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Mitochondria play a pivotal role in bioenergetics and respiratory functions, which
are essential for the numerous biochemical processes underpinning cell viability.
Mitochondrial morphology changes rapidly in response to external insults and changes
in metabolic status via fission and fusion processes (so-called mitochondrial dynamics)
that maintain mitochondrial quality and homeostasis. Damaged mitochondria are
removed by a process known as mitophagy, which involves their degradation by a
specific autophagosomal pathway. Over the last few years, remarkable efforts have
been made to investigate the impact on the pathogenesis of Alzheimer’s disease (AD) of
various forms of mitochondrial dysfunction, such as excessive reactive oxygen species
(ROS) production, mitochondrial Ca2+ dyshomeostasis, loss of ATP, and defects in
mitochondrial dynamics and transport, and mitophagy. Recent research suggests
that restoration of mitochondrial function by physical exercise, an antioxidant diet, or
therapeutic approaches can delay the onset and slow the progression of AD. In this
review, we focus on recent progress that highlights the crucial role of alterations in
mitochondrial function and oxidative stress in the pathogenesis of AD, emphasizing a
framework of existing and potential therapeutic approaches.
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INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative disease that affects millions of people worldwide
(Alzheimer’s Association, 2020), for which only symptomatic treatments are currently available.
Current estimates indicate that, in the United States, around 5.8 million patients of age 65 years
and older are living with AD in 2020 (Alzheimer’s Association, 2020). AD is characterized by the
deposition of extracellular senile plaques, neurofibrillary tangles (NFTs), and neurodegeneration,
leading to memory impairment and dementia. The exact mechanisms underlying AD remain
unclear despite comprehensive attempts to understand its pathophysiology.

The most prominent theory postulates that, in AD, tau and Aβ negatively affect neuronal cells
by compromising energy supply and the antioxidant response, causing mitochondrial and synaptic
dysfunction. Neuronal activity is highly energy-dependent, and neurons are particularly sensitive to
disruption in mitochondrial function (Kann and Kovacs, 2007; Cunnane et al., 2020). In addition,
mitochondria produce cellular energy (adenosine triphosphate; ATP) and are also involved in many
processes that are important for the life and death of the cell, including the control of second
messenger levels, such as calcium ions (Ca2+) and reactive oxygen species (ROS) (Roger et al., 2017;
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Giorgi et al., 2018). Importantly, mitochondrial dysfunction
contributes to reduced ATP production, Ca2+ dyshomeostasis,
and ROS generation. Alterations in mitochondrial dynamics
and mitophagy occur in early-stage AD, but the underlying
mechanisms are poorly understood. Thus, studies elucidating
the mechanisms of mitochondrial abnormalities in AD will
facilitate a greater understanding of the pathogenesis of this
neurodegenerative disease and potentially contribute to the
advancement of therapeutic strategies to protect synaptic activity
and subsequent cognitive function. Here, we review studies that
suggest a role of mitochondrial dysfunction and the consequent
ROS production in AD pathology and provide a context to
explain current and future therapeutic approaches. We suggest
that improving mitochondrial function should be considered an
important therapeutic intervention against AD.

OXIDATIVE STRESS AND
MITOCHONDRIAL DEFECTS IN AD

Oxidative stress is caused by an imbalance between the
production and accumulation of ROS, which are inevitable by-
products of metabolism that represent a double-edged sword in
biological systems (Ferrer et al., 2010; Sies and Jones, 2020); under
carefully regulated conditions, they can serve essential roles as,
for example, signaling agents, but can also damage cells when
produced in excessive amounts since they are capable of oxidizing
all major biomolecules, including nucleic acids (DNA and RNA),
proteins and lipids (Butterfield et al., 2010; Arimon et al., 2015).
ROS are defined as chemically reactive oxygen free radicals as
well as no radical derivatives of oxygen. Either enhanced ROS
production or an impaired antioxidant system can tip the redox
balance of the cell toward an oxidative state.

The brain is especially susceptible to oxidative damage
due to its high rate of oxygen consumption, elevated levels
of polyunsaturated fatty acids (which are easily targeted by
free radicals), and relatively high levels of redox transition
metal ions; besides, the brain has very low antioxidants levels
(Butterfield et al., 2001; Llanos-Gonzalez et al., 2019; Cassidy
et al., 2020). ROS has been proven to account for cellular
injury in aging and neurodegenerative disorders (Valko et al.,
2007). Indeed, the accumulation of Aβ protein induced by ROS
in AD causes lysosome membrane degradation and eventually
contributes to neuronal death (Zhang et al., 2009). A deficiency
of cytochrome c oxidase is the most common defect in the
mitochondrial electron transport chain (ETC) in AD, leading
to an increase in ROS production, a decrease in energy stores,
and a disruption of energy metabolism (Rak et al., 2016).
Furthermore, ROS causes inhibition of phosphatase 2A (PP2A)
(Elgenaidi and Spiers, 2019), which facilitates glycogen synthase
kinase (GSK) 3β activation (one of the kinases involved in
tau phosphorylation). Hence increased GSK3β activation might
cause hyperphosphorylation of tau and neurofibrillary lesions in
AD (Toral-Rios et al., 2020).

Oxidized biomolecule products produced by ROS are far
more stable and widely used as ROS markers. Besides, ROS
may also be indirectly tested by measuring antioxidant levels

or the activity of antioxidant enzymes. In fact, oxidative
imbalance and a substantial increase in its by-products have
been repeatedly reported in AD. A large body of research has
demonstrated that lipid peroxidation, the process in which
ROS attacks lipids to produce lipid peroxidation products via
a free radical chain reaction mechanism, is greatly enhanced
in AD (Pratico et al., 2001; Galbusera et al., 2004). The most
extensive lipid peroxidation products studied in AD are reactive
aldehydes, including 4-hydroxynonal, malondialdehyde (MDA),
and 2-propenal (acrolein), and chemically and metabolically
stable isoprostanoids including F2-isoprostanes and F4-
neuroprostanes. A substantial increase in MDA was reported
in the hippocampus, pyriform cortex (Lovell et al., 1995),
and erythrocytes of AD patients (Bermejo et al., 1997; Dei
et al., 2002). Measuring MDA levels, which is both easy and
cheap to perform, might be of great importance in monitoring
AD progression and treatments. Conversely, the markers of
oxidative stress that are commonly used in biological samples
include protein carbonyls and 3-nitrotyrosine (3-NT) for protein
oxidation; thiobarbituric acid-reactive substances (TBARS),
free fatty acid release, iso- and neuroprostane formation, 2-
propen-1-al (acrolein), and 4-hydroxy-2-trans-nonenal (HNE)
for lipid peroxidation; advanced glycation end products for
carbohydrates; 8-OH-2’-deoxyguanosine, 8-OH-guanosine and
other oxidized bases, and altered DNA repair mechanisms for
DNA and RNA oxidation. Increased levels of toxic carbonyls,
3-NT, and HNE are among the earliest alterations seen after an
oxidative insult in AD (Butterfield et al., 2007b, 2011; Gamba
et al., 2019). Several lines of evidence indicate that oxidative and
nitrosative stress can lead to changes in vital cellular elements
such as nucleic acids, lipids, and proteins. ROS comprise of both
radical and non-radical oxygen species produced by a partial
reduction of the oxygen, such as superoxide radical anion (O2),
hydrogen peroxide (H2O2), hydroxyl radical (HO), nitric oxide
(NO), and peroxynitrite (ONOO-). A key source of free radicals
is the mitochondrial-resident oxidative phosphorylation, in
which electron leakage from the mitochondrial ETC triggers the
production of O2 (Ray et al., 2012). In addition to these common
markers of protein modifications, protein oxidation/nitrosylation
can also result in S-nitrosylation and methionine oxidation
(sulfoxidation). S-nitrosylation is the production of the reaction
between cysteine moiety and N2O3 to form an S-nitrosothiol
(SNO) (Broniowska and Hogg, 2012). The latter is important in
redox-based intracellular signaling, and altered SNO-profile has
been documented in AD (Zahid et al., 2014).

In aging and AD, progressive impairment of mitochondrial
function has also been implicated as the primary cause of
ROS generation; mitochondria are themselves also a major
target of oxidative damage (Swerdlow, 2011). In view of the
above phenomenon, numerous studies have documented
mitochondrial dysfunction through the abnormal processing
of ROS as an essential factor in AD pathogenesis (Ohta and
Ohsawa, 2006; Selfridge et al., 2013; Wang et al., 2014; Tobore,
2019). Similarly, the insertion of Aβ as oligomers into the bilayer
can lead to the development of ROS, thereby initiating lipid
peroxidation of membranes, followed by intracellular protein and
nucleic acid oxidation (Butterfield, 2002; Butterfield et al., 2007a,
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Cheignon et al., 2018). It is also important to note that
oxidative stress is linked to mitochondrial function, not
just because mitochondria generate ROS, but also because
ROS can cause deterioration of mitochondrial function
(Figure 1). For this reason, reducing ROS levels, using strategies
such as diet, exercise, and antioxidant drugs, may protect
neuronal mitochondria from oxidative damage and thus
reduce the risk of AD.

Shortage of Neuronal ATP in AD
Mitochondrial ATP production by oxidative phosphorylation
(OXPHOS) is essential for cellular functions, such that
mitochondria are known as the powerhouses of the cell
(Verschueren et al., 2019). The mitochondrial ETC consists of five
enzyme complexes in the inner membrane of the mitochondria.
ETC generates a charge across the inner mitochondrial
membrane, which drives ATP synthase (complex V) to synthesize
ATP from ADP and inorganic phosphate.

Several studies have shown impairments of all five complexes
in multiple areas of the AD brain (Kim et al., 2000, 2001; Liang
et al., 2008). Mitochondrial dysfunction in AD is apparent from
a decrease in neuronal ATP levels, which is associated with
the overproduction of ROS, and indicates that mitochondria
may fail to maintain cellular energy. A substantial amount
of ATP is consumed in the brain due to the high energy
requirements of neurons and glia. Since an energy reserve (such
as fat or glucose) is not available in the central nervous system

(CNS), brain cells must continuously generate ATP to sustain
neuronal function (Khatri and Man, 2013). Mitochondria are
the primary source of cellular energy production, but aged
or damaged mitochondria produce excess free radicals, which
can reduce the supply of ATP and contribute to energy loss
and mitochondrial dysfunction in AD. Importantly, oxidative
damage of the promoter of the gene encoding subunit of the
mitochondrial ATP synthase results in reduced levels of the
corresponding protein, leading to decreased ATP production,
nuclear DNA damage to susceptible genes, and loss of function
(Lu et al., 2004; Reed et al., 2008).

In advanced stages of AD, substantial nitration of ATP
synthase subunits can take place, leading to the irregular
function of the respiratory chain (Castegna et al., 2003;
Sultana et al., 2006; Reed et al., 2009). Likewise, ATP-synthase
lipoxidation occurs in the hippocampus and parietal cortex
of patients with mild cognitive impairment (Reed et al.,
2008). Compromised OXPHOS contributes to a characteristic
mitochondrial dysfunction in AD brains, leading to decreased
ATP production, elevated oxidative stress, and ultimately cell
death (Reddy, 2006; Reddy and Beal, 2008; Du et al., 2012). The
specific mechanisms of OXPHOS deficiency in AD remain a
long-standing scientific question, but the role of mitochondrial
F1Fo ATP synthase dysfunction in AD-related mitochondrial
OXPHOS failure is emphasized by emerging evidence (Beck et al.,
2016; Gauba et al., 2019). Therefore, it is important to note
that ATP-synthase deregulation caused by ROS is a hallmark of

FIGURE 1 | Representation of ROS-induced mitochondrial abnormalities in AD. ROS production or impaired antioxidant system results in the cellular redox balance
to oxidative imbalance and cause ROS overproduction. ROS generated during cellular respiration has detrimental effects on mitochondria and neuronal function.
Increased ROS causes reduction of mitochondrial 19m and ATP generation through negatively affecting mitochondrial energy stores, disturbance in energy
metabolism, and compromised dynamics and mitophagy. ROS further causes an increase in caspase activity and initiates apoptosis. On the other hand, ROS
overproduction causes inhibition of phosphatase 2A (PP2A), which also activates glycogen synthase kinase (GSK) 3β causing tau hyperphosphorylation and
neurofibrillary tangles accumulation.
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mitochondrial dysfunction in AD, and the strategies to block ROS
should prove beneficial by restoring ATP synthase activity.

Mitochondrial Ca2+ Disturbance in AD
Mitochondria play a key role in cellular Ca2+ homeostasis, and
Ca2+ is an important regulator of vital neuronal processes, such
as secretion, motility, metabolic regulation, synaptic plasticity,
proliferation, gene expression, and apoptosis. The hypothesis
that dysregulation of Ca2+ homeostasis is a critical factor
in accelerating AD pathology is well known. Mitochondrial
Ca2+ can certainly become a death factor via induction of
the permeability transition (PT). The PT is an increase in
the permeability of the inner mitochondrial membrane (IMM)
to ions and solutes mediated by the PT pore (mPTP), a
high-conductance, a voltage-dependent channel that needs a
permissive Ca2+ matrix load for opening. Persistent opening
of mPTP is accompanied by depolarization of Ca2+ release,
cessation of OXPHOS, matrix swelling with IMM remodeling,
and eventually, rupture of the outer mitochondrial membrane
(OMM) with the release of cytochrome c and other apoptogenic
proteins (Zago et al., 2000; Bernardi et al., 2006; Vercesi
et al., 2006; Assaly et al., 2012; Boyman et al., 2019; Carraro
and Bernardi, 2020; Nesci, 2020). Understanding the process
by which Ca2+ is converted from a physiological signal into
a pathological effector is one of the outstanding concerns
in AD pathology.

Mitochondria contribute to intracellular Ca2+ signaling as
modulators, buffers, and sensors (Rizzuto et al., 2012). After a
cytosolic rise in [Ca2+], mitochondria quickly take up Ca2+

to avoid an overload of Ca2+ in the cytosol. When excessive
Ca2+ is absorbed into mitochondria, such that they become
overloaded, there is a consequent increase in the production
of ROS, inhibition of ATP synthesis, the opening of the
mPTP, release of cytochrome c, and activation of caspases
and apoptosis (Figure 2). A recent study indicates that Aβ

accumulation induces in vivo mitochondrial Ca2+ overload via
the mitochondrial Ca2+ uniporter (MCU) complex, leading to
neuronal death, and suggests that MCU complex inhibition
and blocking the activation of mPTP might represent novel
therapeutic approaches toward AD (Calvo-Rodriguez et al.,
2020). The increase in mitochondrial Ca2+ concentration could
contribute to neurotoxicity, but monitoring mitochondrial Ca2+

in individual neurons is challenging. Furthermore, mitochondrial
Ca2+ overload and the resulting dysfunction are a critical
cause of apoptosis following ischemic and traumatic brain
injury (Rao et al., 2015; Nichols et al., 2018; Novorolsky
et al., 2020), as well as in multiple neurodegenerative diseases,
including AD, Parkinson’s disease (PD), Huntington’s disease
(HD), and amyotrophic lateral sclerosis (ALS) (Gibson et al.,
2010; Pchitskaya et al., 2018; Cortes et al., 2020).

On the one hand, intracellular Ca2+ regulates multiple
neuronal functions; its dyshomeostasis can trigger neuronal
injury and death. Indeed, mitochondrial Ca2+ overload and
subsequent dysfunction are possibly the most significant injury
processes caused by excessive concentrations of cytosolic Ca2+.
The fundamental role of mitochondrial dysfunction in AD,
however, is clear, if many of the pathways underlying it are not.

Thus, a significant aim of future studies should be to develop a
clearer understanding of how, in the first place, mitochondria
come to be at risk, and how this risk can be minimized. Much
work needs to be done to form a better picture of the involvement
of mitochondrial Ca2+ dysregulation in AD pathogenesis.

Impaired Mitochondrial Dynamics and
Mitophagy in AD
Mitochondria are dynamic, and undergo frequent changes in
shape, size, number, and location. The various shapes result
from the ability of mitochondria to divide, join together, and
move throughout the cytoplasm. These processes are collectively
referred to as mitochondrial dynamics and largely comprise
two unique, closely controlled adverse processes, i.e., fission
(division) and fusion (Youle and van Der Bliek, 2012; Palikaras
et al., 2018; Chu, 2019; Reddy and Oliver, 2019), both of which
are fundamental aspects of mitochondrial biology and quality
control (Detmer and Chan, 2007; Youle and van Der Bliek, 2012;
Fu et al., 2019). The equilibrium between fission and fusion
is important not only for mitochondrial morphology, but also
for the viability of cell and synaptic activity. Perturbations in
mitochondrial fission, fusion, motility, and turnover can lead to
defects in neurons. Previous studies indicate that mitochondrial
fusion is neuron protective, leading to the exchange of
mitochondrial DNA, reorganization of mitochondrial cristae,
and protect cells from apoptosis, whereas mitochondrial fission
seems a sign of apoptosis and fragmentation. It is important
to note that the fission/fusion process is closely related to
mitochondrial mobility and positioning. Likewise, abnormalities
in mitochondrial fission and fusion, and consequent changes
in mitochondrial morphology, influence mitochondrial mobility
and distribution (Chen and Chan, 2009). Additionally, fission
and fusion modulate mitochondrial shape, membrane topology,
and intramitochondrial protein distribution, which further
influence the apoptotic permeability of the mitochondrial OMM
(Weaver et al., 2014; Renault et al., 2015). Disruption of fission
and/or fusion processes is found in various neurodegenerative
disorders including AD, PD and HD (Itoh et al., 2013; Van Laar
and Berman, 2013; Hroudova et al., 2014; Reddy, 2014; Bertholet
et al., 2016; Stanga et al., 2020). In this section, we discuss in detail
the defects in fission/fusion and mitophagy in AD (Figure 3).

Mitochondrial Fission Defects in AD
Mitochondrial fission mainly involves the action of GTPase-
related dynamin-related protein 1 (Drp1), which is conserved
from yeast to mammals (Bleazard et al., 1999; Smirnova
et al., 2001). Drp1 is recruited to the OMM by resident
protein receptors, including mitochondrial fission factor (Mff),
mitochondrial fission 1 protein (Fis1), and mitochondrial
dynamics protein 49/51 (MiD49/51) to promote mitochondrial
fission (Loson et al., 2013). In general, Drp1 is important in
neurons for mitochondrial division, size, shape, and distribution,
from the cell body to the axons, dendrites, and nerve terminals. In
addition, it is proposed that Drp1 protein is crucial in preserving
equilibrium in mitochondrial dynamics, managing fission,
mitophagy, and even motility. It mainly acts as a mitochondrial
fission factor, triggering mitochondrial fragmentation, and thus
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FIGURE 2 | Schematic representation of the mitochondrial Ca2+ dysregulation in AD. Mitochondria participate in intracellular Ca2+ signaling as modulators, buffers,
and sensors; excessive Ca2+ taken up by mitochondria can lead to cell death, i.e., mitochondrial Ca2+ overload, results in increased ROS production, ATP
synthesis inhibition, mitochondrial permeability transition pore (mPTP) opening, the release of cytochrome c, activation of caspases, and apoptosis.

when it is downregulated, fusion is partially facilitated (Wenger
et al., 2013). Mitochondrial dysfunction that can be attributed
to an imbalance in Drp1 activity characterizes the pathology of
various disorders including AD, Down syndrome (DS), multiple
sclerosis (MS), ALS, PD, and triple-repeat diseases such as HD,
spinobulbar muscular atrophy (SMA), spinocerebellar atrophy
1 (SCA1), and others (Wang et al., 2008, 2009b; Manczak
et al., 2011; Reddy et al., 2011; Hu et al., 2017). Similarly,
elevated Drp1 levels are seen in disease states that cause
excessive mitochondria fragmentation, leading to mitochondrial
dysfunction and neuronal damage. More specifically, prolonged
mitochondrial fission and its deleterious effects are clearly
illustrated in in vitro AD models: overexpression of amyloid
precursor protein (APP) or Aβ treatment causes profound
fragmentation and altered distribution of mitochondria, which
likely trigger Aβ-induced synaptic defects in neuronal cultures
(Wang et al., 2008, 2009a; Manczak et al., 2011). Likewise,
experiments in Drosophila have reported Aβ-induced defects in
mitochondrial dynamics and distribution as early events in vivo
(Iijima-Ando et al., 2009; Zhao et al., 2010). Indeed, enhanced
mitochondrial fission is well documented in AD patients and
model organisms with a bias toward increased mitochondrial
fragmentation (Calkins et al., 2011; Manczak et al., 2011;
Kandimalla et al., 2016; Manczak et al., 2016). Similarly, increased
mitochondrial ROS production, compromised mitochondrial
function, and apoptosis has been associated with excessive
mitochondrial fission and mitochondrial structural abnormalities
(Pena-Blanco et al., 2020). Given the critical role of mitochondrial

dynamics, any defects in the fidelity of the fission machinery
may have a devastating impact on redox homeostasis, energy
generation, and mitochondrial function.

Mitochondrial Fusion Defects in AD
In mammals, the fusion of the OMM requires the action
of dynamin-related GTPase proteins mitofusin-1 (Mfn1) and
mitofusin-2 (Mfn2), which bind the outer membranes of two
mitochondria, while inner membrane fusion is facilitated by the
optic atrophy type 1 (OPA1) protein. It has been shown that the
heptad repeat region of Mfn1 contains an antiparallel coil that
is likely to be involved in tethering mitochondria throughout
the fusion process (Koshiba et al., 2004). Apart from tethering
mitochondrial membranes, Mfn2 serves additional cellular
functions, such as mitochondrion-ER contact site development
and stabilization, mitochondrion-lipid droplet interaction, cell
proliferation, metabolic signaling, and mitophagy (Chen et al.,
2014; Zorzano et al., 2015; Naon et al., 2016; Boutant et al., 2017;
McLelland et al., 2018). Maintenance of the membrane potential
(19m) of the IMM is necessary for mitochondrial fusion. The
mechanistic relationship between 19m and fusion remains to be
resolved, but one consideration seems to be the dependency on
the 19m of post-translational OPA1 processing (Ishihara et al.,
2006). In addition to its function in membrane fusion, OPA1 is
also essential for preserving the organization and structure of the
IMM (Frezza et al., 2006). Defects in Mfn1, Mfn2, and OPA1 have
been reported in various neurodegenerative disorders, including
AD. Thus, modulating the activity of these fusion proteins might
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FIGURE 3 | Schematic diagram depicting defects of mitochondrial dynamics (fission and fusion) and mitophagy mechanism in AD. Mitochondria are dynamic, and
they undergo frequent changes in shape, size, number, and location to maintain mitochondrial biology and quality control. Actions of outer membrane Drp1 control
mitochondrial fission. Drp1 is recruited by mitochondrial fission factor (Mff), mitochondrial fission 1 protein (Fis1), mitochondrial dynamics protein 49/51 (MiD49/51) to
promote the mitochondrial fission process. On the other hand, Mitochondrial fusion is regulated by mitofusin (Mfn) 1 and 2 and optical atrophy protein 1 (OPA1). This
allows for the exchange of material (matrix components and damaged mitochondrial DNA), as well as promoting a balance in bioenergetic properties (e.g.,
mitochondrial membrane potential 19m). These fission/fusion processes also involve mitophagy mechanisms (removal of damaged mitochondria) to maintain
quality control. When mitochondria become damaged due to cellular stress, sustained depolarization of their inner membrane occurs, resulting in the loss of 19m,
which stabilizes PINK1 at the outer membrane to initiate mitophagy. In AD, due to excessive ROS burden on neurons, impaired fission/fusion balance occurs,
resulting in defective mitophagy.

have an effect on the interaction of the mitochondrial network
and IMM structure, both of which affect mitochondrial functions
critical for cell health and viability, such as OXPHOS and
permeabilization of the membrane during apoptotic cell death.

Recent studies suggest that there is an intrinsic link between
hyperphosphorylated Tau and mitochondrial alterations.
Mitochondrial dysfunction is detected in P301L tau transgenic
mice (David et al., 2005). Abnormal mitochondrial fusion was
associated with the overexpression of Tau protein (Li et al., 2016;
Kandimalla et al., 2018). Tau ablation resulted in decreased ROS,
increased fusion but decreased fission, inhibited mPTP and
cyclophilin D (Cyp-D), and enhanced ATP production in mice.
The fact that tau indirectly resulted in elongated mitochondria
(citation) could be due to tau binding and stabilizing the actin
cytoskeletal, disrupting the physical association of mitochondria

and Drp1, thus preventing Drp1 dependant fission. The
mechanism may involve decreased fission and increased fusion,
suggesting that fusion beyond its physiological limit may be
detrimental to mitochondrial function. Therefore, preventing tau
modifications could enhance mitochondrial health and reduce
neurodegeneration.

Impaired Mitochondrial Biogenesis in AD
Mitochondrial biogenesis is the process by which mitochondria
increase in number and size. A constant renewal of mitochondria
is central to maintaining the number of healthy mitochondria.
One of the important mitochondrial biogenesis factors is
peroxisome proliferator-activated receptor gamma coactivator
1 (PGC-1), a transcriptional coactivator that controls specific
transcription action factors, sequentially, coordinating the
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expression of key nuclear-encoded mitochondrial genes that
are required for the proper functioning of the organelle. PGC-
1α and estrogen-related receptor-α (ERRα) together stimulate
the function of Mfn2 to facilitate the fusion process (Soriano
et al., 2006). Repression of PGC-1α and Mfn2 causes a decrease
in oxygen consumption, glucose oxidation, and 19m, and an
increase in the expression of oxidative phosphorylation proteins
(Chen et al., 2005). Moreover, PGC-1α activity is responsive to
multiple stimuli, including but not limited to nutrient availability,
Ca2+, ROS, insulin, estrogen hormone, hypoxia, ATP demand,
and cytokines (Huang et al., 2020). Besides PGC-1α, other
members of the PGC-1 family of coactivators, namely PGC-
1β and PGC-related coactivator (PRC), are also implicated in
modulating mitochondrial function, but their exact role is not
well understood (Scarpulla, 2008). The capacity of mitochondrial
biogenesis declines with aging and in neurodegenerative disease.
Notably, decreased levels of PGC-1α and Mfn2 have been
reported in AD (Qin et al., 2009; Wang et al., 2009a). The activity
of PGC-1α can be modulated by posttranslational signalings
such as AMP-activated kinase (AMPK), Akt, p38 MAPK, and
the sirtuin 1 (Sirt1). Direct phosphorylation by AMPK activates
PGC-1α and promotes PGC-1α dependent induction at the PGC-
1α promoter (Canto and Auwerx, 2009). Moreover, activation
of Sirt1 through caloric restriction induces PGC-1α activity
and enhances mitochondrial function (Planavila et al., 2011;
Tang, 2016). Importantly, impaired AMPK, Sirt1, and PGC-1α

signaling have been implicated in AD pathology, drugs that
activate this signaling would provide hope in alleviating AD.

Abnormal Mitochondrial Transport in AD
The proper distribution of mitochondria throughout the
cell is achieved by the mitochondrial transport mechanism.
Mitochondrial transport relies on proteins that exist in the
membranes of mitochondria and transport molecules and other
factors such as ions into or out of the organelles (Hansen and
Herrmann, 2019; Ruprecht et al., 2019). Mitochondrial transport
mainly depends on the actin cytoskeleton in budding yeast
(Fehrenbacher et al., 2004) and on both actin and microtubules
in mammalian cells (Morris and Hollenbeck, 1995; Ligon and
Steward, 2000). These transport mechanisms can ensure the
proper inheritance and recruitment of mitochondria. Neuronal
mitochondrial transport is essential for providing ATP to the
sites of synapses and promoting axonal growth, as well asCa2+

buffering, mitochondrial repair, and degradation (Lin and Sheng,
2015). Studies with the membrane-potential indicator dye JC-
1 indicate that mitochondria with high 19m favorably travel
to the anterograde direction, whereas mitochondria with low
19m move in the retrograde direction (Miller and Sheetz,
2004). These migration patterns suggest that active mitochondria
are recruited to distal regions with high energy requirements,
whereas impaired mitochondria are returned to the cell soma,
perhaps for destruction or repair. Multiple kinesin family
members and cytoplasmic dynein have been implicated in
anterograde and retrograde mitochondrial transport, respectively
(Hollenbeck and Saxton, 2005). Moreover, axonal anterograde
transport of mitochondria require actions of Mfn2 (fusion
protein), and Milton/Miro complex (members of the molecular

complex that links mitochondria to kinesin motors) (Stowers
et al., 2002; Guo et al., 2005; Misko et al., 2010). In neurons,
cellular signaling cues, such as Ca2+, ROS, oxygen level,
nutrients, and ATP, act to regulate these Milton/Miro proteins
and determine mitochondrial movement and position. Although
Milton/Miro proteins have been identified as mammalian
adaptors responsible for transporting mitochondria by kinesin,
additional motor and adaptor proteins also participate in
axonal trafficking of mitochondria transport, ensuring proper
mitochondrial distribution in the cell (Melkov and Abdu,
2018). Impaired mitochondrial axonal transport contributes to
several human neurodegenerative conditions, including spastic
paraplegia, Charcot–Marie–Tooth, ALS, HD, PD, and AD
(Charrin et al., 2005; Goldstein, 2012; Lamberts and Brundin,
2017; Flannery and Trushina, 2019). In AD, impairment of
mitochondrial axonal transport precedes the accumulation of
toxic protein aggregates which is linked to disturbed axonal
integrity and synaptic function (Stokin et al., 2005; Calkins
et al., 2011). While the precise molecular mechanisms underlying
abnormal mitochondrial transport in AD remain elucidated, a
disturbance in mitochondrial motility is tightly linked with an
unbalanced fission/fusion mechanism, increased levels of both
Aβ and pTau, and ROS.

Mitophagy Defects in AD
Mitophagy, a selective type of autophagy, is a crucial pathway
for mitochondrial quality control where faulty mitochondria
are sequestrated into autophagosomes for subsequent lysosomal
degradation (Youle and Narendra, 2011; Kerr et al., 2017).
Mitophagy dysfunction has been implicated in aging and multiple
neurodegenerative diseases, such as AD, PD, ALS, and HD
(Chu, 2019; Cai and Jeong, 2020). In this section, we offer a
detailed and timely description of the molecular mechanisms
of mitophagy and discuss current therapeutic approaches that
target mitophagy and improve mitochondrial function in AD.
In studies of yeast, worms (Caenorhabditis elegans), fruit flies
(Drosophila melanogaster), zebrafish (Danio rerio), and mammals
such as human (Homo sapiens), the molecular machinery that
mediates the targeting of mitochondria to lysosomes has been
elucidated (Lazarou et al., 2015). Importantly, PTEN-induced
putative kinase protein 1 (PINK1)-parkin-mediated mitophagy
is the most widely studied mitophagy pathway (Gautier et al.,
2008). When mitochondria become damaged due to cellular
stress, continued depolarization of their inner membrane occurs,
leading to loss of mitochondrial 19m, and this stabilizes PINK1
in the OMM. There, PINK1 phosphorylates Mfn2 and then
stimulates the ubiquitin-proteasome system (UPS), which, in
turn, recruits parkin to the OMM (Ziviani et al., 2010; Chan
et al., 2011). This further promotes the engulfment of damaged
mitochondria by the phagophore or isolation membranes and
hence the formation of mitophagosomes destined for removal
via the lysosomal system. Numerous studies have confirmed the
roles of PINK1 and Parkin in mitochondrial quality control and
mitophagy (Sung et al., 2016; Lee et al., 2018).

Mitochondrial quality control mechanisms that effectively
sense and eradicate damaged mitochondria are weakened due
to usage, aging, or disease, and this is likely to have a marked
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impact on neuronal health. A growing body of evidence indicates
that inhibition of the clearance of damaged mitochondria and
the concomitant increase in ROS results in an accumulation of
impaired neurons in AD. One important aspect is that mitophagy
could be compromised in AD due to unstable fusion of lysosomes
and autophagosomes. Thus, disrupted lysosomal activity in
healthy cells results in neuronal phenotypes resembling those in
AD (Nixon et al., 2008). In addition, autophagosome aggregation
develops after oxidative stress in mouse cortical neurons, which
shows similarities with AD (Boland et al., 2008), while mutations
in PS1 can impair autophagy/mitophagy (Lee et al., 2010).
Together, these results indicate that impaired mitophagy is
implicated in neuronal degeneration in AD (Figure 3).

STRATEGIES TO IMPROVE
MITOCHONDRIAL FUNCTION IN AD

The above analysis makes it clear that strategies capable
of targeting mitochondrial function are needed to slow the
progression of AD. The focus of the research effort should
be to develop a therapeutic intervention that can target ROS
and excessive mitochondrial fragmentation, thereby minimizing
mitochondrial dysfunction and consequent synaptic injury
during AD progression (summarized in Table 1). One fascinating
approach to reducing the burden of ROS and improving
mitochondrial health is exercise. In the following section,
we discuss in detail the impact of physical activity on
mitochondrial function.

Impact of Exercise and Diet on
Mitochondrial Function and Oxidative
Stress
Exercise is one of the most effective strategies for maintaining
a healthy body and normal brain activity. Moreover, exercise
and a healthy diet can specifically boost several aspects of
mitochondrial function. In this context, the beneficial effects of
caloric restriction and exercise in slowing the aging process and
enhancing mitochondrial function have been shown in humans
and rodent models (Barbieri et al., 2015; Lundby and Jacobs,
2016; Fiuza-Luces et al., 2019). Significantly, exercise not only
enhances mitochondrial activity in the peripheral organs, but also
completely blocks brain atrophy in mouse models. The beneficial
effects of physical activity are now widely accepted in humans
as a way to not only improve fitness, but also treat patients
with neurodegenerative diseases, including AD (Bernardo et al.,
2016). Additional studies have reported numerous advantages
of exercise in AD patients, including better blood flow to the
brain, enhanced hippocampal thickness, enhanced neurogenesis,
cognitive performance, reduced neuropsychiatric symptoms, and
slower disorder (Brown et al., 2013; Cass, 2017).

Worldwide, around 30% of adults are insufficiently active
(Hallal et al., 2012), which is a greater risk of ROS-
induced anomalies. It is well established that a sedentary
lifestyle contributes to increased ROS and neuroinflammation
seen in neurodegenerative disorders. On the other hand,

physical exercise can mitigate inflammation and oxidative stress
(Gleeson et al., 2011; Mazzola et al., 2011). This attenuation
might be one of the mechanisms responsible for improving
several clinical aspects, for instance, attenuating cellular aging
(Puterman et al., 2010) and increasing insulin sensitivity (Gordon
et al., 2014). Moreover, physical exercise prevented ROS and
normalized its various components, including thiobarbituric
acid reactive substances (TBA-RS), superoxide dismutase (SOD),
catalase (CAT), and glutathione peroxidase (GPx) in rats
(Mazzola et al., 2011). Lack of exercise leads to an overall
reduction in mitochondrial ETC activity in healthy individuals.
Simultaneously, endurance training can improve ETC activity,
and resistance training can stimulate the integration of satellite
cells into existing muscle fibers. Furthermore, exercise can
stimulate mitochondrial proliferation through enhancing PGC-
1α and AMPK signaling (Kang and Li Ji, 2012), and causes a
reduction in the levels of systemic inflammation (McGee et al.,
2003). This increase in PGC-1α and AMPK further promotes
mitochondrial biogenesis.

Adequate consumption of vitamins and minerals and the
use of natural foods rich in antioxidants (fruits, vegetables,
etc.) could represent the ideal approach to maintaining the
optimal antioxidant status. Foods that are rich in vitamin C
can alleviate ROS. Vitamin C at various dosages, administered
alone or in conjugation with other antioxidants, acutely
or chronically, is the most commonly used antioxidant in
clinical and laboratory research (Carr and Maggini, 2017;
Spoelstra-de Man et al., 2018). Vitamin C attenuates ROS
and maintains mitochondrial health in cells (Kc et al., 2005;
Peng et al., 2019) and animal models (Singh and Rana, 2010).
Similarly, Vitamin C consumption reduces Aβ plaque, preserves
mitochondrial morphology, and ameliorates AD pathology in
5XFAD mice of AD (Kook et al., 2014). Moreover, the beneficial
effect of caloric restriction on mitochondrial health is well
documented. For example, a 15–25% continuous reduction
in calorie intake in healthy adults for 24 months resulted
in improved quality of life and a significant decrease in
ROS levels (Redman et al., 2018). The caloric restriction
mechanisms comprise activation of autophagy/mitophagy via
AMPK-dependent inhibition of mTOR signaling, and the
activation of Sirt1, which are important modulators of resistance
to cellular stress, aging, and cell death. Moreover, caloric
restriction has been shown to increase mitochondrial biogenesis
and turnover, leading to a lesser accumulation of dysfunctional
organelles, improved mitochondrial dynamics, morphology,
and decreased mitochondrial permeability to Ca2+ retention
capacity, ultimately leading to protection against excitotoxicity,
a major mechanism involved in AD pathogenesis (Amigo
et al., 2017). In addition to caloric restrictions, the ketogenic
diet can slow down the development of cognitive dysfunction
in patients with mild cognitive impairment (MCI) and AD.
The neuroprotective effect of the ketogenic diet in AD is
attributed to ketone bodies’ ability to provide a more efficient
energy fuel source for mitochondria under conditions where
glucose uptake is altered. Furthermore, ketone bodies have
been shown to improve mitochondrial respiration, reduce the
ROS production, improve antioxidant defense mechanism, and

Frontiers in Aging Neuroscience | www.frontiersin.org 8 February 2021 | Volume 13 | Article 617588

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-13-617588 February 12, 2021 Time: 18:55 # 9

Misrani et al. Mitochondrial Dysfunction in Alzheimer’s Disease

inhibit mPTP opening, thus ultimately protect mitochondrial and
neuronal function (Masino and Rho, 2012). Overall, these studies
suggest that physical exercise and diet have beneficial effects on
mitochondrial health, redox homeostasis, and neuronal function,
supporting the adoption of a healthy lifestyle as an invaluable
tool against AD.

Strategies to Mitigate Oxidative Stress
and Enhance Mitochondrial Biogenesis
Antioxidant therapies, innovative pharmacological strategies
designed to boost mitochondrial function, and mitigate local ROS
production in mitochondria competing to reduce global levels of
ROS. These compounds include coenzyme CoQ10, idebenone,
creatine, MitoQ, MitoVitE, MitoTEMPOL, sulforaphane,
bezafibrate, latrepirdine, methylene blue, triterpenoids, a series
of Szeto-Schiller (SS) peptides such as SS-31, curcumin, Ginkgo
biloba, omega-3 polyunsaturated fatty acids (Murphy and

Hartley, 2018) and resveratrol which indirectly activates PGC-1α

and induces mitochondrial biogenesis (Lagouge et al., 2006;
Chuang et al., 2019). Numerous laboratories have extensively
evaluated these mitochondrial-targeted compounds using in vivo
and in vitro models of AD. Advantages of these compounds
include improving bioenergetics, reducing ROS, maintaining
mitochondrial dynamics.

Coenzyme CoQ10
CoQ10 is an essential cofactor of the ETC, functions by
maintaining the mitochondrial 19m, supporting ATP
synthesis, and inhibiting ROS generation, thus protecting
neuronal cells from oxidative stress and neurodegenerative
diseases (McCarthy et al., 2004). Furthermore, it protects the
membrane phospholipids, and mitochondrial membrane
proteins against the damage of free radicals, increases
mitochondrial mass and bioenergetic function (Singh et al., 2007;

TABLE 1 | Summary of drugs aiming to improve mitochondrial dysfunction in AD.

Compounds Mode of action Therapeutic effects References

Coenzyme CoQ10 Enhance electron transport chain Mitigate ROS and enhance mitochondrial
biogenesis

McCarthy et al., 2004; Singh et al., 2007;
Sohet et al., 2009; Lee et al., 2013; Noh
et al., 2013

Creatine Buffer ATP Mitigate ROS and enhance ATP Matthews et al., 1998, 1999; Andres et al.,
2008; Tarnopolsky, 2011

MitoQ Enhancing electron transport chain Mitigate ROS, enhance CREB signaling,
improve mitochondrial health

Smith et al., 2003; Adlam et al., 2005;
Cocheme et al., 2007; Xing et al., 2019

MitoVitE Inhibit lipid peroxidation Mitigate ROS, prevent apoptosis, inhibit
cytochrome c and caspase-3 activity

Smith et al., 1999; Reddy, 2008; Jiang,
2014; Jameson et al., 2015

Sulforaphane Nrf2 activation Combat against ROS, upregulate
cytoprotective genes, reduce inflammation,
maintain redox homeostasis

Steele et al., 2013; Carrasco-Pozo et al.,
2015

Bezafibrate PGC1α activation Increase biogenesis and ATP production Chaturvedi and Beal, 2008; Steele et al.,
2020

SS-31 Inhibit lipid peroxidation, PGC1α activation Inhibit cytochrome c, reduce ROS, enhance
19m

Manczak et al., 2010; Szeto and Birk,
2014; Reddy et al., 2018

Mdivi-1 Drp1 inhibitor Decrease mitochondrial fission, reduce
ROS, enhance biogenesis

Cassidy-Stone et al., 2008; Bido et al.,
2017; Bordt et al., 2017; Smith and Gallo,
2017; Manczak et al., 2019

Dynasore Drp1 and mTORC1 inhibitor Inhibit mitochondrial fission, enhance
biogenesis and mitophagy

Macia et al., 2006; Newton et al., 2006;
Chung et al., 2010; Gao et al., 2013; Chen
et al., 2019

DDQ Inhibit Aβ and Drp1 binding Decrease fission and increase fusion,
increase PGC1α, Nrfl, Nrf2, and TFAM

Kuruva et al., 2017

P110 Drp1 inhibitor Decrease fission and ROS, enhance 19m,
prevent apoptosis

Qi et al., 2013

SAMβA Inhibit Mfn1 and βIIPKC binding Increase fusion Ferreira et al., 2019

BGP-15 Modulate OPA1 activity Activate fusion Szabo et al., 2018

Leflunomide Modulate Mfnl/Mfn2 activity Activate fusion Miret-Casals et al., 2018

Ml Modulate Mfnl/Mfn2 activity Activate fusion Wang et al., 2012; Peng et al., 2017

NAD+ precursors Enhance NAD+ signaling Enhance mitophagy, increase ROS
resistance

Gong et al., 2013; Liu et al., 2013

DNP Activate CREB, PGClα Mitigate ROS, stimulate autophagy Geisler et al., 2017

Rapamycin mTOR inhibitor Enhance mitophagy Spilman et al., 2010

Urolithin A Uncertain Enhance mitophagy, reduce ROS Ryu et al., 2016

Actinonin Peptide deformylase inhibitor Autophagy inducer Richter et al., 2015

Spermidine Decrease caspase-3 and p53 Enhance autophagy and cell survival,
reduce ROS

Gupta et al., 2013; Jing et al., 2018
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Noh et al., 2013). Other studies established that daily
administration of CoQ10 significantly increased antioxidant
enzyme activities and reduced inflammation (Sohet et al.,
2009; Lee et al., 2013). Idebenone is an analog of CoQ10 that
has better potency and a more promising pharmacokinetic
profile. Idebenone can protect vision loss by enhancing
mitochondrial ETC, in individuals with discordant visual
acuities (Klopstock et al., 2011). CoQ10 has been utilized
in many disease states to reduce ROS and improve
mitochondrial health; this warrants CoQ10 use in preclinical and
controlled human trials.

Creatine
Creatine in mitochondria combines with phosphate to form
phosphocreatine, which functions as a source of high-energy
phosphate released during anaerobic metabolism. Thus, creatine
serves as an intracellular buffer for ATP and as an energy
shuttle for the movement of high energy phosphates from
mitochondrial sites of production to cytoplasmic sites of
utilization. Creatine is present in the highest concentration in
tissues with high energy demands, such as muscle and brain
(Parikh et al., 2009). Studies suggest reduced phosphocreatine
levels in muscle tissue were shown in individuals with
mitochondrial dysfunction (Tarnopolsky and Parise, 1999), and
administration with creatine monohydrate can enhance exercise
capacity in some individuals with mitochondrial dysfunction
(Tarnopolsky, 2011). Similarly, beneficial effects of creatine
supplementation have been shown in neurodegenerative and
neurological diseases linked with mitochondrial dysfunction,
such as PD, HD, and ALS (Andres et al., 2008). Findings from
rodent research suggest that creatine exerts neuroprotective
effects by buffering ATP levels to counter neurotoxic assaults
by mPTP opening, and malonate (Matthews et al., 1998, 1999).
These data implicate that oral creatine may serve as a potential
therapy against ROS and subsequent reduction of bioenergetics,
which occurred in AD.

MitoQ
MitoQ is a mitochondria-targeted compound that enhances the
mitochondrial protection against oxidative damage (Cocheme
et al., 2007). MitoQ consists of a lipophilic cation moiety
that enables mitochondria-specific accumulation and ubiquinone
converted to the antioxidant ubiquinol by the activity of complex
II of the ETC (Smith et al., 2003). MitoQ, water-soluble that
can be administered orally through the drinking water, and
can cross the blood–brain barrier (Rodriguez-Cuenca et al.,
2010), have protective effects against mitochondrial alterations
induced by oxidative stress in animal models (Adlam et al., 2005).
Further, MitoQ prevented cognitive decline and neuropathology
in a mouse model of AD (McManus et al., 2011). Treatment
with MitoQ causes activation of cAMP response element-
binding protein (CREB), thus improve mitochondrial health
(Xing et al., 2019). Overall, these studies suggest the antioxidant
and mitochondria protecting role of MitoQ in many pathological
conditions, including AD.

MitoVitE
Vitamin E belongs to a group of compounds that includes
both tocopherols and tocotrienols (Jiang, 2014). Tocopherol
can protect cell membranes from oxidation, reacting with lipid
radicals produced formed during lipid peroxidation (Jiang,
2014). MitoVitE is basically the chromanol moiety of vitamin
E that bounds to a triphenyl phosphonium (TPP) cation and
accumulates within mitochondria due to the large negative
charge of the IMM. MitoVitE has been shown to accumulate
in all major organs of mice and rats after oral, intraperitoneal,
or intravenous administration and exerts a potent antioxidant
activity (Jameson et al., 2015). Trolox, a synthetic, water-soluble,
and cell-permeable derivative of vitamin E, often serves as
a potent antioxidant in several model organisms (Wu et al.,
1990; Guo et al., 2012). MitoVitE was more effective in vitro
and in vivo than trolox (Jameson et al., 2015). MitoVitE can
protect mitochondria from oxidative damage by reducing H2O2,
inhibiting caspase activation, and blocking apoptosis (Reddy,
2008). Another study demonstrates that MitoVitE can prevent the
release of cytochrome c, and staving off apoptosis by inhibiting
caspase-3 activation, thus, rejuvenating 19m for effective
bioenergetics (Smith et al., 1999). Importantly, antioxidants
which specifically accumulate within the mitochondrial matrix
are suggested to offer better protection against oxidative stress.

Sulforaphane
Sulforaphane, a natural isothiocyanate-derived from a
glucosinolate found in cruciferous vegetables, particularly
broccoli, which is considered to be a common activator of
Nrf2, can combat oxidative damage in mitochondria (Carrasco-
Pozo et al., 2015). The activation of the Nrf2 pathway leads
to upregulation of many downstream products involved
in protection against oxidative stress, including NAD(P)H
quinone oxidoreductase 1 (NQO1), heme oxygenase 1 (HO-1),
glutathione peroxidase 1 (GPx1), and gamma-glutamylcysteine
synthetase (γGCS) (Steele et al., 2013). Sulforaphane has powerful
antioxidant and anti-inflammatory properties, which allow it to
reduce cytotoxicity and ROS dramatically. Animal studies suggest
that sulforaphane supplementation could be disease-modifying
for many common, devastating neurological conditions, such as
AD, PD, epilepsy, stroke, etc. Collectively, these results indicate
that Nrf2 activators can have antioxidant effects by retaining
mitochondrial redox homeostasis. Sulforaphane is a potential
neuroprotective phytochemical that needs further human trials
to determine its effectiveness in preventing and reducing the
burden of multiple neurological diseases, including AD.

Bezafibrate
Through mitochondrial biogenesis, cells increase their
mitochondrial population in response to increased energy
demand. This is driven by the PGC-1α activation, which
is a transcriptional coactivator that controls mitochondrial
biogenesis. Bezafibrate, a peroxisome proliferator-activated
receptor (PPAR) agonist widely used to treat dyslipidemia.
Bezafibrate supplementation resulted in the initiation of
mitochondrial biogenesis, leading to an increase in mitochondrial
mass, oxidative phosphorylation capacity, and energy generation
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(Chaturvedi and Beal, 2008; Steele et al., 2020). These findings
imply that bezafibrate might be a promising therapeutic agent
for treating any neurodegenerative diseases associated with
mitochondrial dysfunction.

SS-31
SS-31 is a small molecule that has been shown to exert
potent antioxidant effects against ROS to protect mitochondrial
function. SS-31 can prevent the peroxidase activity of cytochrome
c in mitochondria, reduce ROS production, and aid reversal of
mitochondrial dysfunction (Szeto and Birk, 2014). Moreover,
SS-31 was proven to inhibit lipid peroxidation and hydrogen
peroxide scavenging (Reddy et al., 2018). SS-31 has the benefit
of being localized to the mitochondrion, explicitly targeting the
IMM rather than the mitochondrial matrix. Treatment with SS-
31 prevented mitochondrial dysfunction and enhanced 19m,
and increased neuroprotective gene PGC-1α in neuroblastoma
N2a cells grown with mutant APP (Manczak et al., 2010),
suggesting beneficial effects of the drug on mitochondrial
alterations in AD. It is worth noting that mitochondria-targeted
small molecules such as SS-31, have been tested in cell culture and
animal models of neurodegenerative diseases, such as AD, HD,
PD, ALS, multiple sclerosis, and other human diseases. Therefore,
it is important to consider using small molecules for preclinical
models and human clinical trials.

Strategies to Inhibit Excessive
Mitochondrial Fission in AD
Mitochondrial Division Inhibitor 1 as a Mitochondrial
Fission Inhibitor
In the last two decades, some inhibitors of Drp1, including,
in particular, mitochondrial division inhibitor 1 (Mdivi-1),
dynasore, diethyl (3,4-dihydroxyphenethylamino) (quinolin-4-
yl) methylphosphonate (DDQ), and P110, have been developed,
and their beneficial effects have been studied in cell cultures and
mouse models. The quinazolinone derivative, Mdivi-1, identified
initially as a selective inhibitor of mitochondrial fission protein
DRP1, induces neuroprotection in AD and PD models, as well as
other neurodegenerative disorders, by improving mitochondrial
fusion, and increasing mitochondrial biogenesis and synaptic
protein levels (Bido et al., 2017; Smith and Gallo, 2017; Manczak
et al., 2019). Recently, Mdivi-1 was shown to serve as a reversible
mitochondrial complex I inhibitor that decreases mitochondrial
fission and ROS production and further enhances mitochondrial
function (Bordt et al., 2017). In addition, recent detailed studies
of neuronal N2a cells support the theory that Mdivi-1 inhibits
mitochondrial heterogeneity and increases energy efficiency
(Manczak et al., 2019). On the other hand, the capacity of
Mdivi-1 to suppress Drp1 and trigger mitochondrial fission has
recently been questioned (Bordt et al., 2017). The authors did
not notice any treatment effect with Mdivi-1 on mitochondrial
morphology in mammalian cells in this study. However, they
confirmed the impact of Mdivi-1 on yeast Drp1, consistent with a
previous report (Cassidy-Stone et al., 2008). As Mdivi-1 is being
considered for clinical trials, it may be appropriate to carry out
more thorough investigations into its molecular targets to ensure
its safety and effectiveness in humans.

Dynasore as a Mitochondrial Fission Inhibitor
Another cell-permeable small molecule that inhibits Drp1
activity is dynasore (Macia et al., 2006). A low dose of dynasore
is sufficient to inhibit mitochondrial fission caused by ROS
in cultured cells (Gao et al., 2013), which, in turn, inhibits
endocytosis in neuronal cells and phagocytosis (Newton
et al., 2006; Chung et al., 2010). Furthermore, dynasore
inhibits mTORC1, which leads to nuclear translocation
of TFEB and TFE3, the master regulators of autophagy
and lysosomal biogenesis, thereby increasing autophagic
flux. Dynasore therapy greatly improves the clearance
by autophagy of protein aggregates of mutant HD in
cells (Chen et al., 2019). In this context, a recent study
suggests dynasore treatment decreases Aβ internalization
and processing to the secretory pathway. However, there
is currently a lack of data on the impact of dynasore
treatment on fission-fusion and mitophagy in early and
late-onset AD. Nevertheless, pharmacological interventions
that inhibit the actions of Drp1 provide hope that excessive
mitochondrial fragmentation can be abrogated in AD. Finally,
the inhibition of the fission mechanism will benefit mitophagy,
and energy production.

DDQ as a Mitochondrial Fission Inhibitor
Recently, the role of mitochondrial dysfunction in AD has
been studied using the pharmacological compound diethyl (3,4
dihydroxyphenethylamino) (quinolin-4-yl) methylphosphonate
(DDQ). DDQ has shown promising effects on mRNA and
protein levels associated with mitochondrial dysfunction and
AD-related synaptic dysregulation. In addition, DDQ decreases
mitochondrial fission proteins (Drp1 and Fis1), increases
fusion proteins (Mfn1 and 2), and inhibit Aβ interactions.
A novel property of DDQ is that it binds at the active
binding sites of Aβ and Drp1, inhibiting the formation of
complexes between of Aβ and Drp1 (Kuruva et al., 2017).
This research indicates that DDQ can decrease the levels of
Drp1 and Aβ, inhibit irregular Drp1-Aβ interactions, further
decrease excessive mitochondrial fragmentation, and maintain
mitochondrial function and synaptic activity in AD neurons.
The effect of DDQ either before or after Aβ treatment on levels
of various mRNAs and proteins important for mitochondrial
function (PGC-1α, Nrf1, Nrf2, TFAM, DRP1, Fis1, Mfn1,
and Mfn2), as well as those involved in synaptic activation
(synaptophysin, PSD95, synapsin1 and 2, synaptobrevin1 and 2,
synaptopodin, and GAP43), has also been examined. The mRNA
and protein levels of mitochondrial-enhancing molecules such
as PGC-1α, Nrf1, Nrf2, and TFAM were substantially increased
following incubation with Aβ, followed by DDQ treatment. In
addition, after DDQ therapy, a decrease in levels of mitochondrial
fission proteins (DRP1 and Fis1) and an increase in levels of
mitochondrial fusion proteins (Mfn1 and 2) was observed. This
led to the conclusion that in the presence of Aβ, pretreatment
with DDQ decreases fission activity (DRP1 and Fis1) and
increases fusion activity (Mfn1 and 2). In order to evaluate its
protective effects against Aβ-induced neuronal toxicity, more
preclinical research using AD mouse models and clinical trials
using AD patients treated with DDQ are needed.
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P110 as a Mitochondrial Fission Inhibitor
P110 is another inhibitor of Drp1, which acts by blocking the
interaction of Drp1 and Fis1. P110 was first used to protect
neuronal cells: in cultured neurons, it reduces mitochondrial
fragmentation and generation of ROS, restores mitochondrial
integrity and 19m, and protects cells against apoptosis caused
by ROS (Qi et al., 2013). Other studies have used P110 to inhibit
mitochondrial fission, thereby protecting the cell from death
caused by stress or damage, especially in heart disease models.
Moreover, treatment with P110 increases acute infarction-
induced cell death and reduces heart failure both in vitro and
in vivo (Disatnik et al., 2013). Therefore, P110 treatment should
be assessed in early- and late-onset AD, at least in animal
models, to confirm the therapeutic effects of this compound on
mitochondrial fragmentation.

Strategies to Enhance Mitochondrial
Fusion
Therapeutic interventions directed at the fusion machinery
(Mfn1, Mfn2, and OPA1) will enhance mitochondrial health
by optimizing and rebalancing the regulation and control of
fusion. Drugs that improve mitochondrial fusion function have
recently been documented to suppress the death of apoptotic
cardiac cells in vivo. When the association between Mfn1 and
βIIPKC is blocked by the novel agent SAMβA, mitochondrial
fusion and cardiac function are enhanced in rats (Ferreira et al.,
2019). Another promising compound, which modulates the
activity of OPA1 in lung epithelial cells, is the small molecule
BGP-15 (Szabo et al., 2018). Leflunomide, a new compound
launched in 2018, is another small molecule that activates
fusion, as recognized by Mfn1/Mfn2-dependent mitochondrial
elongation. Leflunomide-treated HeLa cells display an elongated
mitochondrial network and enhanced expression of Mfn1/2.
Mechanistically, leflunomide inhibits pyrimidine synthesis; this
minimizes the activity of doxorubicin-induced PARP and cleaved
caspase in3 in embryonic mouse fibroblast (MEF) cells and
shields PC12 cells from apoptosis (Miret-Casals et al., 2018).
In 2012, another mitochondrial fusion activator hydrazone M1
was introduced. Mitochondrial fragmentation is common in SH-
SY5Y cells treated with 1-methyl-4-phenyl-pyridinium-(MPP+-),
which models the death of neurons in PD. Treatment with
the fusion promoter M1 in this model reduces the release of
cytochrome c and prevents cell death (Wang et al., 2012).
Similarly, M1 also protects mitochondrial function in a rotenone-
induced PD model (Peng et al., 2017). These findings indicate
that maintaining mitochondrial fusion is a promising approach
to the treatment of a number of human diseases, including AD.
Thus, further research is warranted, at least in animal models
of AD, to test the effects of these drugs on impaired fusion
machinery in AD.

Strategies to Enhance Mitophagy
Pharmacological agents and lifestyle interventions targeted at
enhancing mitophagy are a promising approach for achieving
a significant therapeutic benefit (Kerr et al., 2017; Lou
et al., 2020). Caloric restriction, prolonged fasting, and

physical exercise are bioenergetic challenges that can enhance
neuroplasticity (i.e., they promote synapse formation and
hippocampal neurogenesis, reduce ROS, stimulate mitochondrial
biogenesis, and enhance autophagy) (Longo and Mattson, 2014).
For example, in mice, fasting and exercise result in elevated
numbers of autophagosomes in cerebral cortical neurons,
increased expression of SIRT3, and activation of mitochondrial
biogenesis by a pathway involving BDNF signaling and PGC-
1α upregulation (Alirezaei et al., 2010; Cheng et al., 2012,
2016). Thus, exercise and fasting can augment the numbers of
healthy mitochondria in neurons by promoting the pathways
that enhance mitophagy. A variety of mitophagy-enhancing
compounds in AD and other neurodegenerative diseases have
been investigated recently, including nicotinamide adenine
dinucleotide (NAD+) precursors, urolithin A (Ryu et al., 2016),
the antibiotic actinonin (Richter et al., 2015), and spermidine
(Gupta et al., 2013). NAD+ levels are reduced in animal models
of AD, and elevation of cellular NAD+ levels by treatment
with NAD+ precursors such as nicotinamide, nicotinamide
mononucleotide, and nicotinamide riboside attenuates Aβ

and tau pathologies, improves SIRT3 function, increases
mitochondrial resistance to ROS, enhances mitophagy and
prevents cognitive dysfunction, likely by upregulating the activity
of the CREB transcription factor (Gong et al., 2013; Liu
et al., 2013). In addition, mitochondrial uncoupling agents,
such as 2,4-dinitrophenol (DNP), can induce autophagy and
are useful in maintaining neuronal activity in animal AD
models (Geisler et al., 2017). The mTOR inhibitor, rapamycin,
is another mitophagy-inducing drug that can prevent cognitive
defects and reduce Aβ pathology in an APP-mutant AD mouse
model (Spilman et al., 2010). Collectively, these results provide
encouragement for controlled human trials to explore the
therapeutic potential of the above compounds.

One approach that might accelerate the translation of these
mitochondrial agents into the clinic is to screen compounds in
animal models at the prodromal stage and after neurological
symptoms. If the drug impedes disease development in these
models, there would be a firm basis for moving to human trials.
We remain enthusiastic about the prospects for the treatment
of neurodegenerative diseases using mitochondrial therapies;
specifically, those designed to prevent mitochondrial damage,
stimulate organelle biogenesis, and improve mitochondrial
quality control (Figure 4). However, these advances require
improvements in early diagnosis, the development of clinically
appropriate biomarkers, and better trial design to allow for more
rapid identification of compounds for the clinic.

Challenges in Mitochondria-Targeted
Strategies
Apart from offering a cure, most therapeutic interventions can
have numerous adverse side effects, which can also be the
case with the use of some mitochondria-targeted therapeutics.
Targetting mitochondria is a novel strategy; nevertheless, despite
very encouraging results in using these mitochondrial-targeted
therapeutics, it is challenging to target the population of
damaged mitochondria selectively. Notably, the targeting of
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FIGURE 4 | Summary of physiological and pharmacological interventions and molecular targets to improve mitochondrial function in AD. We highlight several
strategies that can contribute to mitochondrial health, such as exercise and a healthy diet, inhibition of excessive mitochondrial fragmentation and ROS, and
improving fusion, biogenesis, transport, and mitophagy using various compounds, as potential strategies for AD prevention.
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compounds to the subcellular compartments represents one
of the modern molecular pharmacology trends. The drug
substance’s target is located inside an intracellular compartment
such as a mitochondrion, and the drug molecule has to penetrate
several membranes to reach the final destination. The molecule
would require exact physicochemical properties to cross the
different barriers. For example, to suppress ROS, antioxidants
administered orally or intraventricularly, or intra-muscularly,
must travel through the blood and finally reach the targeted
organ. However, in this case, healthy tissues other than targeted
organs that have not undergone oxidative damage, could be
unavoidably targeted by frequent use of these antioxidants. As
a result, upon increasing antioxidant doses to permit the repair
of pathological mitochondria (especially toxic hyperpolarized
mitochondria), normal mitochondria may also be adversely
affected, as their ROS levels may fall below their physiologically
acceptable limit. Undoubtedly, these compounds protected
mitochondrial health and delayed aging in various animal
trials; however, clinical evidence has not fully supported these
preliminary findings. Thus, we have to be mindful of dosage,
timing, and modes of exposure for different pathologies, with all
the apparent benefits of mitochondrial-targeted therapeutics.

FUTURE PERSPECTIVES

Significant progress has been made in discovering the causes of
the debilitating neurodegenerative disorder AD. Accumulating
data suggest that mitochondria play a vital role in the
pathogenesis of AD by causing increased ROS production and
oxidative damage, disturbance of Ca2+ homeostasis, activation
of the mPTP, and alterations in dynamics, and mitophagy. The
exploration of treatments that target mitochondria in AD is
in progress, but there is an immediate need to develop novel

therapeutic approaches that block or slow down the progression
of this incurable disease. Here, we reviewed novel strategies
for targeting altered pathways based on an aggregation of
misfolded protein, defects in mitochondrial dynamics, OXPHOS
dysfunction, oxidative stress, and compromised mitophagy in
AD pathology. It remains a significant challenge to develop
mitochondrially targeted AD therapeutics using innovative
drug delivery systems and transfer them from the lab bench
to the hospital bed. Nevertheless, in our opinion, focusing
on mitochondria and expanding the area of mitochondrial
pharmacology has enormous potential for modern, reliable
mitochondrial therapy in AD.
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