compare

Eqs. (9) and (15), meaning that the input heat requirement of the former engine is

less than that of the latter one. As the efficiency of both engines at maximum

power is the same, it can be implied that the maximum power of the Curzon-

Ahlborn engine is less than that of the Novikov engine.

In the next step, we calculate the entropy generation rate associated with the

operation of the Novikov’s model.

_SGen ¼ _QH
1

TEH
� 1
TH

� �
(18)

Notice that the cold-end side temperature of the engine is the same as the low

temperature thermal reservoir's temperature. Inserting Eq. (2) into Eq. (18) yields

_SGen ¼ Kh TH � TEHð Þ 1
TEH

� 1
TH

� �
(19)

[(Fig._4)TD$FIG]
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Fig. 4. The heat engine model of Novikov on a T-s diagram.
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Solving ∂ _SGen=∂TEH ¼ 0 leads to TEHð Þopt ¼ TH . This result reveals that the

minimum entropy generation rate takes place when TEH → TH, which would give a

zero finite time power.

Let us now consider a modified model of Novikov, in which the finite time heat

exchange only takes place at the cold-end side of the engine (see Fig. 5). Thus, the

efficiency and the power output of the engine are given by ηMN ¼ 1� TEL=TH and
_W ¼ _QHηMN ¼ _W þ _QL

	 

1� TEL=THð Þ, respectively. Note that the subscript

“MN” denotes modified Novikov. Using Eq. (3), we have

_W ¼ Kl 1� TL

TEL

� �
TH � TELð Þ (20)

Maximization of the power output given in Eq. (20) with respect to TEL yields

TELð Þopt ¼
ffiffiffiffiffiffiffiffiffiffiffi
THTL

p
, which is the same as TEHð Þopt of the Novikov engine. The

efficiency and the power output of the modified Novikov engine at maximum

power production are obtained by

ηMNð Þ _Wmax
¼ 1�

ffiffiffiffiffiffi
TL

TH

r
(21)

_Wmax ¼ Kl
ffiffiffiffiffiffi
TH

p � ffiffiffiffiffiffi
TL

p	 
 2
(22)

Comparing Eqs. (22) and (10), it can be inferred that when the thermal

conductance at the hot-end side of the Curzon-Ahlborn model tends to infinity

Kh → ∞, the model of Curzon-Ahlborn reduces to the modified engine model of

Novikov. A further important observation is that the efficiency of all three engines

that we have examined so far is 1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TL=TH

p
at maximum power output, whereas

[(Fig._5)TD$FIG]
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Fig. 5. Modified Novikov engine on a T-s diagram.

Article No~e00113

8 http://dx.doi.org/10.1016/j.heliyon.2016.e00113

2405-8440/© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://dx.doi.org/10.1016/j.heliyon.2016.e00113


the maximum power of the Novikov engine is the highest, and that of the modified

Novikov engine is the lowest, and that of the Curzon-Ahlborn engine is in between.

To evaluate the production rate of entropy, we note that there is merely one source

of entropy generation at the cold-end side of the engine due to the finite time heat

exchange. The heat transfer at the hot-end side of the engine takes place reversibly.

So, _SGen ¼ _QL 1=TL � 1=TELð Þ and using Eq. (2), we have

_SGen ¼ Kl TEL � TLð Þ 1
TL

� 1
TEL

� �
(23)

Solving ∂ _SGen=∂TEL ¼ 0 results in TELð Þopt ¼ TL, and substituting it into Eq. (20)

leads to _W ¼ 0. Therefore, we conclude that the minimum entropy generation and

maximum power output are two different operational regimes in the modified

Novikov engine model.

Similar to the case of Curzon-Ahlborn model, the relationship between the entropy

production and the thermal efficiency is graphically demonstrated in Fig. 6 for the
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Fig. 6. Variation of thermal efficiency, normalized power output and normalized entropy production

rate of (a) Novikov’ engine, and (b) modified Novikov’s engine (rT ¼ 6).
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Novikov engine and the modified Novikov engine. For the case of Novikov engine

(Fig. 6a), the normalized power output W* and the normalized entropy production

rate S* are defined the same way as before. However, because Kl → ∞ for the case

of modified Novikov engine (Fig. 6b), these two parameters are defined as

W� ¼ _W=ðKhTLÞ and S� ¼ _S=Kh. Also, note that the results for the Novikov’s
model are presented as a function of TEH/TL, whereas those for the modified

Novikov model are versus TEL/TL.

Fig. 6 reveals that an increase in the entropy production is equivalent to a decrease

in the thermal efficiency for both cases. For the case of Novikov’s engine, the

thermal efficiency monotonically increases with TEH/TL and the entropy production

consistently decreases with TEH/TL. The power output of the engine peaks at TEH/

TL = 2.1. For the case of modified Novikov’s model, with an increase in TEL/TL,

the thermal efficiency decreases and the entropy production increases. The power

output attains its maximum at TEL/TL = 2.1. From this discussion, we arrive at the

conclusion that for the engine models of Novikov and modified Novikov, the

minimization of the entropy production is equivalent to the maximization of the

thermal efficiency, a similar conclusion that we reached for the case of Curzon-

Ahlborn engine.

A schematic of the Carnot vapor cycle is shown on a T-s diagram in Fig. 7. Unlike

the heat engine models examined in above, which are interacting with fixed

temperature thermal reservoirs, the model of Fig. 7 exchanges heat with a hot

stream whose specific heat is cp,h, and a cold stream with a specific heat of cp,l. The

cycle undergoes an isothermal evaporation process at temperature TEH, and an

isothermal condensation process at temperature TEL. The evaporation process takes
[(Fig._7)TD$FIG]
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place by receiving heat from the hot stream through a heat exchanger. The inlet and

outlet temperatures of the hot stream are Th,in and Th,out (< Th,in), respectively. At

the cold-end side of the engine, the condensation heat is rejected through another

heat exchanger, to the cold stream which enters the heat exchanger at temperature

Tl,in and exits at temperature Tl,out (> Tl,in).

Let us now assume that both heat exchangers at the hot-end and the cold-end sides

are operating ideally with 100 percent effectiveness. In other words, the

temperature of the hot stream leaving the hot-end side of the engine is equal to

the evaporation temperature; i.e., Th,out = TEH, and the exit temperature of the cold

stream is the same as the condensation temperature; i.e., Tl,out = TEL. In this case,

the heat rate supplied from the hot stream for evaporation of the working fluid is

_QH ¼ _mcp
	 


h Th;in � Th;out
	 
 ¼ _Ch Th;in � TEH

	 

(24)

where _C ¼ _mcp. The heat rate rejected by the engine at the cold-end side heat

exchanger is absorbed by the cold stream; whose temperature rises from Tl,in to

Tl,out. Hence,

_QL ¼ _mcp
	 


l Tl;out � Tl;in
	 
 ¼ _Cl TEL � Tl;in

	 

(25)

The power producing compartment (the green rectangle in Fig. 7) is internally

reversible, so _QL= _QH ¼ TEL=TEH . Eqs. (24) and (25) allow us to establish a

relationship between TEL and TEH.

TEL ¼
_ClTEHTl;in

_Cl þ _Ch
	 


TEH � _ChTh;in
(26)

The power output of the engine is obtained as

_W ¼ _QH � _QL ¼ _Ch Th;in � TEH
	 
� _Cl TEL � Tl;in

	 

(27)

Substituting Eq. (26) into Eq. (27) gives

_W ¼ _Ch Th;in � TEH
	 
� _Cl

_ClTEHTl;in

_Cl þ _Ch
	 


TEH � _ChTh;in
� Tl;in

" #
(28)

For given values of the hot and the cold streams inlet temperatures; i. e., Th,in and

Tl,in, and fixed heat capacitances of the hot and cold streams, the power produced

by the engine has only one degree of freedom, TEH. Maximization of the power

with respect to TEH yields

ðTEHÞopt ¼
_ChTh;in þ _Cl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Th;inTl;in

p
_Cl þ _Ch

(29)

The maximum power output of the Carnot vapor cycle is obtained by substituting

Eq. (29) into Eq. (28).
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_Wmax ¼
_Cl _Ch

_Cl þ _Ch

� � ffiffiffiffiffiffiffiffiffi
Th;in

p � ffiffiffiffiffiffiffiffi
Tl;in

p	 
 2
(30)

An important observation in the model of Fig. 7 is that unlike the models of Fig. 1,

Fig. 4 and Fig. 5 in which all amount of heat supplied from the thermal reservoir is

transferred to the engine, here only a fraction of the heat, _QH , is transferred to the

power producing compartment. If the hot stream is supplied from the ambient (e.g.

air) as in most steam engines, it is first heated (for instance, in the furnace of a

steam power plant) to the desired temperature Th,in, and eventually it is exhausted

to the atmosphere characterized with temperature Tl,in (see Fig. 8). So, the thermal

efficiency of the entire plant is given by ηth ¼ _W= _Qin, where _Qin denotes the rate of

heat transferred from the high temperature reservoir to the hot stream.

_Qin ¼ _QH þ _Ch TEH � Tl;in
	 
 ¼ _Ch Th;in � Tl;in

	 

(31)

Using Eqs. (30) and (31), we find an expression for the thermal efficiency of the

entire plant at maximum power as follows.

ηthð Þ _Wmax
¼

_Cl

_Cl þ _Ch

� � ffiffiffiffiffiffiffiffiffi
Th;in

p � ffiffiffiffiffiffiffiffi
Tl;in

p
ffiffiffiffiffiffiffiffiffi
Th;in

p þ ffiffiffiffiffiffiffiffi
Tl;in

p
 !

(32)

Note that the efficiency of the power producing compartment at maximum power

is 1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tl;in=Th;in

p
. Also, as the heat input _Qin is constant, the maximum efficiency

occurs at exactly the same optimum TEH that the power output is maximized; i.e.,

Eq. (29).

The entropy production rate due to the heat exchange between the power producing

compartment and the hot and cold streams is _SGen ¼ Δ _Sl � Δ _Sh, where Δ _Sl and Δ _Sh

[(Fig._8)TD$FIG]

Carnot vapor cycle

Cold Stream

Hot Stream

W = QH – QL

. . .

QH 
.

Qin

.

QL

.QL

.

TEH = Th,out

Tl,in

Th,in

TH

TEL = Tl,out

.
QH = Ch (TEH – Tl,in)

Fig. 8. Illustration of evaluating the total entropy generation rate related to the operation of the heat

engine model depicted in Fig. 7.
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denote the net change in the entropies of the cold and hot streams, respectively, due

to the heat exchange with the working fluid of the cycle.

To evaluate the total entropy generation rate associated with the operation of the

engine model of Fig. 7 and based on the arguments of Ref. [8], we need to account

for additional sources of entropy generation due to (1) the transfer of heat from the

exhaust of the hot stream to the surrounding, (2) the rejection of heat from the

exhaust of the cold stream to the surrounding, and (3) heating the hot stream to

increase its temperature from Tl,in to Th,in; see Fig. 8.

As the hot stream is provided from the ambient, its temperature first rises from Tl,in
to Th,in, which then reduces to Th,out within the hot-end side heat exchanger where it

loses part of its energy to evaporate the working substance of the engine, and

finally it cools down to Tl,in after it returns back to the ambient. Thus, the net

change in the entropy of the hot stream gas is zero. Likewise, the net change in the

entropy of the cold stream is zero as it is supplied from the ambient and eventually

discharged to the ambient. So, a more accurate way to determine the total entropy

generation rate of the system designated with the dashed-rectangle in Fig. 8, is to

evaluate the total heat transferred to the hot stream as well as the total heat rejected

from the cycle to the ambient. Thus, by accounting for all possible sources related

to the operation of the model of engine under study, the total entropy production

rate is

_SGen;tot ¼
_Qout

Tl;in
�

_Qin

TH
¼ _Qin

1
Tl;in

� 1
TH

� �
�

_W
Tl;in

(33)

where TH is the combustion temperature. In Eq. (33), _Qout was eliminated using
_W ¼ _Qin � _Qout.

As the rate of heat input _Qin is constant; see Eq. (31), the minimum total entropy

generation rate occurs at exactly the same optimum TEH that the power output is

maximized; i.e., Eq. (29). Thus, we conclude that maximum power, maximum

thermal efficiency, and minimum entropy production rate become coincident for

the Carnot vapor engine when the heat input is constant. As reasoned in a previous

article [4], for the specific case of constant heat input, optimization of any model of

engine that interacts with two thermal sources, based on maximum thermal

efficiency, maximum power output and minimum entropy production would result

in an identical design.

Nevertheless, from practical viewpoint, optimization of an engine with a fixed heat

input is irrelevant. A given heat input is equivalent to a fixed mass of fuel to be

burnt in furnace. Once the problem is reduced to a fixed amount of burning fuel, an

important ability of varying mass of fuel at other operational conditions (such as at

part-load operation) is taken away. So, it would be rational to treat this parameter
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as a variable together with many other parameters which may directly or indirectly

influence the thermal efficiency of an engine.

Let us now consider a Carnot vapor cycle with varying heat input. For this, we

assume that _Ch is the design parameter, and all other parameters including TEH are

constant. Similar to the case with varying TEH , it can be inferred from Eq. (28) that

there is an optimum _Ch given by Eq. (34), which maximizes the power output.

_Ch
	 


opt ¼ _Cl
TEH � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TEHTl;in
p

Th;in � TEH
(34)

Substituting Eq. (34) into Eq. (28), the maximum power output at optimum heat

capacity of the hot stream is obtained as

_Wmax ¼ _Cl
ffiffiffiffiffiffiffiffi
TEH

p � ffiffiffiffiffiffiffiffi
Tl;in

p	 
2
(35)

Eq. (35) reveals that when the power optimization is performed with _Ch, the

maximum power depends only on three parameters: the heat capacity and the inlet

temperature of the cold stream, and the highest temperature of the engine TEH. On

the other hand, the thermal efficiency of the cycle at maximum power is

ηthð Þ _Wmax
¼ 1�

ffiffiffiffiffiffiffiffi
Tl;in

TEH

r� �
Th;in � TEH

Th;in � Tl;in

� �
(36)

It can be implied from Eq. (36) that the thermal efficiency at maximum power is

independent of the heat capacities of the cold and hot streams, but it depends on

their inlet temperatures as well as the highest temperature of the engine.

To illustrate the dependence of efficiency, power output and the entropy

generation rate of the Carnot vapor cycle with our design parameter, _Ch, it is

convenient to define normalized power output W� and normalized entropy

generation rate S� as W� ¼ _W= _ClTl;in
	 


and S� ¼ _SGen;tot= _Cl, where _W and _SGen;tot
are given in Eqs. (28) and (33), respectively. One may realize from Eqs. (28) and

(33) that both W� and S� are functions of _Ch= _Cl, TEH=Tl;in, Th;in=Tl;in, and

TH=Tl;in.

The variation of the thermal efficiency, normalized power output and normalized

entropy production rate of the Carnot vapor cycle versus the ratio of _Ch= _Cl is

illustrated in Fig. 9 for typical values of TEH=Tl;in ¼ 5, Th;in=Tl;in ¼ 6, and

TH=Tl;in ¼ 7. The results in Fig. 9 demonstrate that the thermal efficiency

correlates with S�. The thermal efficiency of the engine decreases monotonically

with _Ch= _Cl, whereas S� consistently increases with _Ch= _Cl. On the other hand, the

power produced by the cycle peaks at _Ch= _Cl ¼ 2:8. Thus, when the heat input is

a varying parameter, the regimes of maximum thermal efficiency and minimum

entropy generation rate are equivalent, but they are different from the regime of

maximum power.
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3. Conclusion

The efficiency of typical endoreversible heat engines including Curzon-Ahlborn,

Novikov and modified Novikov models, and Carnot vapor cycle at minimum

entropy production is examined. The unique and common feature of these engines

is that the compression and the expansion processes take place isentropically. The

key conclusion is that the production of entropy is an indication of a reduction in

the thermal efficiency of an endoreversible heat engine. This is consistent with the

previous findings on endoreversible Brayton cycles [5]. Furthermore, for the case

of fixed heat input, an optimization based on minimum entropy production rate,

maximum power output, or maximum thermal efficiency results in an identical

design.
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