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Structural basis of complement membrane attack
complex formation
Marina Serna1, Joanna L. Giles2, B. Paul Morgan2 & Doryen Bubeck1

In response to complement activation, the membrane attack complex (MAC) assembles

from fluid-phase proteins to form pores in lipid bilayers. MAC directly lyses pathogens by a

‘multi-hit’ mechanism; however, sublytic MAC pores on host cells activate signalling

pathways. Previous studies have described the structures of individual MAC components and

subcomplexes; however, the molecular details of its assembly and mechanism of action

remain unresolved. Here we report the electron cryo-microscopy structure of human MAC at

subnanometre resolution. Structural analyses define the stoichiometry of the complete pore

and identify a network of interaction interfaces that determine its assembly mechanism. MAC

adopts a ‘split-washer’ configuration, in contrast to the predicted closed ring observed for

perforin and cholesterol-dependent cytolysins. Assembly precursors partially penetrate the

lipid bilayer, resulting in an irregular b-barrel pore. Our results demonstrate how differences in

symmetric and asymmetric components of the MAC underpin a molecular basis for pore

formation and suggest a mechanism of action that extends beyond membrane penetration.
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C
omplement is a phylogenetically ancient component of
the innate immune system, providing rapid response to
pathogen challenge. Activation of complement triggers

assembly of the membrane attack complex (MAC), a multi-
protein pore that inserts into and directly lyses microbes1. MAC
is deployed to kill a wide range of Gram-negative bacteria. It is
essential for defense against Neisseria meningitidis, with genetic
deficiencies in MAC components leading to recurrent infections2.
Unregulated MAC formation causes host tissue damage3, whereas
sublytic pore concentrations trigger signal transduction pathways
that activate events including proliferation4.

MAC assembly requires the sequential and irreversible
association of complement proteins C5b, C6, C7, C8 and C9
(ref. 1). The association of cholesterol-dependent cytolysin/MAC/
perforin-like (CDC/MACPF) domains, found in all but C5b, is
responsible for pore formation. CDC/MACPF proteins comprise
a large family of structurally related molecules, many of which
form pores involved in host immunity and bacterial pathogenesis.
Crystal structures of C6 (ref. 5), C8 (refs 6,7), perforin8 and a
number of CDCs9,10 in their soluble forms define the CDC/
MACPF fold as a central kinked b-sheet with three helical
subregions CH1, CH2 and CH3. Fluorescence spectroscopy
experiments have established that both CH1 and CH2 helical
subregions within the bacterial CDC domain unfurl to form
lipid-inserted b-hairpins11,12. Based on structural homology with
CDCs, it is predicted that these regions comprise the MAC
pore as well.

Results
Cryo-EM structure of the MAC. To date, the lack of structural
information for MAC has been a major obstacle in deriving a
molecular mechanism underpinning its assembly and membrane
penetration. We therefore sought to characterize the complete
transmembrane pore using electron cryo-microscopy (cryo-EM).
Individual complement proteins were purified from human
plasma (Supplementary Fig. 1a). MACs were assembled on
liposomes and a fluorescent dye-release assay was used to confirm
the presence of functional and biologically relevant pores
(Supplementary Fig. 1b). Complexes were detergent solubilized
and complete MACs were separated from MAC precursors, off-
target assembly complexes and irregular arrays probably due to
C9 homo-oligomers. Frozen-hydrated samples were imaged in
the electron microscope using a direct-electron detection camera
(Supplementary Fig. 1c,d). Reference-free aligned class averages
based on cryo-EM data were used to generate an initial model for
refinement (Supplementary Fig. 2). Individual single particles
were subjected to both two-dimensional (2D) and three-dimen-
sional classification procedures to obtain a homogenous popula-
tion (Supplementary Fig. 2a,b). The structure was refined without
symmetry to a final resolution of 8.5 Å, with local resolutions
ranging from 6 to 14 Å (Fig. 1 and Supplementary Fig. 3). A soft
mask removing flexible regions of the structure was applied
during later refinement cycles, improving the resolution to 7.3 Å
(Supplementary Fig. 3c,d). The effects of beam-induced motion
were corrected by aligning individual frames. A complete model
of the MAC was constructed from existing component crystal
structures6,13, nuclear magnetic resonance data for individual
domains14 and homology models for remaining complement
proteins (Supplementary Table 1).

Molecular architecture of the MAC. The overall structure of the
MAC pore exhibits a tubular architecture with a single stalk
protrusion (Fig. 1a). The complex measures 305 Å in its longest
dimension, while the upper rim of the barrel has an outer dia-
meter of 240 Å. A cross-section of the reconstruction reveals the

canonical kinked ‘L’-shape of the CDC/MACPF fold present in
the rim of the barrel (Fig. 1b). We observe a cylinder of smooth,
continuous density below the CDC/MACPF-rim (Fig. 1c), a
feature consistent with a giant b-barrel pore comprising CH1 and
CH2 residues. A detergent belt covers the transmembrane region
at the base of the barrel, in accord with images of the complex on
liposomes15. Two rings of density were also visible on the interior
of the barrel and could correspond to additional detergent density
or glycosylation within the CDC/MACPF.

Although the incorporation of one or more C9 molecules can
result in lysis16, we determine the stoichiometry of the end
product of the complement terminal pathway. The MAC is a
hetero-oligomeric pore in which C6, C7, C8a, C8b and C9 each
contain a single CDC/MACPF domain (Supplementary Fig. 4).
Our structure shows that the barrel of the MAC comprises 22
staves, of which 4 sequential staves differ in tilt and stacking from
the remaining 18 (Fig. 1c,d and Supplementary Fig. 5). Docking
of the C5b6 crystal structure13 into density for the stalk confirms
that the complex contains one molecule of C6 and defines its
identity as one of the four unique staves (Fig. 1a,b). The globular
density for C8g on the interior of the rim demonstrates that one
C8 heterotrimer is present and confirms the orientation of the
disulfide-linked C8a CDC/MACPF. Refinement of the C8 crystal
structure6 localizes two asymmetric staves as C8a and C8b
(Figs 1a and 2a). Functional evidence (Supplementary Fig. 1b)
and mass spectrometry of purified pores (Supplementary Table 2)
confirmed the presence of C7 in the complex; hence, we attribute
C7 to the remaining asymmetric stave (Fig. 1a). Antibody
labelling of C9 in the fluid-phase form of the MAC (sC5b9)13,
together with direct binding assays of individual proteins17,
demonstrates that C9 is the clockwise partner of C8a. As C9
homo-oligomerizes in the MAC, we identify the 18 contiguous
symmetric staves as C9 (Figs 1c and 3a, and Supplementary
Fig. 5). Previous structural studies of a polymerized C9 homo-
oligomer report a range of C9 molecules that comprise a closed
ring18. Based on 2D class averages of top views, we do not observe
stoichiometric heterogeneity within the complete MAC. This
difference may be attributed to a specific template geometry
established by the asymmetric component of MAC or may reflect
differences in resolution between the two structures. Together,
these data define the MAC protein composition and establish a
CDC-like orientation of complement CDC/MACPF domains in
the pore, in contrast to the inside-out model proposed for
perforin8.

MAC is an asymmetric pore. The most striking feature of the
reconstruction is that unlike any other giant b-barrel pore
structure solved to date, the MAC is not a symmetric ring.
Differences in CDC/MACPF stacking between the symmetric and
asymmetric staves give rise to a ‘split-washer’ configuration
within the rim (Fig. 1c,d), in contrast to the closed ring previously
proposed5–7,15. Our structure shows that the C6 CDC/MACPF
juts towards the interior of the barrel (Figs 1,4) where it forms the
binding site for C7 and determines the directionality for
assembly. C8a CDC/MACPF rotates relative to its position in
the closed fluid-phase form, thus aligning the central b-sheets
of C8b, C8a and C9 (Supplementary Fig. 6a). This rotation,
combined with the concerted movement of C8g (Supplementary
Fig. 6b), opens up the binding site for the first C9 molecule and
sets the template geometry that propagates C9 oligomerization
(Supplementary Fig. 6c). These data identify a structural role for
C8g within the pore, reconciling functional assays that suggest
C8g facilitates MAC formation, yet its removal does not inhibit
lysis19. On incorporation into the MAC, the helical CH1 and CH2
regions of C9 (not included in the homology model) convert
to their transmembrane b-hairpin form. Indeed, we observe
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continuous density for the b-barrel cylinder below the core CDC/
MACPF domain. Although the C9 homology model lacked
well-structured helices for CH3, we observe finger-like densities
of a-helices on the concave surface of the barrel that probably
occupy the CH3 region (Fig. 3b–d).

Auxiliary domains and MAC assembly. In addition to the
CDC/MACPF, auxiliary domains of complement proteins play
key roles in the molecular architecture of the pore. The ‘low
density lipoprotein receptor class A repeats’ (LR) form a crown
adorning the upper surface of the CDC/MACPF rim, while
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Figure 1 | Cryo-EM reconstruction of the MAC. (a) Sharpened map segmented and coloured according to complement proteins: C5b (tan), C6 (green),

C7 (yellow), C8a (magenta), C8b (dark blue), C8g (orange) and C9 (light blue). CDC/MACPF b-barrel and detergent belt are in grey colour. Density is

overlaid on the unsharpened map (transparent surface). Axes are shown. (b) Fitting of the C5b6 crystal structure into a cross-section of the unsharpened

map (grey surface). C5b and C6 are in grey colour and green ribbons, respectively. (c) ‘Split-washer’ configuration of the MAC comprises 4 asymmetric

(orange) and 18 symmetric (blue) staves. Incomplete membrane penetration of the b-barrel is indicated (arrow). (d) Reference-free aligned class

average corresponding to a top view of the MAC (left panel) and representative raw images belonging to this class (middle panel), clearly showing the

‘split-washer’ shape of the rim. Cartoon schematic illustrating the location of C6 and the last C9 molecule in the previous images (right panel).
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Figure 2 | Molecular architecture of the complex. (a) Top (left panel) and side (right panel) views of the CDC/MACPF rim zoomed in, to show fitting of

C8a (purple), C8b (blue) and C8g (orange) into the MAC reconstruction (transparent surface). (b) Arrangement of LR (dark grey) and EGF (green)

domains around the rim. (c) Density for the MAC segmented and coloured according to subunit composition: C6 (green), C7 (yellow), C8 (coloured as

in a) and C9 (grey). TS domains for each protein are indicated by darker shades. Silhouette of the unsharpened map is shown for reference.
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epidermal growth factor (EGF) modules encircle its base (Figs 2b
and 3e). In contrast, thrombospondin (TS) domains line the outer
surface of the barrel and intercalate between MAC proteins
(Fig. 2c). Specifically, we find that the TS1 domain of C7 forms an
interface with MAC precursor C5b6, whereas its TS2 module
contacts C8b, the next protein in the assembly pathway. The
carboxy-terminal TS of C8b interacts with C7, whereas the
amino-terminal TS domain of C8a contributes to the binding site
for C9. Together, these data provide a molecular basis for inter-
preting previous functional and biochemical binding assays
involving domain deletion mutants20. C6 and C7 also possess
complement control protein (CCP) and factor I-like (FIM)
domains (Supplementary Fig. 4). The crystal structure of C5b6
illustrated how the C6 CCP domains capture and stabilize the
labile intermediate, C5b13,21. This arrangement is preserved in the
MAC; however, the C6 FIM domains are flexible and not well
resolved (Supplementary Fig. 7a). The CCP domains of C7 line
the periphery of the C5b MG scaffold, positioning its two FIM
domains proximal to the C345C domain of C5b (Supplementary
Fig. 7b). Although this region of the map is the least well ordered
due to flexibility of C345C13, we observe extra density that could
accommodate these domains. This interface is further supported

by direct binding studies of C7 FIMs with C345C22 and may
provide a mechanistic explanation of how C7 binding displaces
C5b from the C5 convertase, an interaction also involving
C345C23.

Discussion
Our structure defines the molecular architecture of the
asymmetric MAC. In contrast to homo-oligomeric perforin and
CDC pores, the CDC/MACPF domains of complement proteins
comprise a ‘split-washer’ configuration within the rim (Figs 1d
and 4). It is clear from our density that within the CDC/MACPF
rim, C6 and C9 do not make extensive contacts (Figs 1 and 4).
The central b-sheets of C6 and C9 are not contiguous in this
region, nor does the TS3 domain of C6 form an interface with the
final C9 molecule. At the current resolution, we are unable to
distinguish strands within the b-barrel or transmembrane region;
therefore, we have left this density unmodelled. At the lower
resolution of the unsharpened maps, density is continuous for the
b-barrel cylinder comprising CH1 and CH2 residues, including
both the symmetric and asymmetric staves. These data demon-
strate that C6, C7 and C8 form an integral part of the MAC pore
and not a peripheral subcomplex, as was extrapolated from
polymerized C9 (refs 15,16,18). Local resolution estimates in this
region reveal that the seam between symmetric and asymmetric
regions of the b-barrel is less well ordered (Supplementary Fig. 3).
Moreover, we cannot preclude that the MAC may form an
arc pore as has been observed for both perforin and CDC
homo-oligomers24–26.

The transmembrane region of the MAC does not form an
idealized b-barrel. Pore-forming hairpins of complement proteins
penetrate the lipid bilayer to varying extents. Indeed, lengths of
the predicted CH1 hairpins for C6, C7, C8b and C8a are shorter
than those for C9 (Supplementary Fig. 8). Our findings are
further supported by photolabelling experiments that suggest
MAC precursors can insert into, yet not span the bilayer27. These
data provide a structural basis for how assembly precursors may
perturb biophysical properties of the membrane, resulting in a
reorganization of the bilayer28 and a reduced energy barrier for
C9 insertion29.
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Figure 3 | Organization of C9 in the barrel map. (a) Two views of the C9 homology model (ribbons) fitted into the reconstruction (grey). Alternating

monomers are in green and in blue colour for clarity. (b) Slab view showing three sequential C9s (ribbons). Asterisk indicates unmodelled helical density on

the concave surface of the rim. (c) Cross-section of the reconstruction; regions in d and e are boxed. (d) a-Helical finger-like densities represented as

cylinders. (e) Close-up of the LR crown.
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Figure 4 | MAC is an asymmetric pore. Pseudo-atomic model of the MAC

CDC/MACPF rim, including C5b. Complement proteins coloured as in

Fig. 1a.
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Here we have used single-particle cryo-EM, to determine the
structure of the 24-protein human MAC pore (Supplementary
Movie 1). The resulting structure suggests a molecular
mechanism by which the MAC, in addition to disrupting the
membrane, uniquely distorts the lipid bilayer. Indeed, perturba-
tion of membrane curvature has been observed for MACs on
liposomes30. Deformation of lipid bilayers by membrane proteins
is an important component of cell signalling and bacterial
mechanosensing, and may also play a part in MAC-mediated lysis
and activation of signalling pathways.

Methods
Purification of complement proteins and assembled pores. To obtain C5b6,
serum (100 ml) depleted of C7 by passage over anti-C7 monoclonal antibody
immobilized on sepharose was incubated with zymosan (10 mg ml� 1) at 37 �C for
2 h, centrifuged to remove zymosan, dialysed against MonoQ buffer (10 mM NaP
pH 7.6, 20 mM NaCl), applied to a monoQ column equilibrated in the same buffer
and eluted in a salt gradient to 0.5 M NaCl. Fractions were screened for capacity to
cause haemolysis of sheep erythrocytes in a reactive lysis assay with added C7, C8
and C9. C5b6 containing fractions were pooled, concentrated to 41 mg ml� 1 and
applied to a Superose 6 gel filtration column equilibrated into Veronal-buffered
saline (VBS2þ ), 2.8 mm barbituric acid, 145.5 mm NaCl, 0.8 mm MgCl2, 0.3 mm
CaCl2, 0.9 mm sodium barbital pH 7.2 (Oxoid Ltd). Fractions were screened
for C5b6 haemolytic activity, active fractions conservatively pooled, concentrated
to 41 mg ml� 1 and stored in aliquots at � 80 �C. C7 was harvested from the
immunodepletion column by washing in 20 mM diethylamine pH 11.5,
immediately neutralized to pH 7 and dialysed into VBS2þ buffer. C8 and C9 were
purified from serum by passage over specific monoclonal antibody immobilized on
sepharose, eluted and dialysed as for C7. Purity of all proteins was confirmed by
SDS–PAGE and Coomassie blue staining; protein concentrations were confirmed
using the Bradford assay.

A lipid mixture containing 60% DOPC (Avanti Polar Lipids) and 40% DOPE
(Avanti Polar Lipids) were dried down under N2 gas, rehydrated in 20 mM
HEPES-NaOH pH 7.4, 150 mM NaCl and extruded through membranes with a
pore size of 0.1 mm (Avanti Polar Lipids). Individual complement proteins at molar
ratios of 1:1:1:18, C5b6:C7:C8:C9, respectively, were incubated with membranes
at 37 �C for 1 h and kept overnight at 4 �C. MAC pores were solubilized in 1.5%
CyMAL-5 (Anatrace) with 1 mg ml� 1 DOPC and 10% glycerol for 1 h at room
temperature and subjected to density centrifugation through a sucrose solution
containing 0.004% CyMAL-7 NG (Anatrace). Mass spectrometry was used to
confirm the presence of all MAC proteins in the detergent-solubilized purified
pores.

Mass spectrometry. Samples were analysed by liquid chromatography–mass
spectrometry using a nanoAcquity UPLC system (Waters MS Technologies,
Manchester, UK). One microlitre of sample was injected onto the trapping column
(Waters, C18, 180 mm� 20 mm), using partial loop injection, for 1 min at a flow
rate of 15ml min� 1 with 0.1% (v/v) formic acid. The sample was resolved on the
analytical column (Waters, nanoACQUITY UPLC M-class HSS T3, 75 mm� 150
mm, 1.8 mm column) using a gradient of 97% A (0.1% (v/v) formic acid) 3% B
(99.9% acetonitrile 0.1% (v/v) formic acid) to 60% A 40% B over 36 min at a flow
rate of 300 nl min� 1. The nanoAcquity UPLC was coupled to a Synapt G2 mass
spectrometer (Waters) and data acquired using a MSE programme with 1-s scan
times and a collision energy ramp of 15–40 eV for elevated energy scans. The mass
spectrometer was calibrated before use and throughout the analytical run at 1 min
intervals using the NanoLockSpray source with glufibrinopeptide. Peptide identi-
fication was performed by using ProteinLynx Global SERVER v3.1 (Waters). The
data were processed using a low energy threshold of 150 and an elevated energy
threshold of 30. A fixed carbamidomethyl modification for cysteine was specified.
The search thresholds used were as follows: minimum fragment ion matches per
peptide 3, minimum fragment ion matches per protein 7, minimum peptides per
protein 2 and a false positive value of 4.

Fluorescent dye-release assay. Fluorescently labelled liposomes were generated
by in the inclusion of 50 mM calcein (Sigma-Aldrich) in the rehydration buffer.
This initial calcein concentration of 50 mM is sufficient to cause almost complete
self-quenching of its fluorescence; if calcein is subsequently released from the
liposomes, its concentration is reduced and an increase in fluorescence is observed.
Unencapsulated dye was removed by passage through a G-50 Sephadex column
(Sigma-Aldrich) run in a buffer containing 500 mM sucrose. Pore-formation assays
were performed at 20 �C in a Cary Eclipse Fluorescence Spectrophotometer
(Varian) with excitation/emission wavelengths of 490 nm/520 nm, respectively, and
a slit width of 5 nm. The kinetics mode of the spectrophotometer was used with an
average read time of 0.15 s and measurements were made every minute. The
average background fluorescence intensity of 180 ml of fluorescently labelled
liposomes was measured for 10 min. Subsequently, MAC components were added
at final concentrations of 0.01 mM C5b6:0.01 mM C7:0.01 mM C8:0.2 mM C9 or

0.01 mM C7:0.01 mM C8:0.2 mM C9. Fluorescence was measured for 60 min.
Liposomes were burst at the end of the experiment by the addition of 1 ml 0.2 M
C12E8 detergent (Sigma-Aldrich) and the maximum fluorescence was found by
monitoring the sample for a further 10 min. Fluorescence measurements for each
reaction were normalized according to the background and detergent readings.

Negative stain electron microscopy. The presence and homogeneity of the
complete MAC in each fraction was assessed by negative stain electron microscopy.
A volume of 2.5 ml of MAC was applied to glow-discharged carbon-coated copper
grids (Electron Microscopy Sciences). Grids were negatively stained with 2% uranyl
acetate. Images were taken under low-dose conditions at a nominal magnification
of 52,000 on a Tecnai 12 electron microscope (FEI) operated at 120 kV. Images
were recorded on a 2 k� 2 k TemCAM-F216 CMOS camera (TVIPS) at 2.49 Å
per pixel.

Electron cryo-microscopy and image processing. Aliquots (2.5 ml) of purified
MAC were applied to glow-discharged holey carbon grids (QUANTIFOIL R
1.2/1.3 or QUANTIFOIL R 2/2) in which an additional thin carbon film has been
deposited. Samples were vitrified in liquid ethane using a Vitrobot (FEI) and stored
at liquid nitrogen temperature. For the initial model, 70 micrographs were acquired
on a Tecnai F20 electron microscope (FEI) operated at 200 kV using a Falcon II
direct electron detector (FEI) with a defocus range of 2.5–4.5 mm underfocus and at
a nominal magnification of 50,000, corresponding to 2.05 Å per pixel. Windowed
particles (1,921) were subjected to reference-free alignment using RELION31 and
classified into 12 classes. The seven best averages were used to obtain an initial
template for refinement in the standard EMAN2 initial model generation
programme (e2initialmodel.py)32. To rule out any potential for model bias due to a
possibly incorrect starting model, we also generated a second initial model by
merging density for a completely closed symmetric cylinder with a spherical
Gaussian blob using Bsoft33. Both starting models were strongly low-pass filtered
before initiating refinements, which converged on similar reconstructions
(Supplementary Fig. 2).

For the refinement, micrographs comprising 33 frames were acquired on a
Titan Krios electron microscope (FEI) operated at 300 kV. Six hundred and twenty-
two images were recorded with a defocus range of 2–4 mm underfocus and at a
nominal magnification of 59,000 on a Falcon II direct electron detector (FEI),
corresponding to 1.4 Å per pixel. Images were recorded with a 2-s exposure time,
resulting in a total accumulated dose of 45 electrons per pixel.

The first 32 frames were aligned with MotionCorr34 and CTF parameters of
aligned stacks were estimated using CTFFIND3 (ref. 35). The initial model was
filtered to 60 Å and the RELION workflow was followed for the gold-standard
refinement31. For the MAC reconstruction, images were binned by a factor 2
resulting in a pixel size of 2.8 Å per pixel. Single particles (44,698) were manually
picked and subjected to iterative rounds of 2D classification. Following an initial
round of refinement, three-dimensional classification was performed to remove
images of particles that also contained density for neighbouring particles or ice
contaminants. Particles (41,981) were included in the final refinement of the MAC
structure. Modulation transfer function correction and B-factor sharpening36 were
carried using the ‘post-processing’ protocols as implemented in RELION. Effects of
masking during post processing were accounted for37 and the overall resolution
was determined. Local resolution estimates were assessed with ResMap38. As the
resolution of the barrel was considerably better than that of the stalk protrusion, a
soft mask removing flexible regions of the structure was implemented in
subsequent refinement cycles, as described previously39. Unbinned images,
corresponding to 1.4 Å per pixel, were subjected to further rounds of 2D
classification. A subset of 25,343 particles were included in this focused refinement
strategy for the barrel reconstruction.

Model building and refinement. A model for the MAC was constructed based on
crystal structures for C8 (PDB ID: 3OJY) and C5b6 (PDB ID: 4A5W), together
with NMR data for the FIM domains of C7 (PDB ID: 2WCY). Homology models
for C9 and the remainder of C7 were built with I-Tasser40 using the crystal
structures of C8a (PDB ID: 3OJY) and C6 (PDB ID: 3T5O), respectively, as
templates. The resolution of the maps prevented interpreting the b-hairpin
transition of predicted transmembrane segments (CH1 and CH2); therefore, these
residues were removed from all complement proteins. CH3 regions of homology
models were not well structured and were also left unmodelled. All fitting and
automated rigid-body refinement was performed using the sequential fit
programme in CHIMERA41. Resulting correlation coefficients are reported in
Supplementary Table 1. Copies of the C9 model were refined into 16 out of 18
sequential symmetric staves of the sharpened barrel map. The resulting LR domain,
as determined by the homology model, was slightly out of density; therefore,
we refined C9 as two rigid bodies: the LR domain alone and the second as the
remaining C9 model. C9 was regrouped as a single rigid body for all further
refinement cycles. Density for the final two staves at the end of the ‘split washer’
was less well resolved. To complete the model for the C9 oligomer, the same
arrangement was extended by the superposition of molecules from a better-
resolved region of the map. Coordinates for C8a, C8b and C8g were refined in the
sharpened MAC map, taking into consideration the position of poly-C9 as defined
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in the barrel map. C8a and C8b were each split into two rigid bodies, based on
predicted hinge points of the structure5. One grouping comprises the N- and
C-terminal TS domains together with the EGF, LR and linchpin helix of the
CDC/MACPF; the remainder of the CDC/MACPF domain was treated as a second
rigid body. Density for the stalk protrusion and the final two asymmetric staves was
less well resolved in the sharpened MAC map; hence, the core of C7 (TSs, LR,
CDC/MACPF and EGF), C7 CCPs and crystal structure of C5b6 were refined as
three rigid bodies in the unsharpened map, taking into consideration the positions
of C8 and C9 oligomer as defined previously. Handedness of the reconstruction
was identified by the docking of the chiral C5b6 crystal structure into the stalk
protrusion. Flexible regions of C5b6, C5 C345C, C6 TS3 and C6 FIMs, were
removed from the refinement. Although density in the stalk prevented the precise
orientation of the C5 C345C domain and C7 FIMs, these domains were manually
placed into the unsharpened MAC map without refinement to show approximate
domain positions.

All figures were rendered using CHIMERA.
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