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Abstract

One of the significant unanswered questions about COVID-19 epidemiology relates to the

role of children in transmission. This study uses data on infections within households in

order to estimate the susceptibility and infectivity of children compared to those of adults.

The data were collected from households in the city of Bnei Brak, Israel, in which all house-

hold members were tested for COVID-19 using PCR (637 households, average household

size of 5.3). In addition, serological tests were performed on a subset of the individuals in

the study. Inspection of the PCR data shows that children are less likely to be tested positive

compared to adults (25% of children positive over all households, 44% of adults positive

over all households, excluding index cases), and the chance of being positive increases

with age. Analysis of joint PCR/serological data shows that there is under-detection of infec-

tions in the PCR testing, which is more substantial in children. However, the differences in

detection rates are not sufficient to account for the differences in PCR positive rates in the

two age groups. To estimate relative transmission parameters, we employ a discrete sto-

chastic model of the spread of infection within a household, allowing for susceptibility and

infectivity parameters to differ among children and adults. The model is fitted to the house-

hold data using a simulated maximum likelihood approach. To adjust parameter estimates

for under-detection of infections in the PCR results, we employ a multiple imputation proce-

dure using estimates of under-detection in children and adults, based on the available sero-

logical data. We estimate that the susceptibility of children (under 20 years old) is 43% (95%

CI: [31%, 55%]) of the susceptibility of adults. The infectivity of children was estimated to be

63% (95% CI: [37%, 88%]) relative to that of adults.
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Author summary

One of the significant unanswered questions about COVID-19 epidemiology relates to

the role of children in transmission. In this study we estimate susceptibility and infectivity

of children compared to those of adults using households data. The data were collected

from households in the city of Bnei Brak, Israel, in which all household members were

tested for COVID-19 using PCR. In addition, serological tests were performed on a subset

of the individuals. Using a mathematical model to fit the data, we estimate that children

are about half as susceptible to infection as adults, and are somewhat less prone to infect

others compared to adults. In addition, using the serological data we find that under-

detection of children, compared to that of adults, is more severe, given the PCR testing

policy employed. Thus, a combination of low susceptibility and under-detection of chil-

dren may explain the world-wide observation that the percentage of young children

within confirmed COVID-19 cases is low compared to other age groups. However, the

role of children in the spread of COVID-19 is also affected by different contact patterns

and hygienic habits outside the household, so that more intense contact and mixing

among children, for example in schools, could offset the effect of reduced susceptibility

and infectivity.

1 Introduction

The COVID-19 pandemic, which emerged in Wuhan, China during December 2019, has now

spread globally. Extreme measures have been taken worldwide in response to the outbreaks,

among them, extended school and workplace closures. Guiding public health policies crucially

depends on understanding the effect of age structure on the epidemic dynamics. In particular,

susceptibility and infectivity are two critical aspects to consider when studying population het-

erogeneity in the context of infectious diseases. At this stage of the pandemic, it has become

clear that the clinical characteristics of the disease among children are different from those in

adults, with children having considerably lower risk of severe symptoms [1, 2]. In addition,

studies report a markedly lower percentage of children diagnosed relative to their share in the

population [3–5].

A key question is whether the above-noted difference between children and adults in rates

of identified cases is the result of lower susceptibility of children to infection, or perhaps is due

to the milder (or no) symptoms displayed by infected children, which, based on common test-

ing policy, leads to under-detection [1]. These explanations are non-exclusive. Another crucial

knowledge gap relates to the ability of those children who are already infected to infect others.

As suggested by Kelvin et al. [6], the fact that children frequently do not display notable disease

symptoms, raises the possibility that children could be facilitators of viral transmission. Deeper

understanding of these issues is essential in order to assess the role of children in the transmis-

sion and spread of COVID-19, and has the potential to affect future policies to optimally miti-

gate the outbreaks.

Regarding the susceptibility of children to infection, available research yields mixed con-

clusions, but with some significant indications of lower susceptibility of children. Several

random survey studies—not symptom based—have shown lower infection rates in children.

In an Icelandic study [7], using a PCR survey with random sampling, no children up to age

10 were found to be infected with SARS-CoV-2 as compared with 0.8% of persons over age

10. A serological survey in Geneva [8] found that children aged 5-9 had a significantly lower

risk of being seropositive compared to individuals aged 25-49, with a relative risk of 0.32. A

PLOS COMPUTATIONAL BIOLOGY Estimating COVID-19 relative susceptibility and infectivity of children

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008559 February 11, 2021 2 / 19

https://doi.org/10.1371/journal.pcbi.1008559


random serological survey in Spain found seroprevalence by immunoassay of 3.8% in age

group 0-19 compared to 4.6% in the population overall. These studies indicate that the lower

rates of detected cases in children are not due only to under-detection because of milder

symptoms, though they do not provide unequivocal evidence of lower susceptibility in chil-

dren, since the lower rates of infection might also be affected by the isolation of children dur-

ing a period of school closures. Another approach to examining susceptibility to infection is

using contact tracing studies, in which contacts of known cases are isolated and tested.

While a study of Bi et al. [9] concludes that children were as likely to be infected as adults,

Zhang et al. [10] conclude that children are less likely to be infected compared to adults. A

study based on fitting an age-structured epidemic model to population and contact tracing

data estimates that the susceptibility individuals under the age of 20 is approximately half

that of those over 20, and also that the rates of manifestation of clinical symptoms are

strongly age-dependent [11]. A systematic review and meta-analysis by Viner et al. [12] of

contact tracing studies and population-level studies concluded that there is preliminary evi-

dence that children and young people have lower susceptibility to SARS-CoV-2—the pooled

estimate over contact tracing studies of the odds ratio of being an infected contact in children

compared to adults was 0.56 (95% CI: [0.37, 0.85]), with substantial heterogeneity over stud-

ies. Findings from population-level screening studies using PCR or serological testing were

heterogeneous, with some studies showing a considerably lower rate of infection among chil-

dren and others showing no such difference [12].

Regarding infectivity of children, existing evidence is scarce. Cai et al’s [13] analysis of 10

children diagnosed with COVID-19, states that one cannot neglect the potential risk of trans-

mission from the infected child to adult contacts, based on one patient. A study from New

South Wales schools in Australia [14] based on both virus and antibody testing, suggests that

children are not the primary drivers of COVID-19 spread in schools or in the community.

According to Zimmerman et al. [15] the importance of children in transmitting the virus

remains uncertain. Preliminary results from an ongoing research of the National Institute

for Public Health and the Environment in the Netherlands (RIVM) [16] show no indications

that children younger than 12 years were the first to be infected within the household, and

suggest that patients under 20 years play a much smaller role in the spread than adults and

the elderly.

In view of the crucial importance of understanding the role of children in the epidemiology

of COVID-19, and of the considerable uncertainties that still remain, it is imperative to per-

form further studies collecting and analyzing relevant data.

In this study we aim to estimate the relative susceptibility and infectivity of children by ana-

lyzing a data set which is unique in both size and quality, collected from households in the city

of Bnei Brak, Israel, in which all household members were tested for COVID-19 using PCR

(637 households, 3,353 people of which 1,510 tested COVID-19 positive, average household

size of 5.3). In a subset of these households, serological testing was also carried out. The PCR

testing data reveals a clear dependence of positive rates on age. In order to gain understanding

of the epidemiological mechanisms behind these age-related differences, we estimate suscepti-

bility and infectivity parameters for children and for adults, by fitting a household transmis-

sion model to the data, using a simulated maximum likelihood approach. Since the PCR

testing may miss some infections due to insufficiently frequent testing or false negatives, we

also use the available serological data to assess the extent of this under-detection among chil-

dren and adults. Specifically, we examine the effect of correcting for this under-detection on

the estimates of the susceptibility and infectivity parameters, using a multiple imputation

procedure.
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2 Methods

Ethics statement

For the PCR research, an exemption from institutional review board approval was given by the

Israeli Ministry of Health as part of an active epidemiological investigation, based on use of

anonymous data only and no medical intervention. The serological dataset was part of research

project MOH-031-2020 that was approved by the review board of the Israeli Ministry of Health.

2.1 Sources of data

This study is based on data collected from the city of Bnei Brak (population 213,046) which is

the most densely populated city in Israel. Most of its residents are ultra-orthodox Jews, with

large households and a young population (approximately 51% under the age of 20) [17].

2.1.1 PCR testing. We used the results of real-time reverse transcriptase-polymerase

chain reaction (RT-PCR) tests for SARS-CoV-2 and the epidemiological investigations from

the Israeli COVID-19 database, performed in Bnei Brak between March 17 and May 3, 2020.

During most of this period, the state of Israel was under lock-down. The city of Bnei Brak had

the highest per capita infection rate in Israel and was the only city in Israel that was declared a

“restricted area” [18].

Until the end of May, the general policy in Israel was to approve testing for people who

had been in close contact with someone who had tested positive for COVID-19 or who had

returned from abroad and, in both cases, had at least one of the symptoms in a list. However,

in the case of the city of Bnei-Brak, approval was granted by the district physician to test all

members of a household in which a suspected case occurred.

Testing was done for diagnostic purposes, by paramedics visiting the households. Most

households in the data had several visits during the relevant period. Initial testing in a house-

hold was always due to a symptomatic individual reporting to the healthcare provider. Subse-

quent visits were prompted either by the need to re-test a household member who had already

tested positive, or by a report of a newly symptomatic member of the household. Testing in a

household ended when all positive cases had been confirmed as negative (by two subsequent

tests) and no further reports of symptoms were made (in some households, testing continued

after May 3, 2020, the last date of our data set). The decision as to which household members

to test on each visit (in addition to the member who prompted the visit) was made on the spot

by the medical team, and did not follow a systematic protocol. Therefore the number of times

that an individual was tested and the gaps in time between consecutive tests vary among indi-

viduals, a fact which raises some concerns about the possibility of missed infections, which we

will address in the following using information provided by serological tests.

For each individual, the data collected includes age, reports of symptoms, the dates on

which the samples were taken and the results of the PCR testing. Symptoms and their dates of

onset were self-reported: as part of the epidemiological investigations, those who tested posi-

tive were asked whether they had symptoms, and the date on which these symptoms appeared.

The list of symptoms included fever, cough, shortness of breath, abdominal pains, headache,

diarrhea, chills, sore-throat, muscle-pain, vomiting, other respiratory difficulties and addi-

tional symptoms, such as smell or taste problems, weakness, etc.

In order to map individuals to households, we used the municipality database of Bnei Brak

residents born before May 25, 2020. The inclusion criteria, met by 637 households, were

households with at least 2 members, in which all household members were tested and at least

one member tested positive to COVID-19. The 637 households comprise a total of 3,353 indi-

viduals, of whom 1,510 tested positive for COVID-19, with mean household size of 5.3
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(standard deviation 3.1). Histograms of household sizes in the data and the number of posi-

tives per household size are displayed in Fig 1.

For each of the households, we have generated a plot which enables us to visualize the time-

line of testing in the household. See Fig 2 for examples of two such plots, and its caption for

explanations. The time-line plots for all households in the study are provided in S2 Text.

2.1.2 Serological testing. A serological survey was conducted in Bnei Brak during June

2020. The survey was performed using a kit of the Abbott SARS-CoV-2 IgG, whose specificity

was estimated as�100% and whose sensitivity at� 21 days was estimated as�85% [19]. As

part of this survey, a subset of the households in our data set could be serologically tested. The

criteria defined for selecting these households were: households with up to four adult (20+)

members, at least two members who were negative using PCR, one of whom is an adult and

the other a child (7-19), with preference for families with at least two members who were

found positive using PCR. The rationale for these criteria was to include a sufficiently large

sample of PCR negative cases to which the serological results can be compared. Altogether,

130 households out of the 637 household data set discussed above were serologically tested. In

these selected households, tested between June 3 and June 21, 2020, all members were typically

tested, except for children under the age of seven, who were not tested at all in the serological

survey. Overall, 714 of the 3,353 individuals in the data set had serological tests. Nine of these

individuals were found to be positive in PCR testing after May 3, 2020 (the last date used for

the PCR testing data set) and before June 2020 (the period of serological testing) and have

been removed from further analysis, leaving us with 705 serological test results. We note that

the gap of one month between the end of the PCR testing in our data set and the beginning of

serological testing is sufficiently long for seroconversion. Furthermore, during this period the

Fig 1. Household sizes and the number of positives in households of different sizes. Top panel: histogram of

household sizes in the Bnei Brak data set. Bottom panel: histogram of the number of positives per household size in the

Bnei Brak data set (households of size greater than 13 are not shown due to their small sample size).

https://doi.org/10.1371/journal.pcbi.1008559.g001
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COVID-19 outbreak in Israel, and in Bnei-Brak in particular, was at its lowest (see Fig 3), so

that the probability that individuals in our database were infected during this period is low.

2.2 Estimating susceptibility and infectivity of children and adults through

modelling

In order to assess differences in susceptibility and infectivity among children and adults, we

use a dynamic stochastic mathematical model of a household outbreak allowing for these dif-

ferences, and fit it to the observational data on infections in the households. Our data does not

Fig 2. Examples of two household timelines. Each row represents the timeline of an individual in the household. The

age group of each member is given in parenthesis (precise ages are not supplied, due to privacy concerns). In these

examples, Household 5 includes 8 individuals and Household 142 includes 5 individuals. Red circles denote positive

PCR tests while green circles denote negative PCR tests. Red squares denote days of reported symptoms onset. The

period between the two vertical lines denote the observed time-period used in the model fitting, which was set, for each

household, according to the rules described in Section 2.2 of S1 Text. Individuals whose label is colored in red are the

suspected index cases, as determined by the criteria given in Section 2.3 of S1 Text. In Household 5, there are three

suspected index cases (p6-p8), whereas in Household 142 only one (p5). Members of Household 142 were also tested

using serology and the results are shown using the asterisks—red for a positive result and green for a negative. As can

be seen, member p5 of Household 142 was found positive both by PCR and serology, while member p2 was found

positive using serology but not using PCR. The rest of the household members were found to be negative using both

PCR and serology. S2 Text contains similar timelines for all households in this study (excluding households with more

than 10 individuals, which were removed for privacy consideration).

https://doi.org/10.1371/journal.pcbi.1008559.g002
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include information about who infected whom, nor dates of infection—the onset of symptoms

and testing dates in our data are used only to identify the index case and set the observed dura-

tion, as described below. We use only aggregate numbers of infected individuals in the two age

groups in the different households. The key point is that these data on outcomes of the many

“household outbreaks” contain valuable information concerning the infectivity and suscepti-

bility parameters, which can be extracted by a model-fitting approach: only certain ranges of

values of these parameters will generate outcomes which are consistent with those observed in

the data. Inference for household models is a classic issue in the epidemiological study of infec-

tious diseases [20, 21]. We note that while for a complete household outbreak there exist ele-

gant analytical expressions for the probabilities of outcomes, so that a likelihood function can

be computed in closed form [22], in this work we cannot assume that the entire period of the

household epidemic is observed in our data. Our outcomes relate to a certain duration of time

for which PCR testing was conducted in a given household, and in this case we do not have

closed expressions for the likelihood, which motivates the “simulated maximum likelihood”

approach we take (see explanation below). For other approaches to dealing with the problem

of ‘right-censoring’ involved in analyzing ongoing household epidemics see [23].

2.2.1 The model. We use a stochastic dynamic model for a household outbreak. Time is

indexed by the discrete variable t (in days). We denote by Sa(t) and Sc(t) the number of adults

and children who are still susceptible on day t, respectively. The symbols ia(t) and ic(t) stand

for the number of adults, and children who become infected on day t, respectively. The

dynamic equations are

iaðt þ 1Þ � Bin
�
SaðtÞ; 1 � e�

PT

t¼1
Pt½baa�iaðt� tÞþbaad�icðt� tÞ�

�
;

icðt þ 1Þ � Bin
�
ScðtÞ; 1 � e�

PT

t¼1
Pt½baag�iaðt� tÞþbaagd�icðt� tÞ�

�
;

Saðt þ 1Þ ¼ SaðtÞ � iaðtÞ; Scðt þ 1Þ ¼ ScðtÞ � icðtÞ;

where Pτ, τ 2 {1, . . ., T} is the generation-time distribution, set to be a discretized version of a

gamma distribution with a mean of 4.5 days, and a standard deviation of 2.5 days. This mean

generation time is based on the mean intervals between symptom onset obtained from�4500

pairs of known infector-infectee in the data set of confirmed cases in Israel (see S2 Fig) and

is also compatible with findings from other studies [24–26]. The parameter βaa is the transmis-

sion rate among adults, γ is the susceptibility of children relative to that of adults, and δ is the

Fig 3. Incidence rates in Israel and in Bnei-Brak. The number of new daily confirmed COVID-19 cases per 10,000

people in all of Israel and in the city of Bnei-Brak. The windows mark the periods of PCR and serological testing

employed in our data set.

https://doi.org/10.1371/journal.pcbi.1008559.g003
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infectivity of children relative to that of adults. In words, the relative susceptibility of two indi-

viduals is defined as the ratio of their probabilities of being infected per unit time, when

exposed to the same hazard of infection. The relative infectivity of two individuals is defined as

the ratio of the probabilities per unit time that these individuals generate infection, when mak-

ing contact with individuals who have identical susceptibilities. See Section 1 of S1 Text and S1

Fig for a detailed description of the model.

2.2.2 Fitting the model to data using simulated maximum-likelihood. We use the

model to fit the data regarding the number of positive adults and children in each household.

Given the number of individuals of each age group in a household, the age group to which the

index case belongs, values of transmission parameters and a duration of observation, one can

generate simulations of a household outbreak for the specified duration. For each such simula-

tion, we record outcome: the number of individuals of each age group who were infected dur-

ing the time period considered. Since the model is stochastic, different realizations of such a

simulation will lead to different outcomes. The probability distribution over the finite set of

possible outcomes is approximated for each of the households, by running 1000 simulations

for each set of transmission parameter values in a specified range over a grid, with a resolution

of 0.05. These probability distributions, which are dependent on the transmission parameters,

enable us to compute the likelihood function corresponding to the outcome in each of the

households in our empirical data. The total likelihood is then the product of the likelihoods for

all households. This likelihood is a function of the transmission parameters (βaa, γ, δ) and is

used to estimate the transmission parameters using maximum likelihood. Note that since our

likelihood function is computed using simulation, our estimation method is what is known as

“simulated maximum likelihood” [27].

Fitting the model to the available data requires to set the duration of the observed period

for each household, which is used in the simulations providing the likelihood calculations.

This is important in order to deal with potential right-censoring of household data: if we take a

duration longer than that for which we have data, we implicitly assume that no infections

occurred after the last observed one, an assumption which could be invalid. Note that since we

do not exclude the possibility that further infections occurred after the observed time period—

the observed period does not necessarily correspond to the full household outbreak. For details

on the likelihood calculation and the procedures employed to set the observed period and the

age group of the index case for each household see Section 2 of S1 Text.

To test the ability of our estimation procedure to identify parameters, we carried out a sim-

ulation study in which household outbreaks with known parameters were generated in a col-

lection of households of the same type as those in the data set, and our method was used to

estimate the parameters. A similar procedure was used to obtain parametric bootstrap confi-

dence intervals, by generating 1000 simulated data sets using the parameter estimated from the

real data, and re-estimating the parameters (see Section 4 of S1 Text and S4 Fig). An R software

package applying our methodology in a computationally efficient way is available online [28],

allowing other researchers to estimate relative susceptibility and infectivity of children and

adults given an appropriate data set.

2.2.3 Accounting for misclassified cases using multiple imputation. In the procedure

described above, we have assumed that the data regarding infections in a household is com-

plete for the period designated as the observed period in the household. In particular, it has

been assumed that

(a) All individuals who tested positive were indeed infected (no false positive).

(b) All individuals who tested negative were not infected during the observed period (no false

negatives).
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We believe that assumption (a) is justified, in view of the high specificity of PCR tests, as

well as the fact that most positive cases were symptomatic and tested positive more than once.

Assumption (b) is, however, overly optimistic, for two reasons: the first is that PCR tests have a

non-negligible false negative rate [29], so that an infected person might test negative. Even

more importantly, while the inclusion criteria for households in our study stipulated that all

household members be tested at least once, and indeed many of the subjects were tested multi-

ple times, the frequency of testing of many of the subjects is not sufficiently high to exclude the

possibility that some of them were infected but their infection was missed by the testing. This

could occur if a person became infected during the period defined as the observed period but

subsequent to the last date on which a test was taken from this individual, or if an individual

had become infected prior to the observation period, or following one of the tests, but became

negative before a subsequent test was taken.

With the availability of the serological data for a subset of the individuals, we could replace

assumption (b) to take into account the possibility of cases misclassified as negative, by apply-

ing a multiple imputation procedure as follows:

1. We assume that all individuals who tested positive with PCR were indeed infected (even if a

serological test was negative—since the serological tests have a 15% false negative rate [30]).

2. We classify those who have been tested negative with PCR as “questionable”, except for

those who had serological tests, in which case we used the result of the serological test to

determine their status.

3. We assume that a person classified as “questionable” has a certain probability of having

been infected and not detected. To estimate this probability we exploit the serological data.

Restricting ourselves to individuals for which a serological test is available, we calculate, for

each age group (children and adults), the proportion of individuals who tested positive on

the serological test out of those who tested negative on the PCR test. This proportion serves

as our estimate of the probability that a “questionable” individual of the corresponding age

group was in fact infected.

4. We generate 20 data sets in each of which the status (positive or negative) of each of the

individuals classified as “questionable” is randomly assigned according to the probability

estimated using the serological data (see (3) above). In addition, the questionable cases who

are imputed as positive were treated as suspected index cases. For each of these data sets,

the model is re-fitted using the likelihood method described in Section 2.2.2 to obtain esti-

mates for the parameters, and standard errors for these estimates are calculated using 100

parametric bootstrap simulations. Using Rubin’s rules [31], we then obtain confidence

intervals for the parameters taking into account the multiple imputation procedure that

was performed. We thus obtain parameter estimates which are adjusted for misclassified

cases.

3 Results

3.1 PCR testing

Inspection of the data reveals that chances of becoming infected increase with age, up to

around age 20, and remains approximately constant thereafter (Fig 4 top panel).

We divide the population into a children’s group (0-19 including) and an adult group (20+).

Table 1 summarizes the information regarding PCR testing and symptomatic cases in individu-

als belonging to the data set, using this cutoff. We obtain a positive rate of 65% among adults
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compared to 28% among children. Excluding index cases, which in most cases were adults (see

S1 Table), 44% of adults were infected compared to 25% of the children. Interestingly, children

under the age of one seem to be more likely to be infected than children between one and four

(Fig 4 bottom panel). Table 2 summarizes the information regarding the households in the data

set and the results of the PCR testing in these households.

Fig 5 shows a boxplot of the observed duration (as defined in section 2.2 in the supplemen-

tary material) in households of different sizes. These durations give lower bounds to the dura-

tions of the household outbreaks. It demonstrates that a household outbreak can typically last

Fig 4. Positive rates in PCR tests, excluding index cases. Top panel: Fraction of positives by age-group in the data set,

excluding index cases. Bottom panel: Fraction of positives by age in children, excluding index cases. Binomial

confidence intervals in both figures were calculated using the normal approximation.

https://doi.org/10.1371/journal.pcbi.1008559.g004

Table 1. Summary of PCR testing results for individuals in the data set.

Overall Children (0-19) Adults (20+)

PCR Tested 3,353 1,809 1,544

PCR Positive (% out of Tested) 1,510

(45.0%)

512 (28%) 998 (65%)

Symptomatic (% out of Positive) 1,243 (82%) 373 (73%) 882 (88%)

Avg. (Std.) PCR tests per individual 2.57 (1.68) 2.10 (1.41) 3.11 (1.81)

Avg. (Std.) PCR tests per positive individual 3.85 (1.61) 3.55 (1.62) 4.00 (1.58)

Avg. (Std.) PCR tests per negative individual 1.51 (0.76) 1.53 (0.77) 1.48 (0.74)

Avg. (Std.) PCR tests per individual excluding follow-up tests for

positives

2.13 (1.14) 1.88 (1.04) 2.42 (1.18)

https://doi.org/10.1371/journal.pcbi.1008559.t001
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2-4 weeks, with a weak dependence on the household size, so that large households experience

somewhat longer epidemics. This point should be relevant when considering the duration of

lock-downs intended to curtail the epidemic in the population.

3.2 Results of model fitting to PCR data

We now present the estimates obtained by our modelling approach (described in Methods

Section 2.2.2), using the PCR testing data alone. In Section 3.4 below we present somewhat

modified estimates obtained when adjustment is made to account for under-detection of

cases, as estimated from the serological data.

We estimated that the relative susceptibility of children (γ) is 35% (95% CI: [30%, 40%]).

The relative infectivity (δ) of children was estimated to be 70% (95% CI: [55%, 90%]). The

adult-adult transmission parameter βaa was estimated as 0.4 (95% CI: [0.35, 0.45]). The ranges

reported are based on parametric bootstrap confidence intervals (with a precision limited by

the grid resolution of 0.05). Fig 6 displays level curves of the negative log-likelihood as a func-

tion of the susceptibility and infectivity parameters, for three values of the adult-adult trans-

mission parameter βaa. Fig 7 shows the model fit to the observations within households of

different sizes. The fit obtained using the model is much better than the fit obtained using a

naïve model that ignores secondary infections within households (see S3 Fig).

We performed sensitivity analyses to examine the effect of various assumptions on these

results. These included sensitivity to the assumed generation-time distribution, the assumed

Table 2. Summary statistics for households in the data set.

Number of Households 637

Household Size

(Avg. / Std. / Min. / Max.)

5.26 / 3.07 / 2 / 15

Number of Adults 20+ per Household

(Avg. / Std. / Min. / Max.)

2.42 / 1.04 / 1 / 8

Number of Children 0-19 per Household

(Avg. / Std. / Min. / Max.)

2.84 / 2.85 / 0 / 12

Number of PCR Positives per Household

(Avg. / Std. / Min. / Max.)

2.37 / 1.85 / 1 / 12

Number of PCR Positive Adults 20+ per Household

(Avg. / Std. / Min. / Max.)

1.57 / 0.88 / 0 / 7

Number of PCR Positive Children 0-19 per Household

(Avg. / Std. / Min. / Max.)

0.80 / 1.43 / 0 / 9

https://doi.org/10.1371/journal.pcbi.1008559.t002

Fig 5. Observed duration in households of different sizes. A boxplot of the observed duration (in days) for different

household sizes in the Bnei-Brak data set.

https://doi.org/10.1371/journal.pcbi.1008559.g005
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age-group of the index case in households in which there was doubt regarding the index case’s

age-group, and to the assumed observed duration of the transmission in the households. In

general, our results seem to be robust to reasonable variations in all of these attributes. Full

description of the sensitivity analyses appears in Section 5 of S1 Text, and S5–S7 Figs.

3.3 Serological testing

Of the 705 individuals in our data set for whom serological test results were available, 417 were

children (7-19 years old) and 288 were adults (20+). 34% of these children and 48% of the

adults tested serologically positive, see Table 3.

Table 4 compares the serological and PCR results for those individuals in our database who

were also serologically tested. Note that since the serological sampling targeted households

with at least two negative cases (see Section 2.1.2), the positive rates of PCR testing in this

Fig 6. The log-likelihood as a function of the susceptibility and infectivity parameters. Negative log-likelihood level

curves for the parameters γ, δ, and three values of βaa. For smaller values of βaa the maximal-likelihood estimates of

parameters γ and δ are larger. The white rectangle in the middle figure shows the 95% confidence region obtained

using the bootstrap simulation.

https://doi.org/10.1371/journal.pcbi.1008559.g006

Fig 7. Model fit to observations for households of different sizes. Best model fit to the PCR testing data in the Bnei Brak data set, aggregated

according to the household size (fit to households of size greater than or equal to 10 are not shown due to their small sample size). The histograms show

the distribution of the total number of infected individuals (children+adults) in households of different sizes, together with the corresponding

distributions as predicted by the model with the fitted parameters. While the fitting was done to the number of infected children and adults separately,

as described in the text, the figure shows the summary results in order to allow a visual examination of the goodness-of-fit.

https://doi.org/10.1371/journal.pcbi.1008559.g007
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sample were lower than those observed in the entire data set: 22% in children (compared to

28% in the the entire data set) and 45% in adults (compared to 65% in the entire data set).

A crucial observation afforded by Table 4 is that among children who were confirmed posi-

tive in serological testing, only 48% (95% CI: [37%,56%]) were detected positive by the PCR

testing, in comparison with a corresponding figure of 80% (95% CI: [72%,86%]) for adults.

This indicates that children who were infected were considerably less likely to be detected by

the PCR testing than adults who are positive. A likely explanation for this finding is that chil-

dren who are positive tend to display less symptoms (see Table 1), leading to lower probability

of detection. As we have noted in Section 2.2.3, although all individuals in our study have been

PCR tested at least once, it is possible for infections to be missed if the timing of the testing is

not appropriate. Since household visits were mostly prompted by the reporting of symptoms,

if adults tend to display symptoms more than children we expect that positive adults would be

detected at higher rates than children. In addition, PCR tests have a non-negligible false-nega-

tive rate, and it is possible that this rate is correlated with level of symptoms, leading to higher

false-negative rate in children. Table 5 displays a similar comparison between serological and

PCR testing data as in Table 4, but separated for those individuals who were PCR tested only

once and those tested at least twice. As expected, for individuals tested more than once the

probability of detecting a positive using PCR is higher—77% for children (95% CI: [66%,86%])

and 88% for adults (95% CI: [81%,94%]).

The finding that positive children were less likely to be detected than adults in the PCR test-

ing data should be taken into account when studying the age dependence of transmission—

otherwise a bias is introduced into the analysis. To do so we use the joint PCR/serological data

Table 3. Results of serological testing on individuals from the Bnei-Brak data set.

Overall Children (7-19) Adults (20+)

Ser. Tested 705 417 288

Ser. Positive (% out of Tested) 278 (39%) 141 (34%) 137 (48%)

https://doi.org/10.1371/journal.pcbi.1008559.t003

Table 4. Comparison of PCR and serological results for individuals in the Bnei-Brak data set tested by both.

Overall Children (7-19) Adults (20+)

PCR Ser. Negative Positive Negative Positive Negative Positive

Negative 381 46 252 24 129 22

Positive 102 176 74 67 28 109

https://doi.org/10.1371/journal.pcbi.1008559.t004

Table 5. Comparison of PCR and serological results for individuals who were tested only once by PCR and individuals who were tested at least twice by PCR.

Results for individuals who were tested only once by PCR

Overall Children (7-19) Adults (20+)

PCR Ser. Negative Positive Negative Positive Negative Positive

Negative 247 3 137 2 49 1

Positive 71 12 57 10 14 2

Results for individuals who were tested at least twice by PCR

Overall Children (7-19) Adults (20+)

PCR Ser. Negative Positive Negative Positive Negative Positive

Negative 134 43 85 22 80 21

Positive 31 164 17 57 14 107

https://doi.org/10.1371/journal.pcbi.1008559.t005
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to estimate the probability that an individual classified as negative using PCR is actually posi-

tive. Of those tested negative in PCR, 21% (95% CI: [18%,25%]) tested positive using serology

—23% (95% CI: [18%,28%]) in children and 18% (95% CI: [12%,25%]) in adults. We note that

the fact that the serological tests were not performed on children under the age of seven might

lead to some bias in the misclassification probability calculated for children.

We can adjust the PCR positivity rates observed in the entire data set (28% among children

and 65% among adults) using the above estimates for under-detection. If we add the estimated

number of undetected infections, we obtain a positive rate of 28+(100-28)�0.23 = 45% for chil-

dren and 65+(100-65)�0.18 = 71% for adults. Thus, even following this correction, the positive

rates of adults is considerably higher than that of children. This consideration implies that the

lower rate of detection in children does not fully explain the difference in infection rates in the

two age groups. We therefore conclude that differences in transmission characteristics among

age groups still must play a role in explaining these differences in rates.

3.4 Results of model fitting to adjusted PCR data using multiple

imputation

To assess the differences in transmission characteristics among age groups while adjusting for

the under-detection of infection among children, we employ the multiple imputation proce-

dure described in Section 2.3 using the estimates for under-detection derived from Table 4: the

probability of having been infected despite not having been detected in the PCR testing is esti-

mated at 23% for children and 18% for adults.

We estimated that the relative susceptibility of children (γ) is 43% (95% CI: [31%, 55%]).

The relative infectivity (δ) of children was estimated to be 63% (95% CI: [37%, 88%]). The

adult-adult transmission parameter βaa was estimated as 0.47 (95% CI: [0.36, 0.57]). Compared

to the estimates made without adjusting for misclassified cases (Section 3.2), the adjusted esti-

mates give a somewhat higher value for the relative susceptibility of children and a somewhat

lower value for their relative infectivity.

The confidence intervals derived from our imputation procedure might underestimate

uncertainty, since the number of imputations employed was relatively small. In addition, we

did not account for the uncertainty in the misclassification rates (due to sampling error) used

in the imputation procedure. These limitations are due to the high computational burden of

running the multiple imputation procedure.

4 Discussion

Currently, one of the most significant unanswered questions about COVID-19 transmission

relates to the role of children in the spread of infection. As we have noted in the Introduction,

the fact that the fraction of children among the confirmed cases has been found to be low in

many countries can be accounted for by two (nonexclusive) hypotheses: (1) Children display

milder symptoms than adults when infected, so are less likely to be tested in a typical testing

policy triggered by symptoms, (2) Children are less susceptible to infection than adults.

Our analysis of the data obtained in this study lends support to both hypotheses, and indi-

cates that both have a role in explaining the observed epidemiological patterns.

First consider hypothesis (1). Examination of the joint PCR/serological testing data, for the

subset of individuals for which it was available, revealed that children who were infected (as

evidenced by serological testing) were less likely to be detected using PCR compared to adults

who were infected. A likely explanation for this difference is that children tend to be less symp-

tomatic than adults (Table 1), and are therefore not tested as intensively, as evidenced by their

lower average number of tests per individual when excluding follow up tests for positive cases
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(Table 1). In our data, all visits to a household were triggered by a report of a symptomatic

household member, and during these visits additional tests within a household were con-

ducted, even if no symptoms were observed. Thus, although all household members were

eventually tested, the testing policy was symptom-biased, in the sense that those with symp-

toms were more likely to be tested during the time window in which viral load was sufficiently

high for detection. Since children are more likely to present milder or no symptoms, we would

expect a higher rate of under-detection in children compared to adults, as we see in the data,

which is the effect described by hypothesis (1).

However, our analysis indicates that hypothesis (1), by itself is not sufficient to explain the

lower proportion of positive cases within children compared to that in adults. Indeed, even

after adjusting the rates of infection obtained from the PCR data, using estimates of under-

detection rates derived from the joint PCR/serological data, we obtain lower infection rates

in children compared to adults in our data. This indicates that differences in positive rates

between children and adults are not fully explained by different detection rates. In order to

account for the differences observed in the data one needs to posit age-related characteristics

of transmission, and not only of detection.

To explore what differences in transmission characteristics could account for the data, we

used a dynamic stochastic model for transmission in a household, allowing for different sus-

ceptibility and infectivity of children and adults, and fitted it to the available data on outcomes

in the households of our data set. To account for under-detection, we also performed this anal-

ysis combined with multiple imputation, using the under-detection estimates from the joint

PCR/serological data. This correction somewhat shifted our estimated parameters, though the

change was not a major one.

The estimation results indicate that the role of children in the transmission of infection is

less prominent than that of adults: children are less susceptible than adults (relative susceptibil-

ity 43% [31%, 45%]), and their infectivity is somewhat lower as well (relative infectivity 63%

[37%, 88%]). The data were more informative regarding the relative susceptibility of children

than regarding their relative infectivity, as indicated by much wider confidence intervals for

the relative infectivity in comparison to those for the relative susceptibility. Data containing

more index cases in the children’s group, as well as data providing more detailed information

about the timeline of infections within the household, would provide more information about

children’s infectivity.

Our result concerning the lower susceptibility of children is in agreement with the result of

Davies et al. [11] who estimated that children under the age of 20 have a level of susceptibility

half that of adults, based on fitting a population-level model to data on clinically-reported

cases, together with data from contact-tracing studies. This result raises the question of possi-

ble biological mechanisms that could account for such an effect. One possible explanation that

has been raised relates to lower expression in children of angiotensin-converting enzyme 2

(ACE2), the receptor that SARS-CoV-2 uses for host entry [32]. Another hypothesis relates to

recent studies which found evidence suggesting the presence of some residual immunity in

people not previously exposed to SARS-CoV-2, in the form of SARS-CoV-2-reactive CD4+ T

cells, attributed to circulating “common cold” coronaviruses [33, 34]. It is possible that this

form of partial protection is more common in children since infection rates with seasonal

coronaviruses are higher in children [35]. The fact that in our data set, children under the age

of one have higher rates of infection with SARS-CoV-2 compared to children between one and

four, is consistent with the hypothesis that partial immunity to SARS-CoV-2 could be related

to past exposure to seasonal coronaviruses. However, a recent study could not find evidence

for a protective effect of prior infection with seasonal coronaviruses against SARS-CoV-2

infection in children [36].
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While our estimates of children’s susceptibility and infectivity are lower than those of

adults within a household, it is important to bear in mind that their role in the spread of

COVID-19 is also affected by different contact patterns and hygienic habits outside the

household, so that more intense contact and mixing among children and adolescents com-

pared to adults, for example in schools, may offset the effect of reduced susceptibility. In

Israel, a second wave of the epidemic started shortly after re-opening of schools at the

beginning of May (see Fig 3) and included major outbreaks in several high-schools [37,

38]. At the moment of this writing, Israel has closed its schools again (and went into lock-

down), after the re-opening of schools on September 1st, following the summer holiday, has

generated another surge of cases, with particularly high rates among the 15-19 age group

(see S8 Fig).

As in nearly all studies of disease transmission, the available data in this study is partial

and imperfect. Our data is partial in the sense that it does not provide us with a full picture

of the transmission in the household (who infected whom), and imperfect in that testing

was not according to a systematic protocol, and some cases were not detected, as revealed

by the partial serological data. Extracting insights into the underlying processes from the

data requires analysis and modelling, which must be based on simplifying assumptions. We

have used a model with two age groups, due both to computational complexity consider-

ations and data limitations, though it is likely that susceptibility and infectivity would vary

in a graded way with age. Specifically, more recent population-level data (as discussed

above regarding the results of school opening) may suggest that individuals of age group

15-19 would be more appropriately classified as adults with respect to transmission charac-

teristics. We have used imputation to account for the under-detection of infections, and

our imputation process assumes that missed cases occur as independent random events,

whose probability depends only on the age group, as estimated using the serological data.

Violation of this assumption could lead to bias in our estimates. However, the sensitivity

tests have shown that our general conclusions are robust to various variations in modelling

assumptions.

We would suggest, in conclusion, the importance of carrying out further studies in house-

holds and in other settings, in order to refine our understanding of heterogeneity in transmis-

sion, whether related to age or to other factors, which is crucial for guiding public health

policy. In particular, improving the resolution of data collection by frequent and regular test-

ing of all individuals would allow to track the course of transmission in a more detailed way,

enabling inference based on timing of detection and not only on final outcomes, and prevent-

ing under-detection and the need to adjust for it. Such studies, with enhanced data collection,

have the potential to allow inference for more detailed models, as well as to reduce uncertainty

in parameter estimates.
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S1 Text. Supplementary material text. Includes explanations on the household outbreak

dynamic model, and on computing the likelihood and fitting the model.

(PDF)

S2 Text. Time-line plots. The time-line plots for all households in the study.

(PDF)

S1 Fig. The dynamic model. Results of 10,000 simulations of the dynamic model.

(TIF)
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S2 Fig. Serial-interval distribution. Serial-interval distribution with mean of 4.5 days and

Detection-time distribution with mean of�10 days.

(TIF)

S3 Fig. Model comparison. Comparison of the dynamic model and the naive binomial model

fit to the data.

(TIF)

S4 Fig. Bootstrap simulation. Results of 1000 bootstrap simulations. βaa—the transmission

parameter among adults, γ—relative susceptability of children, δ—relative infectivity of chil-

dren. The blue color indicates the values used to generate the simulated data.

(TIF)

S5 Fig. Sensitivity to observed epidemic duration. Sensitivity to observed epidemic duration.

βaa—the transmission parameter among adults, γ—relative susceptability of children, δ—relative

infectivity of children. The blue color indicates the values used to generate the simulated data.

(TIF)

S6 Fig. Sensitivity to uncertainty regarding the index case age-group. Sensitivity to uncer-

tainty regarding the index case age-group. βaa—the transmission parameter among adults, γ—

relative susceptability of children, δ—relative infectivity of children. The blue color indicates

the values used to generate the simulated data.

(TIF)

S7 Fig. Sensitivity to the mean generation-time. Results for data sets with mean generation-

time of 4 days (top row) and mean generation-time of 5 days (bottom row). βaa—the transmis-

sion parameter among adults, γ—relative susceptability of children, δ—relative infectivity of

children. The blue color indicates the values used to generate the simulated data.

(TIF)

S8 Fig. Positive rates per 10,000 per age group through time.

(TIF)

S1 Table. Determining the age group of the index case. Number of households with a given

probability assigned for the index case to be an adult.

(XLSX)
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