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Transforming growth factor β receptor (TGF-β1R) and receptor tyrosine kinases

(RTKs), such as VEGFRs, PDGFRs and FGFRs are considered important

therapeutic targets in blocking myofibroblast migration and activation of

idiopathic pulmonary fibrosis (IPF). To screen and design innovative prodrug

to simultaneously target these four classes of receptors, we proposed an

approach based on network pharmacology combining virtual screening and

machine learning activity prediction, followed by efficient in vitro and in vivo

models to evaluate drug activity. We first constructed Collagen1A2-A549 cells

with type I collagen as the main biomarker and evaluated the activity of

compounds to inhibit collagen expression at the cellular level. The data from

the first round of Collagen1A2-A549 cell screening were substituted into the

machine learning model, and the model was optimized accordingly. As a result,

the false positive rate of the model was reduced from 85.0% to 66.7%, and two

prospective compounds, Z103080500 and Z104578368, were finally selected.

Collagen levels were reduced effectively by both Z103080500 (67.88%

reduction) and Z104578368 (69.54% reduction). Moreover, these two

compounds showed low cellular cytotoxicity. Subsequently, the effect of

Z103080500 and Z104578368 was evaluated in a bleomycin-induced

C57BL/6 mouse IPF model. These results showed that 50 mg/kg

Z103080500 and Z104578368 could effectively reduce the number of

inflammatory cells and the expression level of α-SMA. Meanwhile,

Z103080500 and Z104578368 reduced the expression of major markers and

inflammatory factors of IPF, such as collagen, IFN-γ, IL-17 and HYP, indicating

that these screened Z103080500 and Z104578368 effectively delayed lung

tissue inflammation and had a potential therapeutic effect on IPF. Our findings

demonstrate that a screening and evaluation model for prodrug against IPF has

been successfully established. It is of great significance to further modify these

compounds to enhance their potency and activity.
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Introduction

Idiopathic pulmonary fibrosis (IPF) is a chronic progressive

disease with lung function decline. Some risk factors, such as

senility, air pollution, and smoking, increase the prevalence of

IPF (Thannickal et al., 2004; Snijder et al., 2019). The

extracellular matrix produced by activated myofibroblasts in

IPF patients leads to scarring and tissue stiffness, which

ultimately results in loss of lung function. Transforming

growth factor β receptor (TGF-β1R) and receptor tyrosine

kinases (RTKs), such as VEGFRs, PDGFRs, and FGFRs, play

important roles in the migration and activation of myofibroblasts

(Mackinnon et al., 2012; MacKenzie et al., 2015; Biasin et al.,

2020; Amano et al., 2021; Yang et al., 2021; Ye and Hu, 2021).

The drug options for IPF treatment are limited. Currently, the

drugs nintedanib (NDNB) and pirfenidone (PFD) have been

used in the clinical treatment of IPF (King et al., 2014; Richeldi

et al., 2014). NDNB is a tyrosine kinase inhibitor that selectively

binds to VEGFRs, FGFRs, and PDGFRs and then inhibits the

signals associated with proliferation, migration and

transformation in fibroblasts (Richeldi et al., 2014; Guzy et al.,

2017; Tepede and Yogaratnam, 2019). PFD, a potent cytokine

inhibitor, exerts an antifibrotic effect by blocking the

downstream signaling pathway of TGFβ1R (Taniguchi et al.,

2010). However, NDNB and PFD only showed good clinical

efficacy in some IPF patients. In addition, the side effects of these

two drugs are numerous, including strong hepatorenal toxicity,

high dose and drug resistance, which reduce patient compliance

and limit their clinical application (Spagnolo et al., 2021).

Therefore, novel low-toxicity small molecules were developed

to simultaneously block TGF-β1R, VEGFRs, PDGFRs and

FGFRs and meet the clinical treatment needs of IPF

(Umemura et al., 2021).

Computer-aided drug design (CADD) is a new technology for

research that has been developed in recent years (Iwasawa et al., 2019;

Kaur andKhatik, 2021). The use of rational drug design, as applied in

CADD, provides a knowledge-driven approach that can yield

valuable information about the interaction patterns between

proteins and ligands (complex), as well as the binding affinity.

Furthermore, the availability of supercomputers, parallel

processing, and advanced software have greatly facilitated the rate

of lead identification in pharmaceutical research. This technology

greatly shortens the time needed for new drug design and saves

manpower and material resources for creating new drugs. In recent

times, computer-aided drug design (CADD) strategies have been

applied successfully in drug development processes. CADD includes

receptor structure-based drug design (SBDD) and ligand-based drug

design (LBDD) (Baig et al., 2018). For example, structure-based drug

design strategies in the development of novel 5-LOX inhibitors have

been reported (Aparoy et al., 2012). Based on the structure and

properties of receptors, SBDD looks for ligand molecules that can

specifically bind to the receptor, and virtual screening is an important

method (Kaur and Khatik, 2021).

Here, we investigated novel lead compounds within clinically

effective and selected representative compounds for CADD

targeting of targets of IPF. For the positive candidates,

modified cells were used to verify their activity for high-

throughput screening. Finally, we evaluated the activity and

cytotoxicity of the active agents in a bleomycin (BLM)-treated

mouse model. The results identified two lead compounds that

might be potential antifibrotic candidates.

Materials and methods

Correlation analysis of target sequence,
spatial structure and physiology

The 3D structure and sequence of target proteins were

obtained from the Protein Data Bank (https://www.rcsb.org/),

which were VEGFR1 (PDB: 3Hng), VEGFR2 (PDB: 2OH4), and

FGFR1 (PDB: 2Hng). 5A46), FGFR2 (PDB: 3RI1), FGFR3 (PDB:

4K33), PDGFRα (PDB: 5GRN), TGFβ1R (PDB: 3TZM). PyMol

2.1 software was used to remove elements that had no connection

with targets from the model, such as water molecules and ligands.

We performed structural overlap of the above targets and

sequenced alignments. Then, structural overlap and sequence

alignment of the above targets were carried out. Then, we

analyzed the correlation of each target in the physiological

pathway through the STRING database.

Swiss-model homology simulation

Since there is no established model for VEGFR3 and PDGFRβ,
we need to construct 3D models of VEGFR3 and PDGFRβ through
homology simulation. Protein sequences of VEGFR3 (Identifier:

p17948-1) and PDGFRβ (Identifier: p16234-1) were obtained

from UniProt (https://www.UniProt.org/). Homologous simulation

was completed with SWISS - MODEL (https://swissmodel.expasy.

org/), in which the reference templates were VEGFR3 (Template:

VEGFR2, PDB: 4 agc) and PDGFR beta (Template: FLT3, PDB:

4 rt7). RAMPGE (http://www-cryst.bioc.cam.ac.uk/rampage/)

analysis was performed after establishing the models. Verify 3D

was used using SAVESv6.0 (https://saves.mbi.ucla.edu/), drawing

tools for Origin 9.0. We used PSIPRED PSIPRED 4.0 (http://

bioinf.cs.ucl.ac.uk/psipred/), DISOPRED3, MEMSAT - SVM and

pGen THREADER module disorder protein analysis. Subsequently,

the String database (https://string-db.org/) was used to analyze the

correlation of physiological effects of each target in vivo.

Virtual screening of AutoDock

To ensure the diversity and efficiency of the database, we

selected Diversity Libraries in Enamine (https://enamine.net/hit-
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finding) and removed the ligand database with a molecular

weight of 370–960 (approximately 60,000 compounds). The

Lamarckian genetic algorithm in AutoDock 4.2 was used for

docking. Standard docking procedures are used for flexible

ligands and rigid proteins. We used ADT tools to increase

Koollman charges on ligands and proteins. At the same time,

we set the Grid according to the existing ligands on the target so

that the Grid can cover the whole ligand binding region. We

calculated the binding affinities through a grid spacing of 0.6 A

and the distance correlation function of permittivity. All other

parameters are set by default. Finally, ADT was used to analyze

the structure files of the compounds with the minimum binding

energy.

Machine learning model

Based on the known relationship between ligand structure and

physiological activity, we constructed a machine learning model to

predict the activity of candidate small molecules based on the

resulting information. We obtained the structure files of the

target’s existing ligands and the IC50 data from the DrugBank

database (https://go.drugbank.com/) and Selleck database (at). We

converted the ligand activity data into the −log (pIC50) form.

Using the Python RDkit module MolecularDescriptorCalculator,

procedures for existing ligands and screening of molecular

characteristics of the database were extracted. StandardScaler of

the Sklearn module was used to standardize the molecular

characteristics. The combination feature selection based on

random forest and RFE was carried out by using the Sklearn

module. Finally, we used support vector machine (SVM),

Adaboost (ADB), random forest (RF), and gradient boosting

(GDB) in Python. The scikit-learn, K-nearest neighbor (KNN)

and Bayesianridge (BR) algorithms were used to perform fitting

calculations on the existing ligand data, and finally, a machine

learning model for activity screening was obtained. Finally, the

machine learning model was used to select the ligand with the

highest activity value from the ligand database for analysis.

Consensus scoring

According to the scoring rules set, compounds with the

highest comprehensive score and potential were selected.

Data feedback optimization model

After screening the reporter gene cells of collagen1A2-A549,

the obtained compound expression data were fed back to the

previous machine learning model for optimization of the

machine learning model. The compounds with negative

experimental results were substituted into the machine

learning model as punishment items to obtain the optimized

machine learning model. We hope to reduce the proportion of

false positive compounds predicted by machine learning models.

Constructed with modified cells

Primers were designed to clone the target promoter fragment of

collagen1A2 from human genomic DNA by PCR, and the fragment

was inserted into the luciferase reporter gene plasmid

(pcDNATM3.1 VETORS, LandmBio ®, Guangzhou). Positive

clones were screened and sequenced. The plasmid was amplified,

cloned and purified for later use. Transcription factor plasmids were

amplified and purified for later use. Meanwhile, the corresponding

no-load plasmid control was prepared for purification and reserve.

A549 cells were cultured and inoculated in 24-well plates for 24 h

(80% confluence). G418 (50 mM) was used for screening. The

reporter gene plasmid and transcription factor expression plasmid

were cotransfected into cells. Collagen1A2-A549 cells were cultured

and inoculated in 96-well plates for 12 h. PBS, TGFβ1 (10 ng/μL,

5 ng/μL and 1 ng/μL), FGF1 (10 ng/μL, 5 ng/μL and 1 ng/μL),

PDGFα (10 ng/μL, 5 ng/μL and 1 ng/μL) (Biolegend ®, California)
agonists were administered and cultured for 12, 24, and 36 h,

respectively. PBS, PFD (10 μM, 1 μM and 0.5 μM), NDNB

(10 μM, 1 μM, and 0.5 μM), and dexamethasone (10 μM, 1 μM

and 0.5 μM) (Enamine, Ukraine) were cultured for 12, 24, and

36 h, respectively. After standard treatment using the Luciferase

Reporter Gene Assay Kit (Yeasen®, Guangzhou), the assay was

assayed at 570/10 nm using a multifunction Assay (PerkinElmer,

Finland).

Cytotoxicity test

A CCK-8 Cell Proliferation and Cytotoxicity Assay Kit

(CK101-01, Data Invention Biotech Hong Kong, China) was

used to test the cytotoxicity of the compounds. Collagen1A2-

A549 cells with different concentrations were inoculated, and

standard curves were obtained according to standard treatment.

Collagen1A2-A549 cells were cultured in DMEM supplemented

with 10% Foetal Bovine Serum (DIB-12B-10X50ML, Data

Invention Biotech) and inoculated in 96-well plates for 24 h,

and 6.25, 12.5, 25, 50, and 100 μM compounds and PBS were

added. After incubation for 24 h, 10 μL of CCK8 reagent was

added and incubated for 3 h. The absorbance value at 450 nm

was determined by a microplate analyzer.

Lead compounds were screened using
modified Collagen1A2-A549 cells

Purchase 29 of these compounds from Enamine (https://

enamine.net/hit-finding). Collagen1A2-A549 cells were cultured
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and inoculated in 96-well plates for 12 h. PBS and the compound

were given 50 μM and cultured for 12 h, 24 h and 36 h, respectively.

A Luciferase Reporter Gene Assay Kit (Yeasen®, Guangzhou) was
used to assay at 570/10 nm.

IPF mouse model induced by BLM

The Animal Center of Sun Yat-Sen University provided SPF

male C57BL/6 mice (n = 70) at 6–8 weeks. Mice were fed adaptively

in an SPF animal house for 1 week for the experiment. The mice

were randomly divided into a blank group, model group, PFD group

(M2328, Abmole, United States), NDNB group BIBF 1120, Abmole,

United States, PFD + NDNB group, Z103080500 experimental

group and Z104578368 group, with 10 mice in each group. On

day 0, BLM (3 mg/kg, 40 μL) was injected into the trachea. On day 3,

Z103080500 and Z104578368 were prepared into 50 mg/kg

suspension, PFD was prepared into 100 mg/kg suspension,

NDNB was prepared into 50 mg/kg suspension, NDNB 50mg/kg

+ PFD 100 mg/kg suspension, and intragastric administration was

performed daily.

Weight and survival rate

To assess the survival of mice, body weight and mortality

were recorded and observed periodically. On day 0, the mice were

given 3 mg/kg BLM intragranically. The body weight of the

mice and the survival rate of each group were recorded every

4 days.

Histopathological observation of lung
tissue

Lung tissues were fixed with 3.7% paraformaldehyde at 4 C

overnight. Gradient ethanol was used to dehydrate the lungs,

which were embedded into a wax block. A slicer (Leica,

Germany) cuts slices 5–7 m thick. Slices were placed on

polylysine-coated glass slides and kept at room temperature

until further use. HE staining and Masson staining were

performed according to standard procedures. The degree of

lung fiber was evaluated according to the results of H&S

staining according to the Ashcroft scoring standard. The blue

part of the Masson’s trichrome-stained section was quantified

using ImageJ. Lung tissue was collected on day 21.

Immunofluorescence staining

Slices for antigen repair in citric acid buffer at 120°C for

20 min and 10% normal donkey serum were used to block

nonspecific antigens. The antibodies used for

immunofluorescence included HULMAIN A+C, AQP5,

SPC, and donkey anti-rabbit LGG (H+L) highly cross-

adsorbed secondary antibodies (Invitrogen, America). The

primary antibody was incubated overnight at 4°C and soaked

in PBS for 5 min 3 times, and the secondary antibody was

incubated at room temperature for 1 h and soaked in PBS for

5 min. After staining with DAPI, the cells were soaked in PBS

for 5 times. The slides were stored in the dark at 4°C and

photographed with a fluorescence microscope.

Quantitative PCR

An EZ-press RNA purification kit (B0004D,

EZBioscience) was used to extract the total RNA after

collecting the lung tissue. A Fast cDNA Synthesis Kit was

used to reverse transcribe total RNA (#B0001, EZBio-

science). The expression levels of IFN-γ and IL-17 were

detected by adding IFN-γ and IL-17 primers in a

LightCycler® 96 Real-time Quantitative Fluorescence PCR

(Roche, America) using a heat-initiated qPCR kit

(TransScript® Green One-Step qPCR SuperMix, AQ211-01,

TransGen Biotech, Beijing, China).

Hydroxyproline detection

An HYP assay kit (BC0255, Solarbio, China) was used to

test the variation in the HYP content in the tissue samples.

First, the tissue was accurately weighed. After hydrolysis, the

pH was adjusted to neutral, and the supernatant was

centrifuged with activated carbon. The reagent was added

and then incubated in water at 60°C for 15 min. After 10 min

at 3,500 rpm, the supernatant was taken for

spectrophotometry at 550 nm.

Data statistics and analysis methods

The ADT tool was used to calculate the binding free

energy between compounds and receptors, and the

machine learning model and related data were processed

by Python version 3.6.2. Data from the biological

verification experiments were statistically analyzed by

GraphPad Prism 8.0 and Origin 9.0 software. The Kaplan-

Meier method was used for survival curves, and data are

expressed as the mean ± standard deviation. A test was used

for analysis between two independent sample groups, and

univariate analysis was used for comparison between

multiple groups of data. p < 0.05 indicates that the

difference is statistically significant.
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FIGURE 1
Spatial structural similarity, sequence similarity, and physiological pathway associations in nine receptors. (A) Superimposition of VEGFRs, FGFRs
and PDGFRs. Superimposition of VEGFR1/2, FGFR1/2/3 and PDGFRα (left) and binding sites (right). The ligand-bound hydrophobic cavities from each
target and superimposition of the three-dimensional structures of these cavities. We found that the residues in the cavity with the opportunity to
contact the ligand are conserved, and the spatial structure is relatively the same. Dark red indicates identical targets, and bright red indicates
targets with similar properties. Only the ligand binding domain similarities are marked in the figure. (B) Structural alignment of VEGFR1/2, FGFR1/2/
3 and PDGFRα. The main-chain RMSD (angstrom) is below the diagonal, and the number of overlapping residues is above the diagonal. The main-
chain RMSD of these targets was between 0.83 Å and 1.78 Å. Of the approximately 350 residues, there were between 200 and 250 residues with
good overlap. This means that the spatial structures of these targets do not differ much. (C) Sequence alignment of VEGFR1/2/3, FGFR1/2/3 and
PDGFRα/β. Blue ranges from dark to weak, indicating amino acid residues ranging from similar to unrelated. In the cavity, the proportion of the same
residues was 32.3%, and the proportion of similar residues was 54.5%. This suggests that residues of the cavity are conserved. (D) Relevance analysis
of targets from the STRING database. Nine proteins (VEGFR1: FLT1, VEGFR2: KDR, VEGFR3: FLT4, FGFR1, FGFR2, FGFR3, PDGFRα: PDGFRA, PDGFRβ:
PDGFRB and TGFβR1: TGFBR1) were selected from the STRING database. Sphere points replaced several proteins, and line thickness indicates the
strength of data support. Each node represents all the proteins produced by a single, protein-coding gene locus. Edges represent protein‒protein
associations that are meant to be specific and meaningful, i.e., proteins jointly contribute to a shared function; this does not necessarily mean they
physically bind each other. Data from the STRING database show that these targets are closely related.
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Results

Structure-based drug design and virtual
screening

AutoDock, which is open source and widely used, was

selected for SBDD and virtual screening to obtain lead

compounds with binding potential to the target. Previous

studies have shown that drugs targeting multiple receptors

may inhibit the development of IPF better than those

targeting individual receptors (Cheng et al., 2019; Prieto et al.,

2021). To evaluate the feasibility of screening drugs against

multiple targets, we first analyzed the spatial structural

similarity, sequence similarity, and physiological pathway

associations of ligand-binding domains in nine receptors. The

nine receptors are vascular endothelial growth factor receptor 1/

2/3 (VEGFR 1/2/3), fibroblast growth factor receptor 1/2/3

(FGFR 1/2/3), platelet-derived growth factor receptor α/β
(PDGF α/β), and transforming growth factor β receptor

(TGF-B1R). Structural data were obtained from PDB, and for

VEGFR3 and PDGFRβ lacking structural information, we used

SWISS-MODEL for homology modeling (Supplementary

Figures S1A,B). Furthermore, Verix-3D (Supplementary

Figures S1C,D), Laplace plots (Supplementary Figures S1E,F)

and PSIPRED secondary structure analysis (Supplementary

Figures S1G,H) were utilized to validate the accuracy of the

models, ensuring that the models we built were reasonable and

effective.

To compare the structures of VEGFRs, FGFRs and PDGFRs,

we selected and superimposed the three-dimensional (3D)

structures of ligand-bound hydrophobic cavities from each

receptor and found that the spatial structures of these targets

were relatively similar (Figure 1A). Furthermore, the main-chain

RMSD of these targets ranged from 0.83 Å to 1.78 Å (Figure 1B).

These results suggest that the spatial structures of VEGFRs,

FGFRs and PDGFRs are relatively similar.

Sequence alignment of VEGFR1/2/3, FGFR1/2/3 and

PDGFRα/β revealed approximately 200–250 residues

overlapping per 350 residues. Meanwhile, the proportions

of the same and similar residues in hydrophobic cavities were

32.3% and 54.5%, respectively (Figure 1C). These results

indicated that the residues in cavities with the opportunity

to contact the ligands are conserved. The analysis of VEGFRs,

FGFRs, and PDGFRs in terms of structural similarity and

sequence alignment revealed that the ligand-binding

domains of these receptors share a high degree of

structural and sequence homology.

In addition, STRING database analysis showed that the

physiological effects of VEGFRs, FGFRs, PDGFRs and

TGFβ1R were closely related (Figure 1D). These analyses

demonstrate that it is feasible to design broad-spectrum lead

compounds that simultaneously target VEGFRs, FGFRs,

PDGFRs, and TGFβ1R.

Subsequently, docking analysis and screening were

performed using the processed Enamine database, as

described in the methods. Candidate compounds with the

highest comprehensive score that simultaneously bound the

nine receptors were selected according to the ranking of the

candidate binding to each target (Supplementary Figure S2).

We then randomly assigned 80% of the ligands to the

training group and 20% to the test group. Following this, the

SVM, ADB, RF, GDB, KNN and BR algorithms in Scikit-Learn in

Python were used for modeling, and multiple machine learning

models were obtained (Figure 2). The data processing method

predicted by the machine learning model was consistent with

that of the virtual screening data. Consequently, 20 compounds

were selected from the candidate compounds after the first round

of computer screening for subsequent verification at the cellular

level (Supplementary Table S1).

High-throughput screening of antifibrotic
lead compounds

The basic pathogenic change in IPF is the accumulation of

collagen. During the late stage of IPF, collagen type I, which is

encoded by the COL1A2 gene, is deposited (Sgalla et al., 2018). In

this study, human alveolar epithelial cells (A549) with a stable

luciferase reporter system (Collagen1A2-A549) were

constructed, and rapid high-throughput screening of lead

compounds with transcriptional regulation of COL1A2 was

achieved. To validate that the physiologically active candidate

compounds can be screened by Collagen1A2-A549 cells, we first

used tyrosine kinase agonists (FGF1, TGFβ1, and PDGFα) and
antagonists (NDNB, PFD, and dexamethasone) to examine the

function of the engineered cells. The agonists FGF1 (73.29%

increased, 10 ng/μL, 36 h, p < 0.05), TGFβ1 (54.25% increased,

10 ng/μL, 12 h, p < 0.05) and PDGFα (56.53% increased, 10 ng/

μL, 36 h, p < 0.05), as well as the antagonists NDNB (87.24%

reduction, 10 μm, 24 h, p < 0.05), PFD (84.72% reduction, 10 μm,

36 h, p < 0.05), and dexamethasone (44.95%, 50 μm, 36 h, p <
0.05), all worked successfully in Collagen1A2-A549 cells

(Supplementary Figures S3A–F). Furthermore, we examined

differences in the expression of tyrosine kinase receptors and

TGFβ1R in Collagen1A2-A549 cells and human dermal

fibroblasts (HDFs) by qPCR. The results showed that all

selected receptors were expressed in Collagen1A2-A549 cells,

especially VEGFR3, which was highly expressed (Supplementary

Figure S4G). These results indicate that Collagen1A2-A549 cells

can screen candidate compounds with physiological activity.

We then empirically validated 20 of the top 100 compounds

in the composite score using Collagen1A2-A549 cells. After data

analysis and processing, we obtained the first round of

20 compounds, of which the false positive rate was 85%

(Figure 3A). Among them, the compounds Z16441565

(58.78% inhibition rate, 50 μM, 36 h, p < 0.05), Z131775190
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(48.70% inhibition rate, 50 μM, 36 h, p < 0.05) and Z45361437

(72.29% inhibition rate, 50 μM, 36 h, p < 0.05) effectively

inhibited the transcription of collagen (Figure 3B).

To effectively reduce the false positive rate, we fed the data

from the first round of compounds into the machine learning

model to optimize the algorithm. After feedback learning

screening, nine compounds were obtained, and the false

positive rate decreased by approximately 18% compared with

the first round (Supplementary Table S2), Figures 3C,D). This

finding suggests that models that continuously perform machine

learning to optimize screening based on results will help improve

accuracy.

Through machine learning and two rounds of screening, we

examined the luciferase expression of six compounds. The

inhibition rates of the compounds Z103080500 and

Z104578368 on COL1A2 transcription levels were 67.88% and

69.54%, respectively, in response to 50 μmol/L treatment for 36 h

(Figure 3F). Compared with that of the compounds in the first

round, the cytotoxicity of the compounds Z103080500 and

Z104578368 under the same conditions was 29.84% and

29.93%, respectively, indicating that these two compounds

have lower cytotoxicity to A549 cells (Figure 3E). The results

proved that these two compounds, Z103080500 and Z104578368,

have antifibrotic activity at the cellular level. Therefore, we then

characterized these two compounds and evaluated their activities

in animals.

Characterization of Z103080500 and
Z104578368

According to the results of ADT analysis, both

Z103080500 and Z104578368 have good combination

potential with the receptors (Figure 4). Taking FGFR2

(PDB: 3RI1) as an example, Z103080500 and

Z104578368 were well locked in a hydrophobic cavity.

Z103080500 (Figure 4A) and Z104578368 (Figure 4B) form

a close binding force with the residues in the

hydrophobic cavity. The methods of combining

Z103080500 and Z104578368 with other targets are shown

in Figure 4C.

According to the results of machine learning model scoring,

Z103080500 and Z104578368 also have good biological activity

in vivo (Supplementary Table S3). Compared to NDNB,

FIGURE 2
Coefficient of determination of the machine learning model. (SVM: support vector machine; ADB: AdaBoost; RF: random forest; GDB: gradient
boosting; KNN: K-nearest neighbor; BR: Bayesian ridge) The integrated algorithms, such as ADB, RF and GDB, performed better than the single
algorithm, and the determination coefficients of both the training set and the test set were greater than 0.85. However, due to the limitation of ligand
data, the cross-validation results of these models are poor. This implies that these machine learning models are overfitting. These models will
have poor accuracy in predicting unknown ligands, so we need to combine the results of virtual screening for selection. In addition, experimental
data should be used to reduce the false positive rate of the model.
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Z103080500 and Z104578368 can simultaneously bind

TGFβ1R, block the Smad pathway, and reduce the secretion

of collagen, thus inhibiting the occurrence of pulmonary

fibrosis. Compared to PFD, Z103080500 and

Z104578368 could simultaneously bind VEGFRS, FGFRS and

PDGFRS and inhibit the effects of various fibrotic factors.

Therefore, Z103080500 and Z104578368 have a broader

affinity for anti-pulmonary fibrosis targets than NDNB and

PFD. However, the specific combination mode and mechanism

remain to be further confirmed.

FIGURE 3
High-throughput screening using Collagen1A2-A549 cells. (A) False positive rate calculatedwith 20 compounds selected from the first round of
calculation. (B)CCK8 cytotoxicity results of the three compounds with better performance among the 20 compounds selected in the first round. (C)
Validation of nine compounds selected from the second round of calculation. (D) False positive rate calculated in the second round of calculation. (E)
CCK8 cytotoxicity results of the three compounds with better performance among the nine compounds selected in the second round of
calculation. (F) Validation of the concentration gradient of six compounds selected by two rounds of calculation for anti-collagen generation. All
experiments were repeated three times independently.
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Z103080500 and Z104578368 can inhibit
the early inflammatory response and delay
pulmonary fibrosis

We constructed a BLM-induced pulmonary fibrosis model in

C57BL/6 mice to evaluate the antifibrotic effect of the lead

compounds Z103080500 and Z104578368 in vivo. According

to the HE staining results, inflammatory cells in the groups

treated with high concentrations of the compounds

Z103080500 and Z104578368 were significantly reduced.

Moreover, the effects of Z103080500 and Z104578368 were

dose dependent. The effect in the Z103080500 and

Z104578368 high-concentration groups was better than that in

the low-concentration groups and better than those of the NDNB

plus PFD combined group (Figure 5A).

The results of Masson staining showed that compounds

Z103080500 (67.15% reduction, p < 0.05) and Z104578368

(52.72% reduction, p < 0.05) in the high-concentration group

induced significant decreases in collagen levels (Figure 5B).

Furthermore, Masson staining slices of the Z103080500 and

Z104578368 high-concentration groups showed that the lung

tissue structure was relatively normal, there were no significant

structural changes, but collagen was secreted (Figure 5B).

Quantitative analysis of the Masson-stained sections showed

that the collagen levels in the high-concentration

Z104578368 group were slightly higher than those in the

FIGURE 4
Binding of compounds Z03080500 and Z104578368 to receptors. (A) Binding mode of Z103080500 with FGFR2. (B) Binding mode of
Z104578368 with FGFR2. (C) Binding mode of ligands (Z103080500 and Z104578368) and their targets.
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NDNB plus PFD combined group (p < 0.05) and significantly

lower than those in the model group (p < 0.05), while the collagen

levels in the high-concentration Z103080500 group were

equivalent to those in the NDNB plus PFD combined group

(Figure 5C). The Ashcroft score was consistent with these

findings (Figure 5D). The HE and Masson staining results

suggested that the compounds Z103080500 and

Z104578368 could effectively delay inflammation in lung tissue.

In addition, relevant markers of pulmonary fibrosis were

detected. Z103080500 and Z104578368 decreased the expression

of α-SMA in both the high and low concentration groups. This

finding indicates that the compounds Z103080500 and

Z104578368 can effectively inhibit fibrosis (Figure 6A).

Furthermore, the results showed that high concentrations of

Z103080500 and Z104578368 could effectively reduce the

expression of IFN-γ and IL-17. Specifically, the effect of

FIGURE 5
HE-stained sections and Masson trichrome-stained sections. (A) HE-stained section. (B) Masson trichrome-stained section. Grouping is
marked in the diagram. (C) Quantitative analysis of Masson-stained sections. (D) Ashcroft score. Doses and groups have been marked on the
abscissa. All experiments were performed in triplicate independently. BLM: BLM. NDNB: NDNB. PFD: PFD.

Frontiers in Pharmacology frontiersin.org10

Wang et al. 10.3389/fphar.2022.998245

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.998245


Z103080500 in the high concentration group decreased the

expression of IFN-γ (Figure 6B) and IL-17 (Figure 6C) by

54.87% and 47.01%, respectively, which was better than the

effects of NDNB plus PFD combination group. However, the

high concentration Z104578368 treatment was slightly worse

than the NDNB plus PFD combined group, decreasing the

FIGURE 6
Immunofluorescent staining and relative transcript levels of inflammatory factors. (A) α-SMA immunofluorescently stained section. Grouping
and doses are marked in the diagram. α-SMA, red. DAPI, blue. (B) Relative transcript level of IFN-γ. (C) Relative transcript level of IL-17. Doses and
groups have been marked on the abscissa. All experiments were performed in triplicate independently. α-SMA, Alpha-smooth muscle actin; BLM,
BLM; NDNB, NDNB; PFD, PFD.
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expression of IFN-γ (Figure 6B) and IL-17 (Figure 6C) by 37.29%
and 49.38%, respectively.

The body weights of the mice in the model group, positive

control group and experimental group decreased to different degrees.

There was no significant difference in weight loss among the three

groups, and the mice in the control group gained weight steadily

(Figure 7A). In terms of mortality, the model group, PFD group and

low-concentration PFD groups had higher mortality rates of 30%.

The NDNB group and high-concentration Z103080500 group had

the lowest mortality rates (10%) (Figure 7B). This finding suggests

that NDNB and a high concentration of Z103080500 may improve

the survival of IPF mice.

FIGURE 7
Body weight change, survival, and biomarker expression. Changes in body weight (A) and survival (B) of BLM mice throughout the experiment.
(C) The expression of Hyp in BLMmice (N = 6-7 each group). Doses and groups have beenmarked on the abscissa. All experiments were performed
in triplicate independently. BLM: BLM. NDNB: NDNB. PFD: PFD. Hyp: Hydroxyproline.
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HYP content analysis was also performed. The data showed

that high concentrations of Z103080500 and Z104578368 could

effectively reduce the expression of HYP. Z103080500 reduced

the expression of HYP by 23.15%, which was better than the

effect of NDNB plus PFD combination treatment. In contrast, the

effect of Z104578368 was slightly worse than that in the NDNB

plus PFD combination group, and the expression of HYP was

reduced by 15.24% (Figure 7C). These results demonstrate the

anti-IPF efficacy of these two lead compounds, especially

Z103080500.

Discussion

Over the last few decades, computer-aided drug design has

emerged as a powerful technique playing a crucial role in the

development of new drug molecules (Kaur and Khatik, 2021). It

greatly speeds up new drug design, saving manpower and

material resources for creating new drugs. Computer-aided

quantification was used for pulmonary fibrosis in patients

with lung cancer (Iwasawa et al., 2019). Based on the

structure and properties of receptors, SBDD looks for ligand

molecules that can specifically bind to it, in which virtual

screening is an important method. Considering the similarity

of the nine protein functional groups involved in fibroblast

activation, including VEGFRs, FGFRs, PDGFRs, and TGF-

β1R, virtual screening methods can be used to select small

molecular compounds that have effects on these receptors.

Since virtual screening is based on the target-ligand binding

relationship, it is impossible to accurately predict ligand activity

in vivo (Mouchlis et al., 2021).

Through SBDD, virtual screening, and machine learning, we

ended up with two lead compounds, Z103080500 and

Z104578368. These two compounds have broader affinities for

antifibrotic targets than NDNB and PFD. Compared to NDNB,

Z103080500 and Z104578368 could simultaneously bind to

TGFβ1R (Figure 4), reduce the secretion of collagen (Figures

6, 7), and inhibit the occurrence of pulmonary fibrosis by

blocking the Smad pathway (Richeldi et al., 2014). Compared

to PFD, Z103080500 and Z104578368 could simultaneously bind

VEGFRs, FGFRs and PDGFRs (Figure 4) and inhibit the effects

of various fibrotic factors (Lederer and Martinez, 2018).

However, the specific binding mode and mechanism remain

to be further confirmed. It is worth noting that the single virtual

screening high scores and machine learning prediction high

scores did not ensure compound activity, and even

compounds with high combined scores may have the

possibility of false positives.

Data feedback optimization could improve our screening

efficiency, and useless data play a large role. After feedback

optimization of the first round of screening data from

collagen1A2-A549 cells, the false positive rate of the machine

learning model was reduced from 75% to 66%. Advanced

algorithms such as machine learning models are increasingly

being used in drug discovery (Elbadawi et al., 2021). Machine

learning techniques improve decision-making in pharmaceutical

data across various applications, such as QSAR analysis, hit

discoveries, and de novo drug architectures, to retrieve

accurate outcomes (Carracedo-Reboredo et al., 2021).

Compared with virtual screening, machine learning is not

dependent on the accuracy of the target model and can

effectively predict ligand activity. However, the lack of data is

one of the factors limiting its use, so it is particularly important to

continuously optimize the screening and prediction model with

experimental data (Carpenter and Huang, 2018). In drug

discovery, researchers tend to discard data on poorly

performing compounds, but these data often tell

computational models which compounds to discard. “Dusky”

data can be useful (Patel et al., 2020).

Collagen1A2-A549 cells could effectively improve screening

efficiency. After preliminary screening of collagen1A2-A549

cells, both Z103080500 and Z104578368 showed good

performance in animal models (Figures 6, 7). Furthermore,

these experiments demonstrated that targets, agonists, and

inhibitors related to the expression of collagen1A2 in

A549 cells exhibited corresponding activity. However,

Z103080500 and Z104578368 showed strong toxicity to

collagen1A2-A549 cells, which needs to be optimized and

improved in future research. The construction of similar

screening cells using HDFs has been reported (Hoeck and

Woisetschläger, 2001; Zhao et al., 2019). However, the state of

HDFs is easily affected by the environment, and the number of

passages is limited. Therefore, A549 cells are more universal than

HDFs. Previous studies have shown that type III collagen is

dominant in the early stage of pulmonary fibrosis and that type I

collagen is dominant in the late stage (Snijder et al., 2019). When

fibroblasts are damaged by chemical or physical factors, they

secrete collagen to repair the interstitial tissues of the lung,

resulting in pulmonary fibrosis. At present, the evaluation of

the progression of pulmonary fibrosis is mainly performed by

monitoring changes in important pulmonary fibrosis indicators

before and after the administration of drugs (Thannickal et al.,

2004; Lederer and Martinez, 2018; Sgalla et al., 2018). The

commonly used monitoring methods are Western blotting

and ELISA. However, these methods are susceptible to many

factors, such as the cell state, the environment, and experimental

methods, and cannot accurately and temporally evaluate the

dynamic changes in fibrosis indicators before and after drug

administration.

Z103080500 and Z104578368 showed antifibrotic potential

at the cellular and animal levels. Z103080500 and

Z104578368 showed strong antifibrotic effects at the cellular

level, but both also showed strong cytotoxicity. The performance

of Z103080500 and Z104578368 in animal models was better

than that of PFD or NDNB and similar to that of PFD plus

NDNB. Z103080500 and Z104578368 require lower doses, which
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means that Z103080500 and Z104578368 have the potential to be

lead compounds for inhibiting IPF. However, the solubility of

Z103080500 and Z104578368 in PBS or water is low, suggesting

that the bioavailability of Z103080500 and Z104578368 may be

low. Furthermore, it may be difficult for us to make appropriate

dosing forms of Z103080500 and Z104578368 for drug

administration. This difficulty may limit the medicinal

properties of these compounds.

Recently, prodrug strategies have been utilized to promote

physicochemical, biopharmaceutical and pharmacokinetic

properties such as permeability, solubility, bioavailability,

chemical stability and metabolism of molecules presenting

poor drug-like properties (Stella and Nti-Addae, 2007;

Sanches and Ferreira, 2019). For example, placing a polar

functional group in the structure of a molecule with limited

aqueous solubility should enhance the water solubility of these

two compounds. Some commercially approved have been

regenerated based on this idea. Another excellent example of

improving oral delivery or bioavailability is placing a

nonionizable functionality in the structure, such as sulfoxide

groups. Due to the higher polarity of sulfoxide groups, the sulfide

metabolites of drugs can better interact with solvents and can be

used as a water-soluble drug delivery strategy.

In conclusion, both Z103080500 and Z104578368 show good

potential for inhibiting IPF in cell and animal models. We will

further confirm the pharmacological mechanism of both

compounds and reduce the toxicity of these compounds by

optimizing their structures and improving their medicinal

properties.
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