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Abstract

Anthracyclines are a highly effective component of curative breast cancer chemotherapy, but are 

associated with significant morbidity1,2. Since anthracyclines work in part via inhibition of 

topoisomerase-II (TOP2) on accessible DNA3,4, we hypothesized that chromatin regulatory genes 

(CRGs) that mediate DNA accessibility might predict anthracycline response. We elucidate the 

role of CRGs in anthracycline sensitivity in breast cancer through integrative analysis of patient 

and cell line data. We identify a consensus set of 38 CRGs associated with anthracycline response 

across ten cell line datasets. Evaluating the interaction between expression and treatment in 

predicting survival in a metacohort of 1006 early-stage breast cancer patients, we identify 54 

CRGs whose expression levels dictate anthracycline benefit across the clinical subgroups, 12 of 

which overlapped with those identified in vitro. CRGs that promote DNA accessibility, including 

Trithorax complex members, were associated with anthracycline sensitivity when highly 
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expressed, whereas CRGs that reduce accessibility such as Polycomb complex proteins, were 

associated with decreased anthracycline sensitivity. We show that KDM4B modulates TOP2 

accessibility to chromatin, elucidating a mechanism of TOP2 inhibitor sensitivity. These findings 

indicate that CRGs mediate anthracycline benefit by modulating DNA accessibility with 

implications for breast cancer patient stratification and treatment decision making.

We compiled a list of 404 CRGs from literature review and gene ontology annotation 

(Supplementary Table 1, Methods). In order to evaluate the association between the mRNA 

expression of these CRGs and anthracycline response in human breast cancers, we combined 

data from multiple sources, including the TCGA breast cancer cohort5, breast cancer cell 

line expression and drug response data6–13, and a clinically annotated collection of 

expression profiles for 1006 early-stage breast cancer patients (Figure 1a, Methods). We 

focused on CRG mRNA expression because CRGs are infrequently mutated in breast 

cancer, but often copy number altered, presumably effecting expression changes (Extended 

Data Figure 1a)14,15. We evaluated whether CRGs have a central regulatory role in breast 

cancer using graph theoretical approaches. First, we generated a transcriptional regulatory 

network from TCGA breast tumor RNA-seq data (N=1079 patients) using the Algorithm for 

the Reconstruction of Accurate Cellular Networks (ARACNE)16, assuming each gene is a 

regulatory element. The set of CRGs exhibited high network centrality 17 as measured by 

degree (3.26±4.37 in CRGs versus 2.04±3.7 non CRGs) and this was significantly greater 

(p<1E-4) than for a null distribution with similar results for betweeness and page-rank 

(Extended Data Figure 1b,c, Methods). CRGs were also significantly enriched for 

influencers18 (Fisher Exact one-tailed test p<9E-23, OR 2.68) (Extended Data Figure 1d). In 

order to identify the sets of target genes directly regulated by each CRG, we used ARACNE 

to generate a breast cancer chromatin regulatory network, where CRGs correspond to hubs 

and target genes are terminal nodes (Figure 1a, Extended Data Figure 2a).

We then defined a genome-wide signature of anthracycline response by analyzing ten breast 

cancer cell line datasets with expression data (RNASeq or microarray) and dose/response 

metrics (GI50 and AUC) 6–13 (Figure 1a), where the F-statistic (per gene) was used as a 

measure of treatment response. For each dataset, we identified a signature of anthracycline 

response by performing differential expression analysis between cell lines that were resistant 

or sensitive to doxorubicin (Extended Data Figure 2b,c, Supplementary Table 2, Methods). 

We next used Virtual Inference of Protein-activity by Enriched Regulon analysis (VIPER)19 

to identify genes from the breast cancer chromatin regulatory network whose putative targets 

were significantly enriched in the anthracycline response signature. This yielded a consensus 

list of 38 CRGs associated (Fisher combined p<0.05) with anthracycline response across 

multiple in vitro datasets (Figure 1b,c).

We next evaluated the association between the 404 CRGs and anthracycline benefit in a 

metacohort of 1006 early-stage breast cancer patients for whom tumor characteristics, 

overall survival, treatment, and gene expression data were available 20–25 (Figure 1, 

Extended Data Figure 3, Supplementary Table 3, Methods). We used a Cox Proportional 

Hazard model to study the interaction between gene expression and treatment and their 

association with overall survival 26. The model was adjusted by clinical covariates known to 
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be associated with breast cancer outcome – including estrogen receptor (ER), progesterone 

receptor (PR), HER2 status, tumor size (t-stage), MKI67 expression, and lymph node status 

– as well as by cohort. We first compared patients treated with anthracyclines (N=218) to 

those who were not (including those treated with other chemotherapies, endocrine therapy 

alone, or who received no treatment) (N=542) 26. We found 54 CRGs with an interaction 

(p<0.05) between expression and treatment (anthracycline versus no anthracycline) 

associated with overall survival (Extended Data Figure 4, Supplementary Table 4). There 

was a positive enrichment of gene/drug interactions associated (p<0.05 from the Cox 

Proportional Hazards model) with outcome among CRGs (Fisher Exact one-tailed test P = 

0.00062, OR:1.54, Extended Data Figure 5). Notably, a subset of CRGs were associated 

with reduced anthracycline benefit when their expression levels were below the median and 

many of these genes promote open chromatin. This list includes Trithorax-group proteins, 

including the BAF complex subunits ARID1A, SMARCD3, SMARCD1, and SMARCA2, 

COMPASS complex subunits such as KMT2A, as well as the histone lysine actyltransferase 

KAT6B, and histone demethlyases KDM6B and KDM4B. Conversely, a separate subset of 

CRGs were associated with greater anthracycline benefit when their expression levels were 

below the median. This includes the Polycomb gene EZH2, as well the histone deactylase 

HDAC9, the histone chaperone RSF1, and BCL11A, whose role in chromatin accessibility is 

less clear, where examples of both patterns are provided in Figure 2. Collectively, these 

findings incidate that CRGs predict anthracycline benefit in early-stage breast cancer 

patients.

The observation that lower expression of BAF complex subunits or higher expression of 

Polycomb subunits, are associated with anthracycline response fits with previous models3. 

TOP2 proteins function as dimers of approximately 340kD (nearly twice the size of a 

nucleosome) that require accessible chromatin to bind DNA. A functional BAF complex is 

necessary for TOP2 to associate with DNA at about 60% of its sites in the genome. Loss of 

TOP2 function in a cell with a dysfunctional BAF complex renders cells less sensitive to 

TOP2 inhibitors3. Conversely, the Polycomb complex antagonizes the BAF complex27,28 

conferring TOP2 inhibitor resistance.

Because the BAF complex, a member of the trithorax group, influences TOP2 recruitment 

and accessibility, and opposes polycomb group complexes29, we evaluated the roles of these 

two complexes in mediating anthracycline benefit. Summarizing the hazard ratios for all 

genes in each complex across the breast cancer metacohort, we found that higher expression 

of PRC2 genes was generally associated with a higher hazard ratio, whereas higher 

expression of both BAF and COMPASS, members of trithorax class of genes, was generally 

associated with lower hazard ratios in the presence of anthracyclines (Figure 3a, Extended 

Data Figure 6). Recent studies show that changes in PRC1 levels do not lead to concomitant 

changes in accessibility, consistent with the lack of a change in hazard ratio for PRC1 or PR-

DUB genes 30,31. Thus, those CRGs for which high expression was associated with greater 

anthracycline benefit were generally associated with increased DNA accessibility, while 

those for which high expression was associated with lesser anthracycline benefit were 

associated with decreased DNA accessibility. The Trithorax proteins, including BAF and 

COMPASS complexes, KDM4B, KAT6B, and others open the DNA fiber for TOP2 binding, 

thereby increasing anthracycline sensitivity. Conversely, an opposing set of CRGs including 
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Polycomb group proteins (PRC2 complex) and others close the DNA fiber to TOP2 binding, 

thereby decreasing anthracycline sensitivity (Figure 3b). These data are consistent with a 

model wherin the expression levels of Trithorax and Polycomb genes act in opposing 

directions to mediate anthracycline benefit.

To assess whether the CRGs associated with anthracycline benefit were also more generally 

implicated in benefit to other chemotherapies, we performed several additional comparisons. 

First, we repeated these analyses comparing patients treated with anthracyclines (N=218) 

and patients treated with the chemotherapy regimen CMF (cyclophosphamide / 

methotrexate / 5-fluorouracil) that does not contain an anthracycline (N=174). Here, we 

identified 44 CRGs with a significant (p<0.05) interaction between expression and treatment 

in predicting overall survival (Supplementary Table 5). Second, we repeated these analyses 

comparing patients treated with anthracyclines and no taxanes (N=196) to patients treated 

with taxanes and no anthracyclines (N=123). Here, we identified 50 CRGs with a significant 

(p<0.05) interaction between their expression and treatment in predicting overall survival 

(Supplementary Table 6).

Of the 38 CRGs implicated in anthracycline response in vitro, 32 had available expression 

data in the metacohort and of these, 12 exhibited a significant interaction between 

expression and anthracycline usage in predicting overall survival when comparing 

anthracycline-treated versus non-anthracycline-treated patients (Figure 3c, Extended Data 

Figure 7a). As expected, the VIPER enrichment factors for CRGs were negatively correlated 

(Pearson R=−0.77, p=3.09E-3) with the hazard ratio in the metacohort (Extended Data 

Figure 7d). Amongst the 44 CRGs that were significant when comparing anthracycline-

treated versus CMF-treated patients, 11 genes were also significant in the in vitro analysis 

(Figure 3d, Extended Data Figure 7b). Of the 50 genes from the anthracycline-treated versus 

taxane-treated comparison, four were significant in the in vitro analysis (Figure 3f, Extended 

Data Figure 7c). Amongst the 22 CRGs shared across the three treatment comparisons in the 

patient metacohort (Extended Data Figure 7e), three (KDM4B, KAT6B, and HDAC9) were 

also significant in vitro. We further assessed anthracycline specificity by comparing 

enrichment of the 12 genes common across the in vitro and in vivo analyses with the VIPER 

enrichment for other breast cancer chemotherapies (Supplementary Figure 1). Doxorubibicin 

was generally the most enriched, but docetaxel exhibited modest enrichment, albeit at a 

lower level. Collectively, these results suggest that the CRGs identified through these 

analyses are implicated in anthracycline sensitivity, rather than general chemosensitivity.

While our initial analyses adjusted for ER, PR, and HER2-status, we further sought to 

determine whether the associations remained significant within each of the clinical 

subgroups rather than being driven by one subtype. We therefore stratified the metacohort 

into the three clinical subtypes: ER-positive/HER2-negative (N=204, Supplementary Table 

7), HER2-positive (N=216, Supplementary Table 8), and triple-negative (TNBC) (N=113, 

Supplementary Table 9). For the ER-positive/HER2-negative group we included hormone 

therapy as a covariate. Notably, across these three patient subgroups, the directionality of the 

hazard ratios for most of the 54 CRGs that were significant in the full cohort remained the 

same, despite the reduction in sample size in these subset analyses (Extended Data Figure 8, 

Methods). Examination of CRG expression by subtype revealed higher expression of 
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KDM4B and KAT6B and lower expression of BCL11A in ER-positive versus ER-negative 

tumors (Supplementary Figure 2). Although ESR1 signaling was correlated with CRG 

expression in both subgroups, substituting this for ER status in the model did not change the 

results. Collectively, these findings indicate that CRG expression is associated with 

anthracycline benefit across the breast cancer clinical subgroups.

In both the cell line and patient data, reduced KDM4B expression was strongly associated 

with anthracycline resistance. In vitro KDM4B is a weak histone demethylase that 

recognizes H3K9me2/3 and converts the histone tail to H3K9me1, effectively changing the 

histone mark to one that is associated with a more accessible, transcriptionally active 

chromatin state. To functionally evaluate the role of KDM4B in anthracycline response, we 

searched for a cell line that could serve as a model to recapitulate the phenomenom seen in 

patients and found the breast cancer cell line HCC1954 to be suitable (other cell lines that 

failed to recapitulate the patient data can be found in Supplementary Figure 3. Levels of 

KDM4B protein were lowered using three inducible shRNA knockdown constructs in 

HCC1954 cells (Figure 4a). Following KDM4B knock down for four days, cells were 

treated with doxorubicin, etoposide (a non-anthracycline TOP2 inhibitor), or paclitaxel (a 

taxane that functions via tubulin inhibition) for three days, after which cell viability was 

measured (Figure 4b). Consistent with the patient data, where CRG expression levels 

predicted response to anthracycline but not taxane treatment, KDM4B knockdown induced 

resistance to doxorubicin (Figure 4c) and etoposide (Figure 4d), but remained sensitive to 

paclitaxel (Figure 4e). An inducible scrambled shRNA did not result in significant changes 

in sensitivity to drug treatment (Extended Data Figure 9a-c). We confirmed that knockdown-

induced anthracycline resistance, was not due to decreases in cell proliferation, loss of the 

drug target (TOP2A or TOP2B), or upregulation of the ABCB1 multi-drug exporter protein 

(Figure 4f-g). In the patient metacohort, there was also minimal (R < ±0.2) correlation 

between KDM4B and TOP2A, TOP2B, or ABCB1 expression (Extended Data Figure 9e). 

Knockdown of KAT6B similarly resulted in anthracycline resistance in HCC1954 cells, 

consistent with the patient data and the coordinate role of multiple CRGs in anthracycline 

response (Extended Data Figure 10).

Next, we evaluated whether KDM4B modulated TOP2 binding to chromatin and therefore 

sensitivity to anthracyclines and other TOP2 inhibitors. Since etoposide treatment leads to a 

covalent cross-link between TOP2 proteins and DNA that can only occur where TOP2 

proteins have access to DNA, this provides a powerful way to determine TOP2 accessibility 

to chromatin 3,4 (Figure 4h). KDM4B knockdown in HCC1954 cells, followed by etoposide 

treatment for 15 or 60 minutes and a 500mM salt wash to remove transiently bound proteins, 

resulted in less TOP2A and TOP2B bound to the insoluble chromatin fraction (Figure 4i), 

but not in the shScramble control (Extended Data Figure 9d). Thus, we demonstrate that 

resistance to TOP2 inhibitors after knock-down of KDM4B is due to a direct loss of TOP2 

accessibility to chromatin, highlighting the specificity of CRGs in anthracyline response.

In summary, we identified a network of chromatin regulatory genes (CRGs) and showed that 

naturally occurring variation in their expression levels dictates chromatin accessibility and 

sensitivity to anthracycline therapy across clinically defined breast cancer subtypes. We 

found that CRGs that tend to increase DNA accessibility were generally associated with 
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greater anthracycline benefit when expressed at high levels, whereas CRGs associated with 

decreased DNA accessibility tended to be associated with anthracycline resistance when 

expressed at high levels. These results are consistent with a model in which CRGs, including 

the BAF and COMPASS complexes, KDM4B, and others – make DNA available for TOP2 

binding, thereby increasing anthracycline sensitivity, while an opposing set of CRGs – 

including Polycomb proteins (PRC2) – reduce DNA availablity to TOP2 binding, thereby 

decreasing anthracycline sensitivity.

Our results have several implications. There is an urgent need to understand the biology that 

determines anthracycline response especially in early-stage breast cancer, where the 

modestly more efficacious anthracycline-containing regimens32 are associated with 

clinically important risks of cardiac toxicity and secondary malignancy1,2. While 

commercially available gene expression tests can be used to help determine if a patient with 

early-stage breast cancer is likely to benefit from chemotherapy33–36, there are presently no 

biomarkers that guide the use of anthracycline versus non-anthracycline containing 

regimens. Importantly, we show that chromatin state is associated with anthracycline benefit 

in ER-negative as well as ER-positive, and in node-negative as well as node-positive, breast 

cancer. Therefore, a signature based on the expression levels of the CRGs defined here could 

be used to distinguish early-stage breast cancer patients who will benefit from an 

anthracycline-containing regimen from those who will not. Further evaluation of such a 

predictive signature is warranted prior to its implementation as a diagnostic assay. Such an 

approach has the potential to inform patient stratification, resulting in improved outcomes 

while mitigating toxicity. The chromatin accessibility biology elucidated here may also 

guide approaches to modify CRG function to improve anthracycline sensitivity in patients 

who truly need it, such as with histone deacetylase inhibitors and other epigenetically 

targeted therapies.

Methods

Breast cancer cell line and patient datasets

The TCGA breast cancer RNA-seq dataset (N=1079 patients) was downloaded from 

gdc.cancer.gov (0½018). RPKM count data was normalized using variance stabilizing 

transformation (VST) from the package DESeq237 within R Bioconductor. The breast cancer 

cell line drug response datasets, including gene expression RNASeq and microarray data and 

drug response information, was downloaded from (Heiser6 RNASeq, microarray and drug 

response), GRAY8 (drug response) and using the PharmagoGX package38 (gCSI RNASeq 

and drug response, GDSC1000 microarray and drug response, CCLE RNASeq and 

microarray and FIMM and CTRPv2 response data). We used data from a total of 87 breast 

cancer cell lines, which exhibited sensitivity or resistance to doxorubicin or other breast 

cancer chemotherapies. Drug response information was recorded for the Heiser dataset as –

log10(GI50), where GI50 was the concentration that inhibited cell growth by 50% after 72 

hours of treatment and AUC for rest of datasets (area under the dose-response curve). 

Briefly, for each dataset we divided the total number of cell lines into those that were 

sensitive (top tertile of –log10(GI50) or AUC for the drug) or resistant (bottom tertile of –

log10(GI50) or AUC for the drug). We used limma39 with weighted samples (arrayWeight 
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function) for microarray datasets and voom normalized for the RNA-seq datasets to obtain 

both a signature of response to anthracycline or other drugs and a null model for each 

signature by permuting the sample labels 1000 times. P-values and t-statistics were based on 

limma (moderated t-statistic).

Compilation of an adjuvant breast cancer patient metacohort

Raw CEL files were downloaded from the Gene Expression Omnibus (GEO) Database for 

the datasets KAO22 (GSE20685), IRB/JNR/ NUH21 (GSE45255), MAIRE25 (GSE65194), 

UPS23 (GSE3494) and STK24 (GSE1456). These datasets were each profiled on the 

Affymetrix platform (hgu133plus2, hgu133a and hgu133b) and were reprocessed using the 

rma function from the affy package40 and quantile normalized. COMBAT41 was used to 

remove batch effects. Patients who received an anthracycline (doxorubicin or epirubicin) as 

a component of their treatment regimen were classified as “anthracycline-treated”, while 

patients who received a chemotherapy regimen that did not contain anthracyclines, who 

received endocrine therapy alone, or who received no therapy were classified as “not 

anthracycline-treated”. ER, PR and Her2 status were inferred using a gaussian mixture 

model of the probes 205225_at, 208305_at and 216836_s_t, respectively. MKI67 values was 

obtained from probe 212023_s_at. Lymph node positivity is a binary feature obtained from: 

Number of nodes >0, or N-stage ≥1. T-stage was a factor obtained from either the actual T-

stage, as reported (n=327 cases), or as inferred from the reported size of the tumor (T1 < 

2cm, T2 ≤ 5cm, T3 > 5cm) (n=520 cases). For the STK cohort, information on tumor size 

(T-stage), lymph node status or N-stage was not available, however the authors reported that 

the mean tumor size in the cohort was 22mm and 62% of samples have size <21mm where 

38% samples are lymph node positive. We inferred t-stage 2 and negative lymph node status 

for all samples in this cohort. The ESR1 signature was calculated using the list of genes 

from42 and the function sig.score from the genefu package43.

Defining a set of chromatin regulators

We generated a list of chromatin regulators N= 404 (Supplementary Table 1) based on a 

defined set of Gene Ontology functions, including: a) Histone lysine methyltransferase 

activity (GO:0018024), b) histone demethylation (GO:0032452), c) histone deacetylation 

(GO:0004407), d) histone acetyltransferase activity (GO:0004402), e) histone 

phosphorylation (GO:0016572), f) PRC1 complex (GO:0035102), g) PRC2 complex 

(GO:0035098), h) SWI/SNF complex (GO:0016514 plus other members not included in this 

GO category), i) ISWI complex members (NURF, ACG, CHRAC, WICH, NORC, RSF and 

CERF complex members44,45, j) Chromodomain and NURD-Mi-2 complex46, k) INO80 

complex (GO:0031011), l) SWR1 complex47 m) PR-DUB complex48, n) CAF1 complex 

(GO:0033186), o) Cohesins49, p) Condensins50, q) Topoisomerases (GO:0003916), r) DNA 

methyltransferases (GO:0006306), DNA demethylases (GO:0080111), Histone proteins51 

and chromatin pioneer factors52

Network inference

From VST-normalized gene expression data, we used the ARACNE-AP algorithm53 to 

generate the genome-wide breast cancer transcriptional network (24919 × 24919 expression 

values) and the chromatin regulatory gene (CRG) network (404 × 24919 expression values). 
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ARACNE-AP was run with the recommended parameters (p<1E-8). Significant networks 

were calculated from 10 bootstrap iterations for the genome-wide network and from 100 

bootstraps for the CRG network. Network edges with adjusted p-values > 0.05 were 

removed. The regulon is composed of 396 CRGs (8 had no nodes directly connected and 

hence were excluded) and the median number of targets per CRG was 94. We calculated the 

degree, betweenness and page rank centrality for each gene (node) in the genome-wide 

network using the igraph package (http://igraph.org/r). To compute a null distribution, we 

randomly selected 10,000 combinations of 404 genes (out of 24,919) and obtained centrality 

measures by aggregating the values across all 404 genes. We then compared the centrality 

scores for the CRGs relative to the null distribution to determine those that were significant 

(> 5% of the tail of the distribution). Influencers of the network were calculated using the 

collective influence algorithm available online (http://github.com/ronammar/

collective_influence, accessed June 2019) 18. Enrichment for CRGs and influencers was 

calculated using a Fisher Exact one-tailed test.

Anthracycline signature and breast cancer CRG network enrichment

While VIPER19 was originally designed to identify protein activity associated with a 

specific transcriptional regulatory program or phenotype, here we adapted this approach to 

evaluate the enrichment of the CRG network and the doxorubicin (or other 

chemotherapeutic agents) signature (t-statistics for each gene) in order to identify CRGs 

implicated in drug resistance or sensitivity in breast cancer cell lines. To account for the 

correlation structure in the expression network, we included the null distribution from 1000 

resampling labels obtained from the drug differential expression analysis in the VIPER 

model as a parameter. By evaluating the enrichment of mRNAs that were up- or down-

regulated in the anthracycline response signature amongst genes in the chromatin regulatory 

network, we identified a consensus list of 38 CRGs: For each CRG, we compute the 

compined p-value of all datasets by using the function combine.test (Fisher method from 

package survcomp) 54. In order to test for enrichment of the 12 hits in common from the in 
vitro and clinical analyses, for each dataset and drug, we computed the VIPER enrichment 

p-value for each CRG and drug signature and evaluate the enrichment of -log10 pvalues and 

the 12 genes using GSEA analysis from the fgsea package 55.

Outcome association analyses

We used a Cox Proportional Hazard model to study the interaction between the expression 

of each CRG in the breast tumor and the patient’s outcome (overall survival) under a 

specified drug condition in the adjuvant-treated breast cancer metacohort. We compared the 

association between CRG expression with patient outcome under the following sets of drug 

conditions: (1) anthracycline-treated vs non anthracycline-treated (including patients who 

received non-anthracycline chemotherapy, only endocrine therapy, or no therapy), (2) 

anthracycline-treated vs CMF-treated (cyclophosphamide, methotrexate, and 5-fluorouracil), 

and (3) anthracycline-treated vs taxane-treated (alone or in combination with other non-

anthracycline agents). The model was adjusted for age, tumor size (T-stage), lymph node 

status (positive or negative), cohort, MKI67 expression and ER, PR and Her2 status (with 

the exception of the stratified clinical analysis, where ER, PR or Her2 were removed 

accordingly). Hormone therapy was included for ER-positive samples. In HER2-positive 
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tumors, trastuzumab treatment was not included as a covariate since it was not reported. We 

used the maxstat algorithm56 from survminer (https://cran.r-project.org/web/packages/

survminer/index.html) package to obtain the optimal threshold to divide high and low 

expression profiles for visualization in the Kaplan-Meier plots. For comparing the contrast 

and Cox Proportional Hazard probability plots, we defined “high” as one standard deviation 

above the median and “low” as one standard deviation below the median. The rms (https://

cran.r-project.org/web/packages/rms/index.html) and survival (https://cran.r-project.org/web/

packages/survival/index.html) packages were used for outcome analysis. The survcomp 54 

package (https://bioconductor.org/packages/release/bioc/html/survcomp.html) was used for 

Kaplan-Meier visualization and summary statistics.

In addition to analyzing the full cohort (adjusted for ER, PR, and HER2-status), we 

performed a number of subset analysis in each of the three clinical subtypes: ER-positive/

HER2-negative, HER2-positive and triple-negative (TNBC) tumors. Although the subset 

analysis stratified by ER/HER2 status was not significant (p<0.05), likely due to the small 

sample size and lack of treatment information in the HER2-positive cohort, the trends were 

consistent with the finding that CRGs are predictive of anthracycline benefit irrespective of 

subgroup. Indeed, for most genes the directionality of the association was the same with the 

exception that one gene changed direction in ER-positive/HER2-negative tumors (HDAC9), 

two genes changed in HER2-positive tumors (NCAPG and CCNA2), and two genes changed 

in TNBC (NEK11 and NCAPG).

Cell culture

HCC1954 cell line was obtained from American Type Culture Collection (ATCC) and 

maintained as recommended in RPMI media + 10% FBS at 37°C in 5% CO2. Cells were 

limited to under 20 passages for all experiments. HCC1954 is ER-/HER2+ but not TOP2A 

amplified, has a doubling time of ~40 hours and is readily transduced with lentiviral 

particles. Additionally, it is doxorubicin-sensitive and paclitaxel-sensitive, which is 

important for showing that KDM4B modulation specifically leads to changes in 

anthracycline response and not generally to small molecule inhibitors. These observations 

indicated that it might be a useful model for studying the relationship between response to 

therapeutics and CRGs.

Lentiviral preparation and infection

Lentiviruses were produced LentiX-HEK293T cells via spinfection with polyethylenimine 

transfection. HEK293T cells were cultured using standard conditions in DMEM media 

containing 10% FBS. HEK293T cells were transfected with PEI with TRIPz lentiviral 

vectors described below, co-transfected with packaging vectors psPAX2 and pMD2.G as 

previously described 57. Viral supernatant was collected ultracentrifuged and used for spin-

fection.

TRIPz shRNA plasmids

shRNAs in the pTRIPZ backbone were obtained from Dharmacon. Clone numbers are 

shKDM4B-1: V3THS_316478; shKDM4B-2: V3THS_316479; shKDM4B-3: 

V3THS_316481; shSCRAM: Cat RHS4743; shKAT6B-88: V3THS_349688; shKAT6B-92: 
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V3THS_349692. Cells were selected in 2ug/ml of Puromycin 48 hours after transduction 

and kept under selection for experiments.

In vitro drug response assays

Cells were grown for 3 days in the presence or absence of doxycycline (1.5ug/ml) to induce 

shRNA expression. Cells were then trypsinized, counted, and plated in 96-well plates at 

3000–4000 cells per well with or without doxycyclin. Cells were allowed to attach to the 

well for 24 hours and then the media was replaced and appropriate concentrations of 

doxorubicin (AK Scientific 69518), etoposide (Sigma Aldrich, E1383), or paclitaxel (Fisher 

Scientific P3456), or DMSO vehicle control were added. Cells were grown with inhibitors 

for 48 hours when CellTiter-Blue was added to all wells at 5% v/v. Plates developed at 37°C 

and 5% CO2 overnight. Media/Supernatant was then transferred to 386-well clear bottom 

black plates and read on a Flex Station 3 (Molecular Devices) with excitation of 540nm and 

emission of 595nm. CellTiter-Blue emission readings for each treatment well was 

normalized to DMSO control and the data plotted in R-studio. At the end of the inhibitor 

resistance assays, DMSO control wells were used to calculate growth rate changes upon 

induction of shRNAs, as a ratio of induced/non-induced for both shRNAs to KDM4B and 

the non-specific scrambled shRNA. Detailed protocol is published at dx.doi.org/10.17504/

protocols.io.k5zcy76.

Western blots and antibodies

Nuclear or Whole Cell Extracts were prepared, and protein concentrations were measured. 

15ug of protein was run on a Bis-Tris gel, transferred at 200mA for 2 hours and blocked in 

5% non-fat milk for 1 hour. Blots were incubated with primary antibodies overnight and 

then washed 3x in TBST. Blots were then incubated with secondary antibodies with 

conjugated −680nm and −800nm fluorophores (Licor, 1:25,000) for 45 minutes at room 

temperature, washed 3x, and then developed on an Odyssey® CLx Imaging System (Licor, 

Lincoln, NE United States). KDM4B/JMJD2B (Bethyl Laboratories A301–478A, 1:1000), 

TOP2A (Santa Cruz Biotech sc-3659, clone F-12, 1:1000), TOP2B (Santa Cruz Biotech 

H-286, sc-13059, 1:1000), MDR1/ABCB1 (Cell Signalling Technologies, 12683S, 1:1000), 

RNF2 (Cell Signalling Technologies, 5694S, 1:1000), H3 (Epicypher, SKU: 13–0001, 

1:5000) We were unable to validate any of the available KAT6B antibodies. Licor software 

(Image Studio version 5.2.5) was used for the following: Image adjustment was limited to 

exposure (brightness and contrast; all lanes done equally and simultaneously) followed by 

cropping and exporting in .png format. No additional image manipulation was performed.

TOP2 cross-linking

Cells were treated with doxycycline for 4 days to induce shRNA expression as described. 

Cells were trypsinized and counted and 1e6 cells were resuspended in complete media. 1e6 

cells for input were saved on ice and then processed in RIPA Buffer A and RIPA buffer with 

150mM NaCal along side the etoposide treated samples. Cells were then treated with 

etoposide (100uM) for 0’, 15’ or 60’ with rocking at room temperature. Cells were washed 

2x with PBS and resuspended in Buffer A for 10 minutes. Nuclei were spun down and 

resuspended in RIPA buffer with 500mM NaCl for 15 minutes on ice. Suspension was spun 

down and and the supernatant was removed. The insoluable chromatin pellet was then 
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soluablized with RIPA containing 1% SDS and Benzonase (1:200) for 10’ at RT followed by 

20’ on ice. Equal volumes of chromatin fractions were run on Western Blots as described 

above. The detailed protocol is available at dx.doi.org/10.17504/protocols.io.2rngd5e.

RT-qPCR

RNA was extracted from cells using Trisure (Bioline) and cDNA was synthesized from 1ug 

RNA using the SensiFAST SYBR Lo-Rox (Bioline). Samples were run on a QuantStudio 6 

Flex system (Life Technologies). 2-ΔΔCT was calculated as described by Livak and 

Schmittgen 58 where:

–ΔΔCT = (CTGOI – CTGAPDH)shKAT6B-induced – (CTGOI –CTGAPDH)shKAT6B non-induced.

Primers for qPCR are as follows:

KAT6B-BF: AGTGGACACCCATCCTGTTTG

KAT6B-BR: CCACATCCCTTTTGGCATTCT

KAT6B-CF: AGGATGTCGTTACTGAAGAGGA

KAT6B-CR: CCCCACTCTCACACTCTATTTTC

GAPDH-F: GCCAGCCGAGCCACAT

GAPDH-R: CTTTACCAGAGTTAAAAGCAGCCC

Extended Data
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Extended Data Fig. 1: Somatic mutation and copy number distribution pan-cancer vs breast and 
centrality distribution of CRGs
Panel A: Comparison of somatic alterations in chromatin regulatory genes (CRGs) in breast 

cancer versus pan-cancer. Top panel: Frequency of mutations in CRGs in breast cancer 

(BRCA, x-axis) versus pancancer (pancan; 32 cancer types excluding breast) based on non-

synonymous mutations in whole exome sequencing data from TCGA. Bottom panel: 

Frequency of copy number amplification and deletion events in CRGs in breast versus 

pancancer based on TCGA SNP array data. Panel B: Centrality of CRGs. Genome-wide 

breast cancer network generated from the TCGA breast cancer RNA-seq dataset using 

ARACNE. Centrality measures were computed for each gene. A null distribution of 

centrality scores was generated using 10,000 combinations of 404 genes by summing their 

degree, betweenness and page rank values (non CRG) compared with the sum of degree, 

betweenness and page rank of the chromatin regulator genes (CRG). The comparison 

between the null distribution and CRG centrality scores highlights the central role of CRGs 

in the breast cancer network. Panel C: Density distribution of centrality measures among 

CRGs and non CRGs. Panel D: CRGs are significantly enriched for influencers.
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Extended Data Fig. 2: Breast cancer chromatin regulatory network and doxorubicin response 
signature
Panel A: Derivation of a breast cancer chromatin regulatory network: A breast cancer 

chromatin regulatory network was derived from TCGA RNA-seq data using the ARACNE 

algorithm (Methods). The inset panel shows a region mapping to chromatin regulatory genes 

(CRGs) with high degree centrality. Each hub of the network is a CRG, while the terminal 

nodes correspond to their target genes. The histogram and barplot show the degree centrality 

for all CRGs, where two of the largest network hubs correspond to FOXA1, KDM4B and 

BCL11A. Panel B: Doxorubicin signature in breast cancer cell lines from Heiser microarray 

dataset (N=46 independent cell lines). Heatmap of gene expression profiles among resistant 

(1/3) and sensitive (1/3) breast cancer cell lines where cell lines are sorted by GI50. Panel C: 

Volcano plot of genes differentially expressed (moderate T-statistic from limma) between 

sensitive versus resistant cell lines.
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Extended Data Fig. 3: Summary of adjuvant breast cancer metacohort (N=1006)
Top panels describe the 5 individual cohorts used to build the metacohort: UPP (GSE3494), 

IRB/JNR/NUH (GSE45255), KAO (GSE20685), MAIRE (GSE65194) and STK 

(GSE1456). All cohorts were profiled on Affymetrix gene expression arrays. Center panels 

describe the metacohort comparing anthracycline versus non-anthracycline (no therapy, 

hormone therapy or other chemotherapy), anthracycline versus taxane or anthracycline 

versus CMF. Bottom panels illustrate results stratified by the breast cancer clinical 

subgroups, namely ER+/Her2-, Her2+ and ER-/HER2- (triple negative). In the ER+/Her2- 

subgroup, hormonal therapy was included a covariate. *STK cohort does not publish size, t-

stage, n-stage or lymph node status, but in the original paper (PMC1410752) the reported 

mean size is 22 and 62% samples have size<21, so we have inferred t-stage=2 for all 

samples. Similarly, 38% samples have lymph node positive has been reported, so we inferred 

LN- for all samples
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Extended Data Fig. 4: CRGs associated with anthracycline response in the metacohort 
(anthracycline vs non anthracycline, N=760 individuals)
Genes denoted in bold are also significant in the in vitro network analysis. The forest plots 

show the log-2 hazard ratios (boxes) and error bars represent 95% confidence intervals. P-

values (unadjusted for multiple hypothesis testing) are based on the Cox Proportional 

Hazards model of the interaction between drug and gene expression, adjusted by hormone 

receptor status, Her2 status, tumor size, lymph node status, MKI67 expression from the 

expression array data and cohort.
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Extended Data Fig. 5: Enrichment of CRGs with response
Enrichment of CRGs (summary p-value 6.8E-15, z-transform from survcomp package) with 

genes associated with anthracycline response. Panel A: 10,000 random signatures of size 

312 association with outcome. CRGs are among the 6% (5.93%) highest associated. Panel 

B: MSigDB signatures associated with outcome. CRGs are among the 4.16% highest 

associatied. Colors represents the size of the signature. Summary p-values from the 

anthracycline vs non anthracycline cohort (N=760 individuals) Cox Proportional Hazards 

model of the interaction between drug and gene expression adjusted by clinical covariates as 

defined in Methods.
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Extended Data Fig. 6: Complexes association with doxorubicin response
Hazard ratio of each of the members of thrytorax (Compass and SWI/SNF) and prc (PRC1, 

PRC2 and PR-DUB) complexes, and the summary statistic (summary p-value from the Cox 

Proportional Hazard of the interaction between drug and gene expression) for each of the 

complexes in the anthracycline vs non anthracycline cohort (N=760 individuals). The forest 

plots show the log-2 hazard ratios (boxes) and error bars represent 95% confidence intervals.
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Extended Data Fig. 7: Correlation between clinical and in silico analysis
Panels A, B, C: Venn diagrams illustrating the overlap between CRGs associated with 

anthracycline response in vitro based on VIPER (38 genes) and in vivo based on the Cox 

Proportional Hazard model in the breast cancer patient metacohort for different treatment 

regimens, as indicated. Panel D: Correlation between Heiser microarray dataset Normalized 

Enriched Score (NES) for each CRG from VIPER and the log hazard ratio for overall 

survival from the anthra vs non-anthra metacohort (N=760 individual samples). Labels 

represents the CRGs significant in VIPER. Here, r all represents the Pearson correlation 

across all CRGs and r 12 represents the Pearson correlation across the 12 common CRGs 

across clinical and VIPER analysis. Panel E: Significant CRGs across different treatment 
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regimens. Significant CRGs across the anthracycline versus non-anthracycline, anthracycline 

versus CMF, and anthracycline versus taxanes comparisons are indicated. A total of 22 

genes were significant across the 3 cohorts.
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Extended Data Fig. 8: Anthracycline versus non-anthracycline comparisons by clinical 
subgroups
Forest plots illustrate the difference in hazards of death (overall survival) among patients 

treated with anthracyclines versus those who were not treated with anthracyclines from the 

metacohort across the three clinical subgroups, namely ER+/Her2-, Her2+ and ER-/Her2- 

(triple-negative, TNBC) patients. P-values indicate the Cox Proportional Hazard interaction 

model among the two conditions and the expression of the gene, adjusted by age, size, 

lymph node positive, ER, PR and Her2 status (excluding ER and PR in ER+, Her2 in Her2+ 
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and ER, PR and Her2 in TNBC). The forest plots show the log-2 hazard ratios (boxes) and 

error bars represent 95% confidence intervals.
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Extended Data Fig. 9: Drug response, accessibility in controls, and transcription correlation in 
meta-cohort
Panel A: Doxorubicin dose response in scrambled shRNA HCC1954 cells and non-induced 

HCC1954 cells normalized to DMSO vehicle. n=3 independent experiments. Center equals 

mean +/− s.e.m. Panel B: Etoposide dose response in scrambled shRNA HCC1954 cells and 

non-induced HCC1954 cells normalized to DMSO vehicle. n=3 independent experiments. 

Center equals mean +/− s.e.m. Panel C: Paclitaxel dose response in scrambled shRNA 

HCC1954 cells and non-induced HCC1954 cells normalized to DMSO vehicle. n=3 

independent experiments. Center equals mean +/− s.e.m. Panel D: Western blot of Input 
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Samples and resolubilized chromatin pellet after wash with 500mM NaCl from HCC1954 

cells treated with etoposide for given time, +/− induction of shScramble control. Histone H3 

is shown as a loading control. Experiments were repeated independently three times with 

similar results. See Source Data 2. Panel E: KDM4B expression correlations by subtype. 

Pearson correlation between expression of KDM4B and ABCB1 (top panels), TOP2A 

(center panel) and TOP2B (bottom panels) in the TCGA breast cancer cohort (left, N=1078 

individuals) and the adjuvant breast cancer metacohort (right, N=760 individuals) reveals no 

significant trend.
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Extended Data Fig. 10: Functional evaluation of KAT6B as a mediator of anthracycline response 
in breast cancer cells
Panel A: RT-qPCR on cDNA showing inducible shRNA knockdown of KAT6B with 2 

unique shRNA sequences in the HCC1954 breast cancer cell line. n=3 independent 

experiments. Center value equals mean +/− s.e.m. Panel B: Western blot on whole cell 

extract showing non-induced or induced knockdown shRNA KAT6B with no concomitant 

loss of drug targets TOP2A and TOP2B or gain in the drug efflux pump ABCB1; RNF2 as a 

loading control. Experiments were repeated independently three times with similar results. 

See Source Data 3. Panel C: Doxorubicin dose response curves for KAT6B induced shRNAs 
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(shRNA 2, 3) in HCC1954 cells and non-induced HCC1954 cells normalized to DMSO 

vehicle. Panel D: Etoposide dose response curve for KAT6B induced shRNAs (shRNA 2, 3) 

in HCC1954 cells and non-induced HCC1954 cells normalized to DMSO vehicle. Panel E: 

Paclitaxel dose response curve for KAT6B induced shRNAs (shRNA 2, 3) in HCC1954 cells 

and non-induced HCC1954 cells normalized to DMSO vehicle. n=4; 2 independent 

experiments of 2 independent shRNAs each for panels c-e. Center value is mean +/− s.e.m.
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Figure 1. Schematic overview of study design, analytical and experimental framework and 
derivation of an anthracycline response signature.
Panel A. An adjuvant breast cancer metacohort of 1006 clinically annotated early stage 

breast cancer patients with gene expression data was used to identify genes for which the 

interaction between expression levels and treatment with anthracyclines was significantly 

associated with outcome, resulting in 54 CRGs. RNA-sequencing data from the TCGA 

breast cancer cohort was used to infer a breast cancer chromatin regulatory gene (CRG) 

network using the ARACNE algorithm. A panel of 87 breast cancer cell lines from 10 

datasets with accompanying gene expression data and dose/response curve metrics (GI50 or 

AUC) data was used to build a genome-wide signature of anthracycline response (Methods). 

Based on the dose/response curve, cells were classified as sensitive or resistant (upper and 

lower 1/3 dose/response values, respectively). The VIPER algorithm was then applied to 

each dataset to identify chromatin regulatory genes (CRGs) from the ARACNE network 

whose targets were significantly enriched in the anthracycline response signature, yielding a 

consensus list of 38 CRGs. The intersection of genes significant in both the in vitro and in 
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vivo analyses, yielded 12 CRGs from which KDM4B and KAT6B were selected for 

functional evaluation. Panel B. CRGs enriched in the in vitro doxorubicin signature based on 

VIPER are shown for the Heiser microarray dataset (N=46 biologically independent cell 

lines). CRGs are labeled within the network and the corresponding target genes whose 

expression they modify are indicated as individual dots. Panel C. For each CRG associated 

with anthracycline response in vitro, the inferred activation status is indicated (red – positive, 

blue – negative association with anthracycline sensitivity), as is the change in expression of 

its target genes, as indicated by individual bars along the horizontal (red – upregulated, blue 

– downregulated), and the significance of the association (p-value based on comparison of 

enrichment score with a null distribution generated from 1000 random signatures, non 

adjusted). The order of target genes is defined by the strength of association with 

doxorubicin response
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Figure 2. The expression levels of key chromatin regulatory genes are associated with 
anthracycline response.
Panels A, B, C: Kaplan-Meier plot of anthracycline treated and non-treated patients (N=760 

patients) stratified by high versus low expression of key CRGs (BCL11A, KAT6B, 
KDM4B). P-value from a two-sided logrank test Panels D, E, F: Cox Proportional Hazards 

model of the probability of overall survival (adjusted by hormone receptor status, Her2 

status, lymph node status, tumor size, MKI67 expression and cohort) for low expression 

(median expression less one standard deviation). Grey shading corresponds to 95% 

confidence intervals. Panels G, H, I: Same as above, but for high expression (measured as 

median expression plus one standard deviation) of CRGs. Panels J, K, L: Hazard plot 

illustrating the Cox Proportional log relative Hazard by CRG expression levels in treated 
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versus untreated samples. Importantly, this corresponds to a threshold-free representation of 

the hazards. Grey shading corresponds to 95% confidence intervals.
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Figure 3. Chromatin state mediates anthracycline response.
Panel A: High expression levels of trithorax complexes (compass and SWI/SNF) are 

associated with better outcome in anthracycline treated patients (N=760 patients), whereas 

high expression of PRC2 complex is associated with worse outcome, where the hazard ratio 

plots summarizes the results for genes in each complex across the metacohort. The number 

of genes in each complex is indicated in brackets. Panel B. Schematic illustration of a model 

wherein the trithorax and PRC2 genes exhibit opposing roles in mediating anthracycline 

response. In this scenario, BAF and COMPASS complex subunits, KDM4B, KAT6B and 

others – open the DNA fiber to TOP2 binding, thereby increasing anthracycline sensitivity, 

while an opposing set of CRGs – including Polycomb proteins (PRC2), BCL11A, HDAC9 
and others – close the DNA fiber to TOP2 binding, thereby decreasing anthracycline 

sensitivity. Panels C, D, E: Forest plot depicting the hazards of overall survival based on the 

expression of chromatin regulatory genes (CRGs) that were also associated with 

anthracycline response in vitro (from VIPER). P-values are based on the Cox Proportional 

Hazards model of the interaction between drug and gene expression, adjusted by hormone 

receptor status, Her2 status, tumor size, lymph node status, MKI67 expression from the 

expression array data and cohort (Methods). The forest plots contrast treated versus non-

treated patients in two settings, namely high CRG expression (cyan) and low CRG 

expression (purple). The left panel illustrates representative genes for which high expression 

is associated with better outcome (negative hazards) in patients treated with anthracyclines, 

whereas the right panel includes representative genes for which low expression is associated 

Seoane et al. Page 32

Nat Med. Author manuscript; available in PMC 2020 May 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



with better survival in patients treated with anthracyclines. Varied chemotherapy regimes are 

compared, namely anthracylines versus non-anthracycline (CMF, taxanes, hormonal therapy, 

or no treatment) based treatment (N=760 patients) or subsets (anthracycline vs CMF, N=392 

patients and anthracycline vs taxanes, N=319 patients). The forest plots show the log-2 

hazard ratio (box) and error bars represent 95% confidence intervals.
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Figure 4. KDM4B mediates TOP2 inhibitor response in breast cancer cells by modulating TOP2 
accessibility to chromatin.
Panel A: Western blots on nuclear extracts showing inducible shRNA knockdown of 

KDM4B with 3 unique shRNA sequences in the HCC1954 breast cancer cell line. See 

Source Data 1. Experiments we repeated independently 3 times with similar results. Panel B: 

Schematic overview of drug response assays. Panel C: Doxorubicin dose response curves for 

KDM4B induced shRNAs (shRNA 1, 2, 3) in HCC1954 cells and non-induced HCC1954 

cells normalized to DMSO vehicle. n=9; 3 independent experiments of 3 independent 

shRNAs each. Center value is mean +/− s.e.m.. Panel D: Etoposide dose response curve for 
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KDM4B induced shRNAs (shRNA 1, 2, 3) in HCC1954 cells and non-induced HCC1954 

cells normalized to DMSO vehicle. n=9; 3 independent experiments of 3 independent 

shRNAs each. Center value is mean +/− s.e.m.. Panel E: Paclitaxel dose response curve for 

KDM4B induced shRNAs (shRNA 1, 2) in HCC1954 cells and non-induced HCC1954 cells 

normalized to DMSO vehicle. n=3; 3 independent experiments from 2 independent shRNAs. 

Center value is mean +/− s.e.m.. Panel F: Western blot on whole cell extract showing 

knockdown with a scramble shRNA or knockdown of KDM4B (shRNA-1) with no 

concomitant loss of drug targets TOP2A and TOP2B or a gain in the drug efflux pump 

ABCB1. See Source Data 2: Subfigure is a combination of multiple blots. Experiments we 

repeated independently 3 times with similar results. Panel G: Relative cell number of 

HCC1954 cells with induced shRNAs to non-induced cells (shRNAs to KDM4B 1, 2, 3 and 

shRNA Scramble) at day 7 (induced/DMSO vehicle). n=14: Scramble and n=16: KDM4B 

from independent experiments. Center line of box is the median data point with upper bound 

of box the 3rd quartile and lower bound of box the 1st quartile. Whiskers represent 1.5x the 

IQR. Panel H: Schematic of Etoposide fixed, high salt wash TOP2 DNA accessibility 

experiments shown in I and S13D. Panel I: Western blot of Input samples and resolubilized 

chromatin pellet after wash with 500mM NaCl from HCC1954 cells treated with etoposide 

for given time, +/− induction of shRNAs shows a reduction of chromatin bound TOP2 

proteins in the absence of KDM4B. Histone H3 is shown as a loading control and TBP 

shows removal of transiently bound proteins by 500mM salt wash. See Source Data 3. 

Experiments were repeated independently three times with similar results.
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