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Big data to guide glaucoma treatment
Jo-Hsuan Wu1, Shan Lin2, Sasan Moghimi1*

Abstract:
Ophthalmology has been at the forefront of the medical application of big data. Often harnessed with 
a machine learning approach, big data has demonstrated potential to transform ophthalmic care, as 
evidenced by prior success on clinical tasks such as the screening of ophthalmic diseases and lesions 
via retinal images. With the recent establishment of various large ophthalmic datasets, there has 
been greater interest in determining whether the benefits of big data may extend to the downstream 
process of ophthalmic disease management. An area of substantial investigation has been the use 
of big data to help guide or streamline management of glaucoma, which remains a leading cause of 
irreversible blindness worldwide. In this review, we summarize relevant studies utilizing big data and 
discuss the application of the findings in the risk assessment and treatment of glaucoma.
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Introduction

The advancement in data and technologies 
has driven the 4th industrial revolution,[1] 

and the medical profession is amongst the 
groups that have benefitted the greatest from 
this revolution. In the past two decades, “big 
data,” which describes a massive amount 
of data that requires more sophisticated 
measures to analyze, has garnered particular 
attention in ophthalmology due to the data‑
driven nature of this field.[2,3] In addition 
to expanding the breadth and depth of 
ophthalmic research, information unveiled 
through big data has also influenced the 
management of ophthalmic diseases from 
multiple aspects. With the maturation of 
machine learning (ML) techniques,[4] it is 
inevitable that big data will continue to 
transform ophthalmic practice.

Despite many decades of investigation, 
the exact pathophysiology of glaucoma, 
a leading cause of blindness worldwide, 
has yet to be fully elucidated.[5] Due to 
the irreversible nature of this disease,[5] 
consistent efforts have been made to 

optimize the clinical management of 
glaucoma, including searching for better 
ways to predict outcome and monitor 
progression, and developing more effective 
treatments. With the rapid accumulation 
of ophthalmic data and the establishment 
of various large, electronic datasets,[6] the 
findings from big data in ophthalmology 
may help to markedly improve glaucoma 
care. In this review, we discuss how big data 
may influence or guide future glaucoma 
management.

Methods: Literature Search

PubMed and Google Scholar were searched 
for relevant published studies through 
February 2023 using keywords relevant to 
this review. Major keywords used included: 
“big data,” “information system,” “big 
dataset,” “nationwide data,” “biobank,” “IRIS 
Registry,” “All of Us,” “glaucoma,” “glaucoma 
treatment,” “glaucoma management,” 
“glaucoma surgery,” “glaucoma medication,” 
“prediction,” “outcome,” “artificial 
intelligence,” “machine learning,” and 
“deep learning.”. No filter for publication 
year, language, or study type was applied. 
The references of identified records were 
also checked for potential inclusion. Studies 
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utilizing big data or discussing the application of big data 
in glaucoma management were considered relevant to 
the current review. Abstracts of non‑English articles with 
relevant information were also included in the study.

Big Data in Ophthalmology

While primarily used to describe a large volume of data, the 
term “big data” encompasses more than just the size, but 
also many other characteristics, of the data. As described 
in prior literature, big data features other unique qualities 
such as “variety,” “veracity (accuracy),” and “velocity 
(speed of accumulation/aggregation).”[1,7] Notably, the 
rise of big data in ophthalmology can be largely attributed 
to its variety,[6] which span across the different settings of 
data collections, sources, and formats of data (e.g., genetic 
information, clinical measurements, and ocular imaging), 
and the purposes of the application (e.g., research, 
clinical care, and administration). The development of 
computerized systems and electronic health records (EHR), 
which is now commonly used in ophthalmic clinics, has 
further improved the velocity and veracity of ophthalmic 
data. Together, these contribute to the most clinically 
important characteristic of big data, the “value.”

Various ophthalmic studies have been performed using 
different types of big data. Briefly, the main types of big 
data most commonly utilized in ophthalmic research 
included:[1] (1) virtual biobanks (e.g., the UK biobank[8,9]), 
which collect, handle, and store genetic and phenotypic 
data acquired from human specimens and tissue 
samples; (2) data registries (e.g., the American Academy 
of Ophthalmology Intelligent Research in Sight [IRIS®] 
Registry[10,11]), which gather the patients’ clinical and 
health‑care utilization information by exporting them 
from the EHR; (3) research consortia (e.g., the European 
Eye Epidemiology consortium[12]), which aggregate 
data provided by parties from different countries 
and domains through a formalized collaboration to 
address a shared research goal;[13] (4) nationwide health 
insurance databases (e.g., the Taiwan National Health 
Insurance Research Database[14,15]), which are usually 
only available in countries with national health insurance 
programs; (5) digital health data programs (e.g., All 
of Us Research Program[16]), which include EHR and 
health questionnaire/survey data provided by volunteer 
participants; (6) ocular image databases (e.g., Kaggle 
dataset[17]), which are large‑scale image databases often 
made public for research purposes; (7) population‑
based data (e.g., The Beaver Dam Eye Study[18]), which 
are data collected from a set of individuals with shared 
characteristics, often geographic or ethnic similarities, in 
prospective, longitudinal cohort studies.

The utilization of these big data resources has led to 
novel findings and achievements in ophthalmology. 

For example, multiple studies have discovered clinical 
predictors for surgical outcomes in various ophthalmic 
conditions (e.g., globe injuries, pterygia) using the 
IRIS Registry.[19‑21] As precision medicine becomes the 
new goal in patient care, these sources of information 
may help clinicians to make treatment and follow‑up 
plans on a patient‑by‑patient basis. Another example 
is the application of ML on ophthalmic big data. 
Trained on large‑scale ocular image databases, ML 
techniques such as deep learning (DL) models have 
shown robust performance in automated diagnosis and 
staging of diabetic retinopathy (DR) using color fundus 
photographs,[22,23] which started the era of ML‑based 
diagnosis of ophthalmic diseases.[24,25] Notably, the 
Food and Drug Administration (FDA) approval of IDx‑
DR,[26] a DL‑based assistive DR screening system, was 
a ground‑breaking example of big data improving and 
transforming ophthalmic care on a wider scale.

Big Data to Guide Glaucoma Treatment

To date, the use of big data in optimizing glaucoma 
practice has focused primarily on the upper‑stream 
processes, which include disease screening, diagnosis, 
and staging.[24,27] It was only recently that the application 
of big data in glaucoma extends to the downstream 
processes, such as outcome prediction and treatment 
effect evaluation. In this section, we summarize studies 
presenting relevant findings that may guide or influence 
glaucoma treatment planning, organized based on the 
clinical aspects that are addressed.

Spatial pattern analysis of visual field change
The detection of functional progression is a crucial part 
of glaucoma management since patients with progressive 
visual field (VF) loss typically have impaired quality of 
life and higher risk of further functional deterioration that 
requires interventions.[28,29] In addition to conventional 
VF assessment based on scoring and global/point‑wise 
indices, a more in‑depth evaluation of VF change through 
spatial pattern analysis was made possible by big data 
and ML techniques.[30]

Using consortium data from the Glaucoma Research 
Network, Wang et al. were among the first to perform 
pattern analysis on VF data.[31] They identified a total of 
16 VF archetypes from a training cohort of more than 
10,000 eyes, and developed an ML‑based “archetype 
method” that detects VF progression based on quantified 
information of VF pattern changes over time. As the 
archetype method outperformed conventional methods 
in detecting VF progression, the authors suggested it may 
be clinically beneficial to incorporate this method to more 
accurately assess glaucoma progression.[31] Additional 
studies have since performed ML‑based VF pattern/
archetypal analysis on glaucoma eyes, and in comparison 
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to conventional methods, VF pattern/archetype‑based 
methods have consistently shown superior performance 
in detecting and predicting VF progression, even for 
central VF progression.[17,32,33] By incorporating pattern 
analysis, a VF feature model developed on the same 
consortium data were even able to predict the reversal of 
false‑alarming glaucoma hemifield test results to normal 
with high precision.[34]

To summarize, big data enables the discovery of these 
relevant hidden patterns in VF results, while ML 
algorithms help convert this information into clinically 
applicable strategies. Together, they contribute to a 
novel method for functional progression assessment 
and prediction, which may assist clinicians in providing 
more timely treatment.

Risk stratification based on genetic profiling
Characterized by heritability, chronicity, irreversibility, 
clinical heterogeneity, and treatability, glaucoma is 
considered an ideal candidate for genetic risk profiling.[35] 
Knowledge about genes relevant to the development 
and pathophysiology of glaucoma may aid in risk 
stratification and outcome prediction, both of which 
might facilitate a more personalized and risk‑stratified 
means of glaucoma management.

A few studies have used the UK Biobank to perform genetic 
risk profiling for glaucoma, and have demonstrated the 
usefulness of monogenic or polygenic risk score (PRS) in 
the risk prediction of glaucoma.[36,37] The MYOC (myocilin) 
p. Gln368Ter variant is the most common disease‑causing 
mutation in European decedents with primary open‑
angle glaucoma (POAG).[38] Zebardast et al. evaluated the 
disease penetrance and characteristics among individuals 
with p. Gln368Ter using UK Biobank.[39] They found one 
out of four in this population showed signs of glaucoma, 
including many who were undiagnosed.[39] Moreover, 
a higher POAG PRS was associated with increased 
glaucoma penetrance and severity in this particularly 
susceptible population.[39] Also using UK Biobank, Craig 
et al. conducted a large genome‑wide association study 
that identified new risk loci for glaucoma.[35] In addition, 
they developed a new PRS through multi‑trait analysis, 
which revealed individuals in the top PRS decile may 
not only develop glaucoma earlier but also are at a 
much higher risk of developing advanced glaucoma. 
Furthermore, the new PRS was able to predict progression 
in early‑manifesting cases and the need of surgical 
intervention in advanced cases.[35] Similarly, Gao et al. 
used the UK Biobank data to construct a new intraocular 
pressure (IOP) PRS and found the IOP PRS to not only 
correlate with IOP but also predict POAG.[40]

These studies demonstrated how glaucoma PRS 
constructed based on big genetic data may help to 

identify high‑risk individuals in glaucoma practice. 
In comparison to the lower‑risk group, high‑risk 
individuals may benefit from more intensive monitoring 
and treatment plans for glaucoma, particularly if 
administered at early time points of the disease.

Evaluation of surgical outcomes and predictors
The evaluation of surgical outcomes is essential in 
improving glaucoma treatment. It helps to provide 
guidance on the surgical options most effective for 
individual patients, as well as a better understanding 
of the risks for important adverse events at the time of 
surgery and during postoperative care. By exploring 
predictors of poor surgical outcomes, clinicians can 
also better identify patients more prone to surgical 
nonresponse/failure and adjust treatment plans 
accordingly. Although such evaluation can also be 
performed on regular datasets, analysis of big data may 
help to reach a more accurate, reliable, and generalizable 
conclusion. In addition, the amount of data from a single 
center may not always be sufficient when there are 
multiple surgical methods to compare, or when the ones 
assessed only recently became available.

Using a single‑center dataset, Wang et al. were amongst 
the first to examine surgical outcomes of glaucoma eyes 
on a larger scale.[41] They included 7574 eyes with and 
without glaucoma to assess the long‑term IOP change 
(≥14 months) after cataract surgery.[41] They found that, 
in comparison to nonglaucomatous eyes, glaucomatous 
eyes were more likely to achieve sustained postoperative 
IOP reduction. Furthermore, cataract surgery is more 
likely to yield long‑term IOP reduction in patients with 
higher baseline IOP.[41]

Numerous later studies have used the IRIS Registry to 
evaluate surgical outcomes and associated factors in 
glaucoma eyes. Rothman et al. examined IOP changes 
following stand‑alone phacoemulsification in glaucoma 
eyes and found a significant IOP reduction during the 
90‑day postoperative period.[21] Chang et al., examined 
the outcomes of laser trabeculoplasty (LTP) in glaucoma 
eyes in two studies,[42,43] with a successful LTP response 
defined as an IOP reduction ≥20% without medication 
use. They reported the overall failure rate was 0.2%, 6.1%, 
16.8%, 29.1%, and 40.8% at 0, 6, 12, 18, and 24 months, 
respectively.[42] Moreover, consistent with the finding 
by Wang et al.,[41] a longer response duration and lower 
risk of nonresponse were observed for eyes with higher 
baseline IOP, while lower baseline IOP, angle recession, 
uveitis, and aphakia were associated with increased odds 
of LTP nonresponse.[42,43] Investigating risk factors for 
the failure (revision or removal) of glaucoma drainage 
device (GDD), Hall et al. showed the presence of chronic 
angle‑closure glaucoma and dry eye disease may increase 
the risk of GDD failure; furthermore, male sex, unknown 
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race, and right‑eye laterality are likely to reach GDD 
failure within a shorter period.[44]

Recently, several devices for microinvasive glaucoma 
surgery (MIGS), a novel surgical option for mild‑
moderate glaucoma, have been approved by the FDA. 
Due to the various advantages of MIGS as compared to 
conventional glaucoma surgeries, including faster visual 
recovery and fewer postoperative complications,[45] 
MIGS have been increasingly performed in glaucoma 
patients at earlier stages of the disease. A few studies 
have used big data to assess the practice pattern of MIGS 
in glaucoma (see below for additional discussion).[46‑49] 
Among them, Yang et al. used the IRIS Registry to evaluate 
the reoperation rate in patients receiving MIGS with 
and without concurrent phacoemulsification.[49] They 
found overall low complication rates for MIGS (1%–2%), 
supporting the safety of this procedure. They also found 
a lower reoperation rate when MIGS was performed in 
combination with phacoemulsification. In addition, risk 
factors for higher odds of reoperation were identified, such 
as Black race, older age, higher baseline IOP, and moderate‑
severe glaucoma, suggesting more intensive postoperative 
follow‑up should be considered in these patients.[49]

Emulation of randomized clinical trials
Although not yet widely performed in ophthalmology, 
big data has been used to emulate the results of 
randomized control trials (RCTs), especially those 
assessing treatment effectiveness or safety.[50] Emulation 
based on large, observational data provides several 
benefits. It can serve as the validation for RCTs 
results, given RCTs are usually conducted under ideal 
conditions, and the patient population in the real world 
may not mirror the study population in an RCT.[51] In 
addition, findings of the differences between RCTs and 
big data‑based emulations may inform investigators on 
the future design of RCT and pitfalls in current clinical 
care. On the other hand, by serving as the control arm 
(or both experimental and control arms), the emulation 
may be an alternate method to answer clinical questions 
when an RCT is not feasible.[50]

An example of big data‑based RCT emulation in 
glaucoma was the study by Vanner et al.[52] The authors 
emulated the tube versus trabeculectomy (TVT) RCT 
using the IRIS Registry and compared the 1‑year outcome 
of TVT IRIS and TVT RCT.[52,53] Interestingly, they found 
noticeable differences in the results, with the failure rate 
being similar for tube and trabeculectomy in TVT IRIS.[52] 
The reasons associated with the higher tube failure rate 
in TVT IRIS, such as reoperation for glaucoma (not seen 
in TVT RCT), were also analyzed, providing insight 
into patient groups that may consider one surgical 
option over the other given the potential benefits and 
adverse events. By serving as real‑world evidence,[54] big 

data‑based emulation may guide glaucoma treatment 
decision‑making by confirming the efficacy and safety 
of treatment options in a clinic population and clarifying 
the differences between RCT settings and real‑world 
practice patterns, as well as informing us about how these 
differences may affect treatment outcomes.

Risk analysis of future surgical intervention
An advantage of EHR and health insurance claim big 
data is the easy access to information about the patients’ 
sociodemographic characteristics, systemic health status, 
and healthcare utilization. Moreover, relevant clinical 
events such as surgical interventions are clearly recorded 
and can be used as surrogates for progressive disease 
in glaucoma research. There are some potential benefits 
of risk analysis for future surgical intervention:[55,56] 
Scientifically, knowledge about risk factors associated 
with progressive glaucoma may help to identify new 
therapeutic measures. Clinically, it may help the clinician 
to practice precision medicine from multiple aspects 
when making treatment plans.

Using the Korean National Health Insurance Service 
dataset, Lee et al. examined risk factors associated 
with the need for glaucoma surgeries within 5 years of 
POAG diagnosis.[57] They found older age, female sex, 
and more intensive IOP‑lowering treatment to increase 
the likelihood of undergoing glaucoma surgery, while 
a lower socioeconomic status (SES) was associated with 
a lower rate of glaucoma surgery.[57] The latter finding 
indicates that, for patients with lower SES, the decision to 
receive surgeries might have been compromised due to 
barriers that may be mitigated by additional support and 
outreach. Although sociodemographic factors are often 
neglected in glaucoma, prior studies have shown they 
are predictive of the patients’ health‑care utilization and 
outcomes.[58,59] Therefore, the identification of relevant 
sociodemographic risk factors for progressive glaucoma 
requiring surgery, particularly modifiable ones, should 
be attended to in the era of big data.

On the other hand, other studies have demonstrated an 
improved performance of ML models in predicting future 
surgical intervention in glaucoma when trained based on 
big data, instead of a single dataset. Baxter et al. trained 
ML models to predict the need for surgical intervention 
in POAG based on both single‑center EHR data and the 
All of Us database,[55,60] and found significantly superior 
performance of models trained on the latter.[55] Their 
findings demonstrated the variety and veracity of big data 
in comparison to smaller or individual dataset, which can 
be leveraged in ophthalmic research. Moreover, based 
on the best‑performing All of Us‑trained ML model, 
basic body measurements (e.g., weight and hip/waist 
circumference) and blood pressure measurements were 
amongst the most important predictors.[55] This supports 
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further investigation into whether incorporating lifestyle 
modification (e.g., blood pressure reduction and 
weight loss) in glaucoma treatment may be beneficial 
for patients.

Characterization of practice patterns, barriers, and 
disparities
As previously mentioned, big data has been used to 
evaluate the practice patterns in glaucoma. Such analysis 
is mostly performed using EHR or insurance claim‑
based datasets, given that they provide more detailed 
information on the SES, healthcare utilization, and 
clinical events of the patients.

The practice pattern of MIGS was most studied using 
the IRIS Registry.[46‑48] Yang et al. analyzed the trend 
and usage patterns of MIGS in the United States.[46] A 
significant increase in annual MIGS procedures was 
found from 2013 to 2018, while that of standard glaucoma 
procedures (GDD or trabeculectomy) decreased. 
Among different MIGS procedures, iStent accounts 
for the highest proportion, and iStent and endoscopic 
cyclophotocoagulation (ECP) were the most common 
concurrent procedures.[46] In their other study, they 
revealed the differing practice patterns among MIGS 
utilization among various types of glaucoma.[48] The 
iStent was most commonly performed in open‑angle 
glaucoma or normal‑tension glaucoma, while GDD was 
most common in secondary glaucoma or other glaucoma. 
After an initial standard procedure, ECP was the most 
common MIGS performed, particularly in secondary 
glaucoma and primary angle‑closure glaucoma eyes.[48] 
These studies showed that MIGS has become one of the 
preferred surgical options in glaucoma, and the type of 
glaucoma and prior surgical history may influence the 
choice of surgical method. More importantly, the authors 
highlighted the need for more evidence on the long‑term 
safety and efficacy of MIGS, which remains lacking 
despite the increased utilization in glaucoma patients.

In addition to changing practice patterns, big data may also 
help characterize existing barriers or disparities in glaucoma 
care. The study by Lee et al. (described previously), which 
utilized an insurance‑claim dataset to examine factors 
predicting future surgical intervention in glaucoma, has 
shown a potential disparity among glaucoma patients 
in Korea due to financial barriers.[57] Using the All of Us 
dataset, Delavar et al. further examined the financial 
barriers to medication adherence among glaucoma patients 
in the United States and found non‑Hispanic African 
Americans and Hispanic individuals (versus non‑Hispanic 
White individuals) to have greater difficulty in affording 
glaucoma medications.[61] Similarly, Acuff et al. used the All 
of Us dataset to identify socioeconomic factors associated 
with visit nonadherence among glaucoma patients and 
found lower income and education levels to predict worse 

visit adherence.[62] In another study analyzing data from the 
1996 to 2017 Medical Expenditure Panel Survey, glaucoma 
patients with a low health literacy had fewer outpatient 
visits, despite being prescribed more medications and 
having higher medication costs.[63] In general, these big 
data studies revealed the presence of racial/ethnic and 
socioeconomic disparities in glaucoma care on a systemic 
level. To improve the outcome and equity of glaucoma 
care on a wider scale, it is important that the clinicians 
and policy makers be aware of these barriers and take the 
initiatives to mitigate them.

Conclusion

Big data possesses the potential to guide and streamline 
future treatment for glaucoma. Current literature has shown 
its utilities in facilitating personalized treatment strategy 
through risk profiling and outcome prediction, as well as 
in improving glaucoma care on a wider scale through RCT 
emulation and practice pattern analysis. Although most 
prior studies have utilized single‑modal ophthalmic data, 
particularly ocular images or EHR, it is expected that future 
research will explore the potential benefits of incorporating 
multi‑modal data on the emergence of new data types 
(e.g., clinical notes)[56,64] and ML techniques.[65,66] As the 
application of big data in ophthalmology broadens, the 
ethical and societal challenges accompanying this advent 
should also be considered.[67] It remains to be seen how 
the aforementioned results can be incorporated clinically 
to improve glaucoma care.
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