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A B S T R A C T

Background: The present study tested the hypothesis that network segregation, a graph theoretic measure of
functional organization of the brain, is correlated with treatment response in patients with major depressive
disorder (MDD) undergoing repetitive transcranial magnetic stimulation (rTMS).
Methods: Network segregation, calculated from resting state functional magnetic resonance imaging scans, was
measured in 32 patients with MDD who entered a sham-controlled, double-blinded, randomized trial of rTMS to
the left dorsolateral prefrontal cortex, and a cohort of 20 healthy controls (HCs). Half of the MDD patients
received sham treatment in the blinded phase, followed by active rTMS in the open-label phase. The analyses
focused on segregation of the following networks: default mode (DMN), salience (SN), fronto-parietal (FPN),
cingulo-opercular (CON), and memory retrieval (MRN).
Results: There was no differential change in network segregation comparing sham to active treatment. However,
in the combined group of patients who completed active rTMS treatment (in the blinded plus open-label phases),
higher baseline segregation of SN significantly predicted more symptom improvement after rTMS. Compared to
HCs at baseline, MDD patients showed decreased segregation in DMN, and trend-level decreases in SN and MRN.
Conclusion: The results highlight the importance of network segregation in MDD, particularly in the SN, where
more normal baseline segregation of SN may predict better treatment response to rTMS in depression.

1. Introduction

Studies using resting-state functional magnetic resonance imaging
(fMRI) have revealed that spontaneous activation of the brain is orga-
nized into spatially segregated functional networks (Damoiseaux et al.,
2006; Power et al., 2011). Recently, a graph theoretic measure of brain
network organization, known as network (system) segregation, has
been used to measure the balance of connections between areas within
a network and outside a network (Chan et al., 2014; Cohen and
D'Esposito, 2016; Gallen et al., 2016). The proportion of connections
within versus between networks is a prerequisite for the balance be-
tween functional specialization and global integration (through sparse
between-network connectivity) across a network (Wig, 2017). Network
segregation reliably captures age-related, decreased specialization in
brain function (Chan et al., 2014), and it correlates with variability in

long-term memory independent of age (Chan et al., 2014). In older
adults, better segregation of brain networks predicts greater improve-
ments after cognitive training (Gallen et al., 2016). Taken together,
these results suggest that network segregation may be important for
psychiatric disorders.

Alterations in functional networks have been identified in major
depressive disorder (MDD), including the default mode network
(DMN), central executive network (CEN), and the salience network (SN)
(Hamilton et al., 2012; Kaiser et al., 2015). These alterations are
thought to contribute to the core cognitive and affective dysfunctions in
MDD, leading to aberrations in self-referential thinking, auto-
biographical memory retrieval, affective interpretative bias, and cog-
nitive control (Hamilton et al., 2012; Kaiser et al., 2015; Kim, 2012;
Zhu et al., 2012). An important question is how network segregation
may predict or change with treatment interventions.
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Accordingly, we examined network segregation in a cohort of MDD
patients receiving repetitive transcranial magnetic stimulation (rTMS)
for their depression. rTMS is effective treatment for MDD, with effect
sizes of meta-analytic studies ranging from 0.39–0.55 (Bakker et al.,
2015; Connolly et al., 2012; Slotema et al., 2010); however, the anti-
depressant mechanisms of rTMS are largely unknown (Connolly et al.,
2012; Slotema et al., 2010). Functional connectivity has been ex-
amined, and studies have shown that functional connectivity within
and between brain networks tracked and predicted treatment response.
rTMS treatment has been associated with alterations in connectivity in
insula (a key node in SN) (Philip et al., 2018), dorsolateral prefrontal
cortex (DLPFC, a key node in CEN) (Fox et al., 2012; Philip et al., 2018;
Taylor et al., 2018), anterior cingulate cortex (ACC) within meso-cor-
tico-limbic network (Tik et al., 2017), affective network (Taylor et al.,
2018), between subgenual ACC (sgACC) and DMN (Liston et al., 2014;
Philip et al., 2018; Taylor et al., 2018), and between DLPFC and DMN
(Liston et al., 2014). Functional connectivity in DLPFC (Liston et al.,
2014), SN (Ge et al., 2017), DMN (Ge et al., 2017), as well as between
DMN and insula (Taylor et al., 2018) and between sgACC and DMN
(Liston et al., 2014; Philip et al., 2018) have been found to predict rTMS
treatment response to depression. These findings support the utility of
functional connectivity measures to understand rTMS mechanisms.
However, using seed-based functional connectivity (Fox et al., 2012;
Liston et al., 2014; Philip et al., 2018; Taylor et al., 2018) or in-
dependent component analysis (ICA) methods (Ge et al., 2017; Tik
et al., 2017), these studies did not address relationships between net-
works, as can be done with a graph-theoretic network measure such as
segregation.

There are other graph-theoretic network measures, such as clus-
tering coefficient, small worldness, local/global efficiency, modularity,
degree, efficiency, and betweenness-centrality, to characterize the to-
pological architectures of brain networks at different levels (Gong and
He, 2015). Previous studies of measures on depression have yielded
negative and inconsistent results (Gong and He, 2015). To our knowl-
edge, no prior work has explored network segregation in MDD, and this
approach has never previously been used to capture treatment response
to a given therapy in psychiatric disorders. Given the reported asso-
ciations of segregation with aging, cognition and response to cognitive
training (Chan et al., 2014; Gallen et al., 2016), we thought it was
important to test for a relationship between network segregation and
the response to rTMS.

The study involved a cohort of patients who received rTMS in a
controlled study. Half of the patients received rTMS during a blinded
phase, while the other half first received sham rTMS, and then went on
to receive active rTMS. We also compared baseline segregation in MDD
patients with a cohort of healthy controls (HCs). To define networks for
analysis, we used a 264-node parcellation, derived from a meta-analysis
of task-based and resting-state fMRI studies (Power et al., 2011). From
this parcellation, we focused on 5 networks identified as relevant for
depression: the DMN, SN, two task control networks (fronto-parietal
network, FPN; cingulo-opercular network, CON), and the memory re-
trieval network (MRN) (Dietsche et al., 2014; Hamilton et al., 2012;
Kaiser et al., 2015; Wu et al., 2016). The overall question was whether
or not network segregation identified a functional attribute relevant for
MDD and the treatment of MDD.

2. Materials and methods

2.1. Subjects

Forty outpatient subjects with MDD, diagnosed with DSM-IV criteria
using the Mini International Neuropsychiatric Interview (Sheehan
et al., 1998), were enrolled and randomized in the protocol between
October 2013 and October 2015. They were recruited through adver-
tisements in the community and referrals from clinicians at the Uni-
versity of Michigan Department of Psychiatry. Subjects were between

22 and 65 years of age, had failed at least one antidepressant medica-
tion trial, had at least moderate depressive severity (Montgomery-As-
berg Depression Rating Scale [MADRS]≥ 18) (Montgomery and
Asberg, 1979) and≤ 5 years in the current episode. The Antidepressant
Treatment History Form (ATHF) (Sackeim, 2001) assessed treatment
resistance. The same subjects were reported in a seed-based con-
nectivity analysis (Taylor et al., 2018), where readers can find more
details about the clinical trial.

Twenty HCs recruited from community advertisements for a sepa-
rate protocol were selected to approximately match the age and gender
distribution of the MDD patients. They were between 21 and 58 years of
age. None of them had a lifetime history of Axis I psychiatric disorders
as assessed with Structured Clinical Interview for DSM-IV (SCID) (First
et al., 1995), first-degree relatives with psychosis or other serious
mental illness (requiring antipsychotic medication, hospitalization or
ECT), and none were taking any medication affecting brain function.

The study protocol was approved by the University of Michigan
Institutional Review Board and all subjects gave written consent before
their participation.

2.2. Design and rTMS protocol

The protocol was a sham-controlled, randomized (1,1), double-
blinded study. After initial screening and assessments, subjects entered
a blinded treatment phase, beginning with the first MRI session (scan
1). In this blinded phase, subjects received 20 sessions of rTMS therapy
or sham treatment, 5 days per week. The stimulation site for each
participant was defined as the local maxima of left DLPFC activation
during an n-back task (2-task – 0-back), which was targeted by the
individualized neuronavigation (Brainsight Frameless system, Rogue
Research, Montreal CA) (see Supplementary materials). rTMS treat-
ments were delivered at 10 Hz frequency at 120% of motor threshold
and 3000 pulses/session to the left DLPFC. At the end of the blinded
treatment, the second MRI (scan 2) occurred, followed by open-label
treatment: either 5 taper sessions over 2 weeks for those in the active
arm during the blinded phase, or 20 sessions plus 5 taper sessions for
those receiving sham stimulation in the blinded phase. The primary
measurement for depression symptom changes over time was the
MADRS, obtained weekly for the 20 sessions of rTMS treatment
(baseline defined as week 0) and at the end of the last taper session.
Categorical treatment response was defined as a 50% improvement
from baseline MADRS, and remission was defined as MADRS<10.

2.3. Functional MRI acquisition and preprocessing

Image data were acquired by a 3 T GE 750 Discovery scanner
(General Electric Healthcare, Chicago, IL). Blood oxygenation level
dependent (BOLD) functional images were acquired with a T2*-
weighted, reverse spiral acquisition (gradient recalled echo,
TR=2000ms, TE= 30ms, FA=90°, field of view=22 cm, 43 slices
(40 slices for HCs), 3.0 mm thick/0mm skip, equivalent to 64×64
voxel grid – yielding approximately isotropic voxels). Two hundred and
forty acquisitions were acquired in the resting state with eyes open and
fixated on a large ‘plus’ sign projected on a monitor. Four initial vo-
lumes were discarded to allow for equilibration of scanner signal. A
high resolution T1 scan (3D SPGR) was obtained for anatomic nor-
malization, as well as a T1 spin echo acquisition in the same prescrip-
tion as the T2*BOLD scan.

All image data were preprocessed using the following standard
steps: slice-time correction; realignment; warping of functional images
to the MNI152 template (Statistical Parametric Mapping SPM8 package,
Wellcome Institute of Cognitive Neurology, London), spatial smoothing
(full-width at half maximum=8mm); linear detrending; regressing out
of nuisance covariates (six head motion parameters, white matter
signal, cerebrospinal fluid signal); and temporal band-pass filtering
(0.01 Hz - 0.1 Hz). To assess and manage movement, we calculated
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frame-wise displacement (FD) (Power et al., 2012) from the translation
and rotation parameters from the realignment file. A ‘scrubbing routine’
was used to censor any frame with FD > 0.5mm from the following
analyses, yielding a scrub ratio for each subject. Deleted frames of 60%
or less was used as a cutoff for analyzable subjects as it has been de-
monstrated that as many as 60% of frames can be removed and still
yield analyzable results (Fair et al., 2012; Power et al., 2012).

2.4. Segregation calculation

After preprocessing, for each 4D data set, time courses were ex-
tracted from 264, 10mm diameter spheres (Power et al., 2011). From
these time series, a 264×264 crosscorrelation matrix of Pearson r-
values was obtained and Z-transformed. Using the classification by
Power and colleagues, each of the 264 nodes was assigned to one of 13
networks. For each network, segregation was defined as the relative
strength of within-network connectivity compared to between-network
connectivity. Specifically, it was calculated as follows (Chan et al.,
2014):

=

−Network segregation Z Z
Z

W b

W

where ZW is the mean connectivity strength of edges between all pairs
of nodes within the same network and Zb is the mean connectivity
between nodes of one network to all nodes in other networks. Because
of the uncertain meaning of negative correlations, negative z-values
were excluded from the network analysis (Chai et al., 2012; Chan et al.,
2014; Murphy et al., 2009). Also, diagonal values in the matrix were
excluded from analysis. For each subject, 13 network segregation scores
were computed, but we focused on the 5 networks of interest (DMN, SN,
FPN, CON, and MRN) as specified above in the Introduction (Fig. 1).

2.5. Statistical analysis

To investigate the primary effect of rTMS on network segregation

during the blinded treatment phase in MDD, separate repeated-mea-
sures analyses of covariance (ANCOVAs) were conducted on segrega-
tion of each of the 5 networks, with time (scan 1, scan 2) as within-
subject factor, group (active, sham) as between-subjects factor, and age,
FD and baseline MADRS score as covariates.

To test if baseline network segregation predicts symptom change
following rTMS (blinded or open-label), hierarchical regression ana-
lyses were performed on the percentage MADRS change after 25
treatments. In this part of the analysis, patients in the active treatment
arm were combined with patients who, after completing the sham arm,
went on to receive active, open-label stimulation to maximize the
power of the sample by including all patients who received rTMS. The
predictors were baseline segregation scores, which came from scan 1 for
the active arm patients and from scan 2 for the sham arm patients. We
ran 6 regression models in total. In all of the regression models, age, FD
and baseline MADRS scores were entered as predictors in step 1. To
evaluate which networks together significantly predict rTMS treatment
response above and beyond the predictors included in step 1, regression
model 1 included segregation of all 5 networks as predictors in step 2,
and we used stepwise method to determine which predictors to retain in
the final model. To evaluate the predictive value of segregation of each
of the 5 networks, we entered segregation of one of the 5 networks as
the only predictor in step 2 for each of the other 5 regression models.
Cook's distance(Cook, 1977) was used to identify possible outliers in the
regression model, regression models were re-run without the datapoints
with large Cook's distance, and robust regression was also performed to
reduce the possible outlier effects (see details in Supplementary mate-
rials).

Since the results of the regression analyses suggested that higher
segregation predicted better treatment response, we sought to clarify
whether high or low segregation was normative. Hence, baseline net-
work segregation scores in MDD patients were compared to the HCs
using separate ANCOVAs, with age and movement as co-variates. For
all the above analyses, alpha was set to p < .01, correcting for the 5
network comparisons. See supplementary materials for additional

Fig. 1. The 5 networks-of-interest defined by Power et al. (2011).
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details.

3. Results

As previously reported (Taylor et al., 2018), of the 40 enrolled
subjects, 34 completed scan 1 and 32 completed scan 1 and scan 2.
Patients of both the sham and active treatment groups improved (in
terms of MADRS score) after 20 treatments in the blinded phase, and
there was no significant differential effect of stimulation (Supplemen-
tary Material Fig. S1). Of the patients who received sham rTMS, 2
subjects withdrew before entering open-label active treatment, and 3
subjects entered open-label treatment with remitted depression
(MADRS score≤ 8); these 5 subjects were thus excluded from the re-
gression analyses of network segregation predictors of rTMS response.
In the combined group (n=27) of patients with active treatment and
those who started with sham treatment and went on to receive active
treatment, 48% exhibited a treatment response and 33% exhibited re-
mission after 25 treatments. Demographics of the participants are
summarized in Table 1.

3.1. Segregation changes over time in MDD

In the ANCOVAs comparing segregation changes over time in active
arm vs. sham arm MDD patients, there were no significant effects of
group or group × time interaction in any of the 5 networks
(Supplementary Materials Fig. S2).

3.2. Baseline segregation prediction of symptom change following rTMS

After controlling for age, FD and baseline MADRS score, segregation
of the SN was the only significant predictor of symptom change among
the 5 networks of interest (p= .006), either when these network pre-
dictors were considered simultaneously (Table 2, Model 1) or sepa-
rately (Table 2, Models 2–6) in the regression models. The positive beta
value suggested that more segregation of the SN predicted better re-
sponse to rTMS treatment (Table 2, Fig. 2). No segregation metrics

predicted response to real versus sham or overall stimulation at the end
of the blinded phase (Supplementary materials, Table S3).

3.3. Baseline segregation in MDD versus HC

The MDD and HC groups were similar in gender distribution, but
they differed in age and movement (Table 1, Fig. S3). After controlling
for the effects of age and movement, the ANCOVA results showed that
MDD patients exhibited significantly less segregation in DMN
(p= .005), and trend-level decreases in SN (p= .041) and MRN
(p= .034), as compared to HCs (Fig. 3). Additional analyses confirmed
that age and movement could not account for group differences (see
supplementary materials, Table S1, S2 and Fig. S4).

4. Discussion

The present study examined network segregation changes with
rTMS therapy and network segregation as a predictor of response to
rTMS. Although we did not find a significant effect of rTMS stimulation,
relative to sham stimulation, on network segregation, we did find that
segregation of SN predicted symptom improvement after rTMS. We also
found that, compared to HCs, patients with MDD had significantly
poorer segregation of DMN and a trend toward poorer segregation of SN
and MRN. These findings have implications for future efforts to enhance
treatment efficiency of rTMS as well as for our understanding of the
pathophysiology of depression.

4.1. Response prediction in segregation of SN

An important finding of this study was that segregation of SN pre-
dicted symptom improvement following rTMS administered to the left
DLPFC in MDD. In contrast to seed-based approaches or ICA, segrega-
tion measures network organization and interaction, a critical property
indexing the balance between integration (connections between

Table 1
Demographical and clinical variables among MDD patients and HCs.

Blinded phase Active arm (N=16) Sham arm (N=16) t/χ2 p

Mean S.D. Mean S.D.

Age 46.88 10.78 44.13 11.11 0.71 0.48
Gender (female) 11 (69%) – 10 (63%) – 0.14 0.71
Medicated (%) 16 (100) – 14 (87.5) – 2.13 0.14
SES 2.63 0.88 2.38 0.72 0.88 0.39
ATHF-life 5.06 3.17 5.56 2.13 0.52 0.60
ATHF-current 2.56 1.75 2.94 1.77 0.60 0.55
MADRS-baseline 25.44 5.73 21.94 3.13 2.14 0.04
GAF-baseline 52.63 4.67 55.56 4.27 1.86 0.07
Response rate 7 (44%) 5 (31%) 0.53 0.46
Remission rate 4 (25%) 5 (31%) 0.15 0.69

Blinded + open-label
phase

MDD (N=27) HCs (N=20) t/χ2 p

Mean S.D. Mean S.D.

Age 45.30 11.44 33.40 13.29 3.29 0.002
Gender 19 (70%) – 11 (55%) – 1.18 0.28
Medicated (%) 25 (92.6) –
Response 13 (48%)
Remission 9 (33%)

Abbreviations: MDD, major depressive disorder; HCs, healthy control; SES:
Socio-Economic Status; ATHF: Antidepressant Treatment History Form, total
number of medication trials and augmentation strategies; MADRS:
Montgomery-Asberg Depression Rating Scale; GAF: Global Assessment of
Function.

Table 2
Baseline segregation of networks predicting symptom change in MDD patients
(N= 27).

Predictors Variable statistics Model statistics

β (s.e.) t p ΔR2 F p

Step 1 (for all models) 0.11 0.93 0.443
Age −0.01 (0.01) −1.20 0.242
FD −1.29 (1.21) −1.07 0.296
MADRS baseline 0.01 (0.01) 0.82 0.421

Step 2
Model 1a

Segregation_DMN – – – 0.27 3.30 0.029
Segregation_SN 2.44 (0.79) 3.07 0.006
Segregation_FPN – – –
Segregation_MRN – – –
Segregation_CON – – –

Model 2
Segregation_DMN −0.99 (0.92) −1.09 0.289 0.05 0.99 0.430

Model 3
Segregation_SN 2.44 (0.79) 3.07 0.006 0.27 3.03 0.029

Model 4
Segregation_FPN −0.03 (0.97) −0.03 0.979 < 0.01 0.67 0.622

Model 5
Segregation_MRN −0.22 (0.72) −0.30 0.766 < 0.01 0.69 0.606

Model 6
Segregation_CON 0.69 (1.17) 0.59 0.564 0.01 0.76 0.561

Abbreviations: MDD, major depression disorder; FD: frame displacement; DMN,
default mode network; SN, salience network; FPN, frontal-parietal control
network; CO, cingulo-opercular control network; MRN, memory retrieval net-
work.

a Predictors included segregation of DMN, SN, FPN, MRN, and CON. Using
stepwise method, only segregation of SN was significant and retained in the
final model.
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networks) and functional specialization (connections within a net-
work). The segregation measure is relatively new, but as we discuss in
the Introduction, recent findings suggest that it is functionally im-
portant in aging (Chan et al., 2014). The present study extends this line
of work to depression, where MDD patients had marginally decreased
segregation of SN compared with HCs at the baseline, suggesting that
more segregation represents a more normative state.

The SN is a large-scale paralimbic-limbic system with key nodes
including the anterior insula (AI), dorsal ACC (dACC), and amygdala.
These nodes have rich connectivity with other brain areas (Averbeck
and Seo, 2008; Craig, 2009; Menon and Uddin, 2010), permitting the
SN to detect, integrate and process internal and external salient in-
formation (Menon and Uddin, 2010). Recent literature has demon-
strated a critical role of SN in controlling switching between DMN (task-
negative network) and task positive networks (Goulden et al., 2014;
Menon, 2011). Dysfunction of SN has been found to play an important
role in the pathopsychological mechanism of MDD, e.g. associated with

the negative bias in patients with MDD (Downar et al., 2016; Hamilton
et al., 2012; Hamilton et al., 2016). In addition, the dysfunction of SN,
specifically the right AI, was significantly associated with altered dy-
namic communications between DMN and CEN in MDD patients, which
may be related to the depressive biases toward internal and self-related
thoughts at the expense of engaging with the external world (Kaiser
et al., 2015; Manoliu et al., 2013). Based on these findings, our results
may then provide support for the hypothesis that more normal segre-
gation of SN confers greater treatment responses in MDD by fostering
adaptive negative information processing and appropriate allocation of
resources between a task-negative system and a task-positive system.
Our findings are in line with results from several previous studies using
ICA, multi-voxel pattern analysis, and seed-based connectivity analyses,
showing that connectivity of many nodes within SN as well as between
SN and other brain regions tracked MDD symptom improvement after
rTMS (Ge et al., 2017; Philip et al., 2018). However, our results extend
these findings by providing new insight about the potential of network
segregation to predict treatment response to rTMS.

What remains unclear is whether the predictor, i.e., segregation of
SN, is specific for response to DLPFC rTMS or a general biomarker of
response across different treatment approaches. Previous studies have
revealed that activity and connectivity within SN also tracked response
to pharmacotherapy and psychotherapy in MDD (Fu et al., 2008; He
et al., 2016; Langenecker et al., 2007; Sikora et al., 2016), and a recent
large-scale meta-analysis revealed that the SN was a common core
substrate affected across most psychiatric disorders (Goodkind et al.,
2015). These findings may raise the possibility that SN function reflects
a more general treatment response predictor, not specific to rTMS or
even to MDD. There was no interaction between group and segregation
of SN at the end of blinded phase, which would be consistent with a
nonspecific response, but we did not find that SN segregation predicted
overall response at the end of the blinded phase, which is not consistent
with a non-specific response. However, it may have been the case that
20 sessions of stimulation did not cause enough symptom change to
show a relationship with the network, as studies show that many pa-
tients respond to TMS after 20 sessions (Yip et al., 2017). The question
of the specificity of SN segregation to treatment response remains a
topic for future research.

4.2. Decreased segregation of DMN in depression

Our analysis also revealed significantly decreased segregation of
DMN in patients with MDD. DMN consists of a set of brain regions that
deactivate reliably during task performance, with key nodes anchored

Fig. 2. Segregation of salience network (SN) predicted the treatment response of rTMS to depression (β=2. 44, s.e. = 0.79, t=3,07, p= .006).

Fig. 3. Segregation differences between MDD patients at baseline and HCs.
MDD patients had significant decreases in segregation of DMN (F[1,43]=8.74,
p= .005, Eta2=0.169), and trend decrease in segregation of SN (F
[1,43]=4.42, p= .041, Eta2=0.093) and MRN (F[1,43]= 4.79, p= .034,
Eta2=0.100) as compared to HCs. There were no significant differences be-
tween MDD and HCs in segregation of FPN (F[1,43]=4.42, p= .889) and CON
(F[1,43]= 0.06, p= .807). SN, salience network; DMN, default mode network;
MRN, memory retrieval network; FPN, fronto-parietal control network, CO,
cingulo-opercular control network; MDD, major depressive disorder; HCs,
healthy controls. auncorrected p < .05, *uncorrected p < .01 (p < .05 when
corrected for 5 multiple comparisons).
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in the medial prefrontal cortex and posterior cingulate cortex (Raichle
and Snyder, 2007). It has been associated with self-referential proces-
sing and emotion regulation as well as consciousness and memory
processing (Andrews-Hanna et al., 2010; Kim, 2012; Mulders et al.,
2015). From a clinical perspective, the decreased segregation of DMN
may be involved in MDD via ruminative, self-referential thinking, as
well as disruptions in emotion regulation. Seed-based methods and ICA
analysis have consistently shown hyperconnectivity within the anterior
part of DMN and between anterior DMN and SN (Mulders et al., 2015).
In addition to DMN, we also detected a trend of less segregation of MRN
in MDD patients as compared with HCs. In the parcellation by Power
et al. (2011), the MRN consists of parts of the posterior cingulate,
posterior medial and lateral parietal cortex, regions with strong acti-
vation in memory retrieval, and frequently included in the DMN in
other parcellations (Allen et al., 2011; Yeo et al., 2011). Thus, less
segregated MRN might contribute to the bias of retrieving negative life
events in MDD patients. Altered connectivity within posterior DMN,
between posterior DMN and anterior DMN, as well as between DMN
and FPN were also frequently reported; however, the direction of al-
terations has been inconsistent (Kaiser et al., 2015; Mulders et al.,
2015). The measurement of segregation provides an alternative per-
spective on the role of DMN in MDD by summarizing the information of
within- and between-network connectivity, and showing that not only
is regional connectivity disrupted in MDD, but more global functional
organization of the network is abnormal.

4.3. Limitations

As described in the introduction, previous studies have revealed that
overall network segregation decreases with age (Chan et al., 2014).
While the relationship with age speaks to the significance of network
segregation as an important marker of functional organization, it also
presents a potential confound for our analysis, as the MDD patients and
HC subjects were not well-matched on age. However, we found no
significant correlations between age and the 5 networks-of-interest in
either group, and no significant group by age interactions (Supple-
mentary materials Table S1, Fig. S4), indicating that the main results of
the present study, i.e., the treatment response prediction of SN as well
as group difference in DMN, were not likely driven by age differences,
although we cannot fully rule out the possibility because of our small
sample size. It should be noted that previous studies relating age to
decreased segregation typically examined only overall network segre-
gation (i.e., mean segregation of all networks), not segregation of in-
dividual networks (Chan et al., 2014). To verify their findings, we did
the same analysis (correlation between mean network segregation and
age). As shown in Table S1, we did find the relationship in HCs but not
in MDD. Our failure to find this relationship with age in the MDD pa-
tients may reflect a type 2 error, or it may reflect an altered relationship
between aging and segregation in MDD.

Another limitation was that most subjects (30 out of 32; 25 out of
27) were on antidepressant medication. Previous studies have found
medication effects on network connectivity properties in MDD (Frodl
et al., 2011; Fu et al., 2015; Tadayonnejad et al., 2016), but no prior
work has examined network segregation. Thus, our findings of differ-
ences in segregation between MDD patients and healthy controls should
be treated with some caution as possible confounding effects of medi-
cation could not be addressed. Future studies with unmedicated MDD
subjects will be required. It is also the case that we cannot rule out the
possibility that medication may have moderated symptom improve-
ment observed over the course of rTMS therapy. However, we note that
practically, the presence of medications may make our results more
generalizable, since most patients in regular clinical rTMS are also
taking antidepressant medications (Carpenter et al., 2012; Taylor et al.,
2017).

Several other limitations should also be noted. First, though the
depression scores changed in the expected direction with an effect size

(active vs. sham: 0.53) very similar to those reported in the literature
(0.39–0.5) (Bakker et al., 2015; Connolly et al., 2012; Slotema et al.,
2010), a significant clinical effect of active rTMS compared to sham
treatment was not found. This fact must limit any conclusions about the
apparent lack of an effect of rTMS on network segregations. Second, the
relatively small sample in the present study, 32 MDD patients and 20
HCs has limited statistical power. Thus, findings must be regarded with
caution, and future replication is needed. Third, movement may be
another confounding factor of the results, although it is unlikely to
account for our findings (Supplementary materials, Tables S1 and S2).
Fourth, we failed to detect a prediction effect of segregation metrics to
sham versus active stimulation or to overall stimulation, which limits
conclusions about the specificity of the predictive value of SN segre-
gation.

5. Conclusion

In conclusion, this preliminary study demonstrated that network
segregation of SN predicted treatment response to rTMS effect in de-
pression. Patients with MDD showed some degree of decreased segre-
gation, particularly in DMN, suggesting that abnormal network segre-
gation may be an important pathophysiological facet of MDD. These
findings may inform the utility of functional network organization
patterns in predicting treatment response and in understanding the
psychopathology of depression.
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