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Abstract

Klebsiella pneumoniae is a bacterial pathogen that is increasingly responsible for hospital-

acquired pneumonia and sepsis. Progressive development of antibiotic resistance has led

to higher mortality rates and creates a need for novel treatments. Because of the essential

role that nucleotides play in many bacterial processes, enzymes involved in purine and

pyrimidine metabolism and transport are ideal targets for the development of novel antibiot-

ics. Herein we describe the structure of K. pneumoniae adenosine monophosphate nucleo-

sidase (KpAmn), a purine salvage enzyme unique to bacteria, as determined by

cryoelectron microscopy. The data detail a well conserved fold with a hexameric overall

structure and clear density for the putative active site residues. Comparison to the crystal

structures of homologous prokaryotic proteins confirms the presence of many of the con-

served structural features of this protein yet reveals differences in distal loops in the absence

of crystal contacts. This first cryo-EM structure of an Amn enzyme provides a basis for future

structure-guided drug development and extends the accuracy of structural characterization

of this family of proteins beyond this clinically relevant organism.

Introduction

The gram-negative bacterium Klebsiella pneumoniae is an opportunistic pathogen. Natively

found on human mucosal surfaces, it is a frequent cause of nosocomial pneumonia and sepsis

due in large part to its protective capsule and ability to form robust biofilms on medical equip-

ment [1]. In the past two decades, K. pneumoniae has garnered greater concern due to its

increasing resistance to beta-lactam antibiotics, including the ability to inactivate carbapenems

typically resistant to extended-spectrum beta-lactamases [2]. As such, it is recognized as one of

the six pathogens of greatest concern in nosocomial infection known as the ESKAPE patho-

gens after their genera: Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae,
Acetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp. [3]. Thus, as with

Pseudomonas aeruginosa [4] and Staphylococcus aureus [5] among the other ESKAPE patho-

gens, the need for novel antibiotics targeting K. pneumoniae is pressing.

The ideal antibiotic is highly deleterious to pathogenic bacteria but lacking in similar effects

on the host cells. For instance, beta-lactams act on bacterial peptidoglycans [6,7], a structure
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not found in eukaryotes, and are better tolerated than antibiotics such as chloramphenicol

which can cross-react with mitochondrial protein synthesis as well as their target bacterial

ribosomes [8,9]. The preferred targets of novel antibiotics are therefore pathways unique to

bacteria.

Biochemical studies of nucleotide processing pathways in Azotobacter vinelandii and

Escherichia coli (E. coli) identified a key difference between prokaryotes and eukaryotes in

their regulation of the levels of adenosine monophosphate (AMP), an essential component of

both RNA synthesis and energy storage [10]. Whereas eukaryotes can deaminate AMP to ino-

sine monophosphate, prokaryotes cleave the adenine base from the ribose 5-phosphate moiety

via AMP nucleosidase (Amn, EC 3.2.2.4), additionally salvaging adenine (Fig 1). Adenosine

analogs including formycins and pyrazofurins demonstrate strong antibiotic ability, but also

cross-react considerably with mammalian biology [11,12]; structure-based modification for

specificity against prokaryotic reactions, including that of Amn, has been proposed as a means

of developing these agents into viable therapeutic treatments [13,14].

Toward this goal, crystal structures have been determined of both E. coli [14] and Salmo-
nella typhimurium [15] Amn. However, development of antibiotics toward a broad spectrum

of infectious agents benefits from a similarly broad assessment of variability in the target

molecular structures. Furthermore, the remarkable power of X-ray crystallography in deter-

mining protein structure can be limited by the distortions caused by crystal contacts [16], as

well as the non-native solution conditions typically required to crystallize and cryoprotect the

proteins [17]. Using cryo-EM, the structure of K. pneumoniae Amn was determined indepen-

dent of these protein crystallization considerations [18].

Results

Cryo-EM structure of K. pneumoniae Amn

The cryo-EM map of K. pneumoniae Amn was determined from images collected on a Titan

Krios equipped with a Falcon III detector to an estimated resolution of 3.03 Å (Fig 2C). Ab ini-
tio models confirmed the D3 symmetry expected from the homologous crystal structures, and

all further refinement and model building enforced this symmetry in the interest of improving

resolution and mitigating the moderate orientation bias of the sample (Fig 2D). The resulting

Fig 1. K. pneumoniae AMP nucleosidase chemistry. In K. pneumoniae, AMP is broken down into adenine and ribose

5-phosphate by the enzyme AMP nucleosidase (Amn). In many other organisms, including mammals, AMP is

deaminated by AMP deaminase (AD) to generate inosine monophosphate.

https://doi.org/10.1371/journal.pone.0275023.g001
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map proved suitable for modeling the protein, and KpAmn was built into it using the homolo-

gous crystal structures as an initial model followed by manual rebuilding (Fig 2A). The map

lacks density for the first seven residues of the protein, as well as presumptive loops at residues

61–79, 156–166, 362–365, and 468–478, but otherwise possesses the features expected at the

estimated resolution, including clear density for side chains (S1 Fig). The protein comprises a

well-resolved C-terminal hexameric core consisting of an extensive β-sheet structure sur-

rounded by α-helices, and a somewhat less ordered ancillary N-terminal domain, dominated

by a long α-helix,forming trimeric layers on each side of the core (Fig 2A and 2B).

In keeping with the prior E. coli structures, no significant ligand density is evident at the

active sites. Comparison to the presumed active site that binds the formycin inhibitor in PDB

entry 1T8S shows similar side chain orientations in the KpAmn structure and the correspond-

ing PDB entry 1T8R apo structure (Fig 3). The active site is composed of residues from two

chains; a cleft of conserved residues in one chain binds the nucleobase and sugar of the adeno-

sine analog, with H188 and Y189 of the apposed chain contributing to stabilize the charged

phosphate group. In the apo structure as determined, the core residues expected to stabilize

the nucleobase and sugar (N205, W383, M404, E405, and D428) are well positioned to do so,

Fig 2. Structure of K. pneumoniae Amn. KpAmn has an overall hexameric structure with D3 symmetry (A, shown

colored by chain). The sharpened electron density map (B), colored by local resolution (CryoSPARC at FSC = 0.143

and contoured at 3σ = 0.604V) reveals the well-defined features of the secondary structure. The resolution of the

structure was calculated to be 3.01 Å using the gold standard Fourier shell correlation (GFSC, C). The particles used to

generate the final model had a reasonably broad angular distribution (D).

https://doi.org/10.1371/journal.pone.0275023.g002
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whereas R381 and K436 are in alternative conformations in the absence of the interacting

phosphate. The surrounding residues are well resolved; weak density outward from the active

site is interpreted as residues 435–443, possibly stabilizing the apo protein while remaining

flexible enough to permit AMP access.

Comparison to Amn homologs

As expected, a structure-based search of the PDB using the DALI server [19] identified the E.

coli Amn structure family alongside weaker hits for other purine-binding enzymes (Table 1).

The crystal structures of the E. coliAmn homolog have been determined with and without sub-

strates bound [14], while the unpublished structure of Salmonella typhimurium Amn (PDB

entry 2GUW) [15] was determined only in an unliganded state. Several other, considerably

more distant sequence homologs that lack the N-terminal domain are also available in the

PDB (Table 1); consistent with the variation in annotated function, conservation in the Amn

active site is limited to residues M404, E405, and D428 interacting with the purine base and

sugar (S2 Fig). The cryo-EM structure of K. pneumoniae Amn primarily differs from the apo
homologs in its loop regions away from the active site (Fig 4A), either by lacking density for

the loop entirely or being in a clearly different conformation. As these loops are those that

form presumptively physiologically irrelevant crystal contacts in the crystal structure, the cryo-

EM model of K. pneumoniae Amn, lacking such interactions, is likely to better reflect the pro-

tein’s conformation in solution.

A broader comparison of K. pneumoniae Amn to its homologs can be assessed by consider-

ing sequence conservation without restriction to those with known structures. Scoring by Con-

SURF [20] indicates the expected strong conservation at the active site and the protein

assembly surfaces, with more variability observed in residues on the outside of the complex

Fig 3. Active site of KpAmn. Presumed active site of KpAmn based on superposition with E. coli Amn (Protein Data

Bank (PDB) entry 1T8S). Residues from two chains (A and B) make up the active site and are colored with green

carbon atoms and yellow carbon atoms, respectively. The inhibitor formycin is shown with cyan carbon atoms and was

positioned by superimposing the structure of PDB entry 1T8S over the solved structure of KpAmn. In these ball-and-

stick models, oxygen atoms are shown in red, nitrogen atoms are shown in blue, sulfur atoms are shown in yellow, and

the phosphate atoms are shown in orange. In panel A, the electron density is from a sharpened map and is contoured

at 3σ. In panel B, the corresponding E. coli residues are show as sticks only in teal (without ligand) and green (with

ligand).

https://doi.org/10.1371/journal.pone.0275023.g003
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and in the N-terminal domain overall (Figs 4B and S3 Fig). The loops distorted by crystal con-

tacts are not well conserved. Notably, the loop covering the active site is strongly conserved,

suggesting an important role in protein activity, ligand gating or structural stabilization,

despite its weak density.

Catalytic activity of K. pneumoniae Amn

As a final confirmation that the purified KpAmn was correctly folded and that its sequence-

based identification was correct, the protein’s catalytic activity was characterized spectropho-

tometrically using a coupled assay (Fig 5). The determined KM of 390 μM and Vmax of 50

nmol/min/mg are comparable to those previously reported for E. coli (120 μM and 16 nmol/

min/mg) and A. vinelandii (80 μM and 25 nmol/min/mg) homologs [21–24].

Discussion

Among the most common criticisms of structures determined by X-ray crystallography is that

their conformation in the crystal lattice may not reflect their conformation in solution, and

indeed significant differences have been observed in multidomain proteins when analyzed by

solution techniques such as nuclear magnetic resonance or small-angle X-ray scattering

[16,25–27]. Conversely, crystallography remains the standard for the high-resolution atomic

structures required for analysis of small-molecule ligand binding despite the recent progress

made in cryo-EM technology, and these differences in structure are frequently restricted to

less conserved surface sequences [28]. In either case, the full determination of a protein’s range

of conformations beyond modeling via B-factors greatly benefits from the use of multiple com-

plementary techniques.

Comparing the cryo-EM structure of KpAmn to the crystal structures of E. coli Amn pro-

vides such a determination for this enzyme. This high level of structural conservation in the

active site implies that inhibitors that target Amn enzymes may have broad applicability across

species. The KpAMn structure, and analysis herein, provides a foundational resource for the

structure-guided development of such Amn-targeted therapies.

Table 1. Structure comparison results. Pairwise structure comparison of KpAmn to all structures in the Protein Data Bank as of March 2022 (the top 10 of 43 total results

are given). Further alignment details are provided in S2 Fig.

PDB IDa Z-scoreb RMSDc No. Res.d % IDe Description Species

1T8R 46.9 1.2 463 90 Amp Nucleosidase Escherichia coli
4LDN 24.2 2.8 244 12 Purine Nucleoside Phosphorylase Aliivibrio fischeri
3MB8 23.7 2.7 239 20 Purine Nucleoside Phosphorylase Toxoplasma gondii
3QPB 22.9 2.6 231 18 Uridine Phosphorylase Streptococcus pyogenes
3BJE 22.2 2.6 239 13 Putative Nucleoside Phosphorylase Trypanosoma brucei
2QSU 17.9 2.6 208 18 50-Methylthioadenosine Nucleosidase Arabidopsis thaliana
4QAS 13.3 2.9 176 10 CT263 Chlamydia trachomatis
4PR3 13.0 3.0 174 16 50-Methylthioadenosine Nucleosidase Brucella melitensis
2GFQ 10.3 3.1 166 8 UPF0204 Protein PH00006 Pyrococcus horikoshii
3VR0 10.2 3.4 163 8 Uncharacterized Protein Pyrococcus furiosus

a Protein Data Bank Identifier.
b The calculated Z-score for the alignment [19].
c Root means square deviation for the alignment.
d Number of residues in structure being compared.
e Percentage sequence identity.

https://doi.org/10.1371/journal.pone.0275023.t001
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More generally, the determination of the KpAmn structure addresses limitations of the

prior structures with respect to their utility in systematic analysis, including structural valida-

tion and prediction tools. The E. coli structures, though certainly correct, pre-date the advent

of mandatory structure factor submission and therefore cannot be compared to the experi-

mental electron density map. Conversely, while the S. typhimurium structure does not have

such an issue, the structural statistics suggest that the model as submitted may benefit from

further refinement.

Fig 4. Comparison of Amn between species. All PDB structures identified by BLAST as close Amn homologs were

aligned to Amn in UCSF Chimera (A). Color and ribbon width indicate the all-atom spatial distance RMSD of each

residue from that of KpAmn; a thin line represents absence of the corresponding loop. Ligands bound by PDB entries

1T8R and 1T8Y are shown as spheres. ConSurf-derived conservation of Amn (B), ranging from low (teal) to high

(magenta). The alignment is detailed in S3 Fig.

https://doi.org/10.1371/journal.pone.0275023.g004
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In conclusion, the determination of the first cryo-EM structure of an Amn protein provides

a refinement of its unperturbed structure, as well as a model of its molecular structure of

potential relevance to the antibiotic arms race underway against K. pneumoniae.

Materials and methods

Expression and purification of K. pneumoniae Amn

KpAmn was cloned, expressed, and purified using standard SSGCID protocols. Briefly, the

gene was cloned into a pET-14b derived vector and expressed in E. coli BL-21(DE3) R3 Rosetta

cells in 2 L autoinduction media using a LEX Bioreactor. The culture was harvested and stored

at -80˚C until purification. The cell pellet was resuspended in buffer containing 25 mM

HEPES pH 7.0, 500 mM NaCl, 5% glycerol, 30 mM imidazole, 0.025% sodium azide, 0.5%

CHAPS, 10 mM MgCl2, 1 mM TCEP, 250 μg/mL AEBSF, 0.05 μg/mL lysozyme, and 25 U/mL

benzonase, lysed by sonication, and then clarified by centrifugation at 26000 g for 45 min at

4˚C. The soluble supernatant was loaded onto a HisTrap FF 5 mL (GE Healthcare, New Jersey,

USA), washed with wash buffer (25 mM HEPES pH 7.0, 500 mM NaCl, 5% glycerol, 30 mM

imidazole, 0.025% sodium azide) and eluted from the column by wash buffer supplemented

Fig 5. Catalytic activity of K. pneumoniae Amn. The activity of KpAmn was measured by quantifying the generation

of the product, adenine. The initial rate data at varying concentrations of AMP was fit by the Michaelis-Menten

equation to yield the kinetic constants shown.

https://doi.org/10.1371/journal.pone.0275023.g005
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with 350 mM imidazole. The eluted protein was further purified by gel-filtration on a Super-

dex 200 26/600 size-exclusion chromatography column (GE Healthcare) in 25 mM HEPES pH

7.0, 500 mM NaCl, 5% Glycerol, 2 mM DTT, and 0.025% sodium azide. Fractions were visual-

ized using SDS-PAGE and the fractions containing the purified protein were pooled and con-

centrated using Amicon Ultra centrifugal filters, flash frozen in liquid nitrogen, and stored at

-80˚C.

Cryo-EM data collection and molecular modeling of K. pneumoniae Amn

3 μL of purified KpAmn was applied to a 300 mesh copper C-flat grid with a hole size of

1.2 μm and hole spacing of 1.3 μm (Electron Microscopy Sciences), blotted and vitrified with a

Vitrobot Mark IV (Thermo Fisher) with a blotting time of 6 s and blotting force of 0 under

>90% humidity at 4˚C. Images were collected on a 300 kV Titan Krios equipped with a Falcon

3EC direct electron detector. Automated data collection was carried out using the EPU

2.8.01256REL software (Thermo Fisher Scientific) at a nominal magnification of 96000 x cor-

responding to a calibrated pixel size of 0.8891 Å with a defocus range from 1.0 to 2.6 μm.

Image stacks comprising 45 frames were recorded at an estimated total dose of 60 electrons/

Å2.

An initial 3D map was determined in RELION [29] by picking ~1 million particles from

2237 motion- and CTF-corrected micrographs by Laplacian of Gaussian, then removing junk

particles with several rounds of 2D classification. Following ab initio 3D model construction

and further refinement, the resulting 3.5 Å map was used to create a template for particle pick-

ing in cryoSPARC [30].

To obtain the best final map in cryoSPARC, ~1.5 million particles were picked and

extracted in 300x300 pixel boxes, and filtered by 2D classification first after downscaling to

72x72 resolution and then at full resolution to yield 566,674 final particles. These were used to

refine the input map in D3 symmetry to a gold-standard FSC = 0.173 estimated resolution of

3.08Å. Applying a sharpening B-factor of -160Å2 produced the final map used for refinement.

Working from an initial model of EcAmn (PDB code 1T8R) mutated appropriately and fit

into the sharpened cryo-EM map as a rigid body, adjustments were made in Coot [31] and

refined in PHENIX [32], with enforced symmetry. Visualization of the resulting structure was

performed in UCSF Chimera [33]. Data collection and refinement parameters are summarized

in Table 2.

Nucleosidase activity assay

The activity of KpAmn was measured spectrophotometrically by determining the rate of pro-

duction of the product, adenine. The production of adenine was quantified by using an estab-

lished adenine deaminase assay [36], in which the deamination of adenine is coupled to the

NADPH-dependent production of glutamate by the enzyme glutamate dehydrogenase. The

assay was run in a 96-well plate (100 μL total volume) at 25˚C in 20 mM HEPES, pH 7.5, 100

mM NaCl, 0.4 mM NADH, 1 mM α-ketoglutarate, 1 mM MnCl2, 4 units of glutamate dehy-

drogenase (Sigma), varying concentrations of AMP, and 10 μg of E. coli adenine deaminase

[36]. Control reactions were conducted with ammonium sulfate and adenine, prior to measur-

ing KpAmn kinetics, to ensure that neither the glutamate dehydrogenase-catalyzed reaction

nor the deaminase reaction, respectively, were rate limiting. The reaction was initiated by add-

ing 20 μg of KpAmn and monitored at 340 nm. The initial rate, before the reaction had

reached 10% completion, was calculated and plotted against the AMP concentration. A fit to

this data, using the Michaelis-Menten equation, was employed to derive the kinetic parameters

of the enzyme.
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Supporting information

S1 Fig. Model quality assessment. Three randomly selected motion-corrected micrographs

with suitable CTF resolution estimates are shown (A). The final density map was obtained

from particles in the 2D classes identified by a green border (B). Clear and appropriate density

for side chains was evident in both lower (C, residues 8–38) and higher (D, residues 284–294)

resolution regions; density is contoured to just above the local noise threshold within 2.4Å of

any displayed atom. No KpAmn (blue model) density is observed for the residues correspond-

ing to loops implicated in the E. coli structures’ crystal contacts (green and magenta) (E).

(TIF)

S2 Fig. Alignment of KpAmn to known protein structures. Structural matches to KpAmn

identified by DALI were aligned using MUSCLE [37], generating a phylogenetic tree (A) and

residue alignment (B). Active site residues are marked with boxes.

(TIF)

S3 Fig. Conservation of KpAmn by residue. The 150-sequence alignment generated by Con-

Surf is represented in logo format using WebLogo [38], in which letter height corresponds to

Table 2. Cryo-EM data collection and refinement parameters.

PDB code 7UWQ

EMD code EMD-26838

Number of grids used 1

Grid type C-flat gold

Microscope Titan Krios

Detector Falcon III

Voltage (kV) 300

Magnification 96000

Spherical aberration (mm) 2.7

Exposure (e-/Å2) 60

Defocus (μm) -1.0 to -2.6

Pixel size (Å) 0.8891

Frames/movie 40

Number of micrographs used 679

Number of particles used 114781

Map resolution (Å) (.143 FSC) 3.01

Map sharpening B-factor (Å2) -100

Mask-model CC 0.86

Non-hydrogen atoms 20538

Protein residues 2598

Bond length RMSD (Å) 0.005

Bond angle RMSD (Å) 0.559

MolProbity score [34] 1.30

Clash score 3.23

Ramachandran outliers (%) 0

Ramachandran allowed (%) 3.07

Ramachandran favored (%) 96.93

CaBLAM outliers (%) 0.73

Rotamer outliers (%) 0

EMRinger score [35] 3.23

https://doi.org/10.1371/journal.pone.0275023.t002
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strength of individual residue conservation. The N-terminal unresolved residues and C-termi-

nal five residues following a series of unresolved residues are omitted. Active site residues are

marked with boxes.

(TIF)
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