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Abstract: In this study, hierarchical MgAl-LDH (layered double hydroxide) nanoparticles with a
flower-like morphology were prepared under a hydrothermal condition by employing worm-like
micelles formed by cetyltrimethylammonium bromide (CTAB) and salicylic acid (SA) as templates.
The morphology and structure of the materials were characterized by Brunauer–Emmett–Teller (BET),
SEM, and XRD analyses. The performance for the adsorption of sulfonated lignite (SL) was also
investigated in detail. FTIR was used to detect the presence of active functional groups and determine
whether they play important roles in adsorption. The results showed that the hierarchical MgAl-LDH
nanoparticles with a specific surface area of 126.31 m2/g possessed a flower-like morphology and
meso–macroporous structures. The adsorption capacity was high—its value was 1014.20 mg/g at a
temperature of 298 K and an initial pH = 7, which was higher than traditional MgAl-LDH (86 mg/g).
The adsorption process of sulfonated lignite followed the pseudo-second-order kinetics model and
conformed to Freundlich isotherm model with a spontaneous exothermic nature. In addition, the
hierarchical MgAl-LDH could be regenerated and used, and the adsorption was high after three
adsorption cycles. The main adsorption mechanisms were electrostatic attraction and ion exchange
between the hierarchical MgAl-LDH and sulfonated lignite.

Keywords: sulfonated lignite; hierarchical hydrotalcite; adsorption water treatment; MgAl-LDH
nanoparticles; clay minerals

1. Introduction

A large amount of wastewater is generated during the oil recovery process of deep
shale, which may cause considerable environmental hazards that may not be effectively
treated [1,2]. Sulfonated lignite (SL), as a representative organic component in oilfield
wastewater, is synthesized from lignite in the presence of sulfonating agents, acids, alkalis,
formaldehyde, and other inorganic salts at appropriate temperatures. Due to its good
dispersibility and low viscosity, sulfonated lignite is widely used as a viscosity reducer and
a fluid loss reducer for freshwater drilling fluids in petroleum exploration [3,4]. In addition,
the free carboxyl groups in sulfonated lignite can increase the hydrophilicity of a mineral
surface after chelating with metal ions, so it is often used as a pressure-reducing agent [5].
However, in sulfonated lignite, there are abundant functional groups (including phenolic
hydroxyl groups, carboxyl groups, ketones, and sulfonic acid groups), as well as active
groups that will inevitably lead to the characteristics of high chemical oxygen demand,
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high biochemical oxygen demand, and high sulfur content in drilling wastewater [6–8].
In addition to its unfavorable color and taste, sulfonated lignite is a catching agent of
heavy metals, pesticides, and herbicides, and it can increase their concentration in water,
thereby breeding more bacteria [9]. Therefore, the harm of sulfonated lignite to the sur-
rounding environment should not be underestimated because the efficient treatment of
drilling wastewater containing sulfonated lignite plays an important role in protecting the
environment and enhancing people’s well-being.

Physical treatment, chemical treatment, biological treatment, membrane technology,
and combinations of various technologies have been developed to treat sulfonated lignite
from drilling wastewater [10,11]. It is worth noting that most of them have shortcomings,
such as complex reaction process, expensive operating cost and non-renewable. Moreover,
sulfonated lignite contains sulfonic acid groups, which are chemically stable and cannot
be easily degraded through conventional oxidation technology [12–14]. Therefore, there
have been increasing numbers of studies on adsorbents with simple designs, convenient
operation, strong adsorption capacities, and no secondary pollution. Adsorbents with large
specific surface areas and low costs were used for the removal of sulfonated lignite, such as
activated carbon, fly ash, resin and hydrotalcite. Layered double hydroxide (LDH) nanopar-
ticles comprise a class of anionic clay minerals and have always been a research focus of
scientific researchers in the application of adsorption materials [15,16]. Currently, various
methods including structural reconstruction, in situ growth, exfoliation, and assembly have
been used to prepare hierarchical hydrotalcites with various morphologies [17]. For in-
stance, Sun et al. (2015) successfully prepared NiAl-LDHs through hydrothermal synthesis
using sodium citrate as the template, which has a high removal effect on p-nitrophenol [18].
However, the hydrotalcite prepared by these methods has a small interlayer spacing, so
it can only be used for the removal of small molecule pollutants. In fact, the removal
of sulfonated lignite needs a material with well-developed mesoporous structure due to
its large molecular size. Therefore, it is of great significance to prepare the hierarchical
hydrotalcite with a mesoporous texture.

In this study, hierarchical MgAl-LDH nanoparticles with a better morphology, larger
specific surface area, and more uniform pore size distribution were prepared by hydrother-
mal synthesis while employing cetyltrimethylammonium bromide (CTAB) and salicylic
acid as a soft template. The structures and morphologies of the as-synthesized samples
were characterized by the Brunauer–Emmett–Teller (BET), FTIR, XRD and SEM analyses.
The kinetics and thermodynamics of the adsorption of sulfonated lignite on hierarchical
MgAl-LDH were studied in detail, and the adsorption mechanism was also discussed in
order to provide a theoretical basis for future practical applications. To the best of our
knowledge, such a study has not been performed yet.

2. Materials and Methods
2.1. Materials

All chemicals including CTAB, salicylic acid (SA), Mg(NO3)2·6H2O, Al(NO3)3·9H2O,
urea, sodium hydroxide (NaOH), and absolute ethanol were analytical grade without
any further purification, and they were supplied from Xi’an Chemical Reagent Factory
(Xi’an, Shanxi, China). Sulfonated lignite was purchased from Tarim, Xinjiang, China. In
addition, deionized water was used to formulate the solution and wash the precipitate in
the experiment.

2.2. Preparation of MgAl-LDH Nanoparticles

A soft-template method was employed for the preparation of hierarchical MgAl-LDH
under hydrothermal synthesis conditions. Firstly, 6.08 g of CTAB and 0.92 g of salicylic
acid were dispersed into 250 mL of distilled water and stirred at 80 ◦C for 60 min to get a
surfactant solution with a mass concentration of 2.8%. Then, a 0.09 mol metal salt solution
and 0.27 mol of urea was dissolved in 100 mL of deionized water, where the ratio of Mg
to Al was 2:1. Subsequently, the metal salt solution was slowly added into the surfactant
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solution under stirring to make them fully mixed. Next, the formed suspension was
transferred to an autoclave, and then the sealed container was placed in the roller heating
furnace at 160 ◦C for 6 h. Finally, the obtained precipitate was washed with deionized water
and ethanol by centrifugation until the solution reached a pH = 7 and subsequently dried at
80 ◦C overnight. The resulting sample was labeled as CB-LDH with the addition of CTAB
and SA. To better understand and explore the best adsorption capacity of MgAl-LDH,
surfactant concentrations of 1.8%, 2.8%, and 4.8% were investigated, and the obtained
LDHs were designated as 1.8%CB-LDH, 2.8%CB-LDH, and 4.8%CB-LDH, respectively. For
comparison, the traditional MgAl-LDH in the absence of surfactant solution was prepared
and designated as LDH.

2.3. Characterization of Materials

The nitrogen adsorption and desorption isotherms of samples were measured with
a Micromeritics ASAP 2020 instrument (Norcross, GA, USA). The surface area and pore
structure were calculated using the BET method and the Barrett–Joyner–Halenda (BJH)
model, respectively. SEM of the samples were carried out using a field emission scan-
ning microscope (JSM-6390A, Tokyo, Japan) with an applied voltage of 20 kV. The phase
structures of as-prepared samples were analyzed by a power X-ray diffraction device
(JDX-3530, Tokyo, Japan) with Cu Kα radiation and a scanning speed of 2◦ min−1 at a
40 kV voltage and a 40 mA current. All IR measurements were performed on a Nicolet
5700 FTIR spectrometer (Thermo Electron Co., Waltham, Massachusetts, America) at room
temperature in the region of 4000–500 cm−1.

2.4. Adsorption Experiments

In this typical adsorption experiment process, 0.05 g of adsorbent was added into
100 mL of a sulfonated lignite solution with an initial concentration of 100 mg/L. The
mixtures were placed in a magnetic stirrer at room temperature, and the sulfonated lignite
concentration was determined by UV–vis spectrophotometry at the wavelength maximum
absorbance of 300 nm. In the adsorption isotherm experiment, 50 mg of adsorbent were
added to a 250 mL beaker containing 100 mL of 100 and 200 mg/L sulfonated lignite
solutions. In the adsorption isotherm experiment, 50 mg of adsorbent were added to
50 mL of a sulfonated lignite solution with different concentrations of 150, 300, 450, 600,
and 750 mg/L. Adsorption thermodynamic analysis was carried out by adding 50 mg
of adsorbent to 50 mL of a sulfonated lignite solution (600 mg/L) at 298 and 303 K. The
adsorption capacity (qt) at any given time and at equilibrium was calculated according to
the following equation:

qt =
(Co − Ce)V

m
(1)

where Co (mg/L) and Ce (mg/L) are the initial and equilibrium concentrations (mg/L) of
sulfonated lignite, respectively; V (L) is the volume of solution; and m (g) is the mass of the
adsorbent.

3. Results and Discussion
3.1. Structural Characterization of MgAl-LDH Nanoparticles

Figure 1 shows the surface morphology of the prepared hydrotalcite derived from
different surfactant concentrations by the hydrothermal method. It is clearly visible from
the figure that the morphology of MgAl-LDH was greatly affected by the concentration
of surfactant micelles. The MgAl-LDH prepared without surfactant exhibited a typical
flat, hexagonal sheet-like morphology (as shown in Figure 1a), and the average diameter
was about 2–3 µm. When a 1.8% CTAB-SA micelle template was added, the nanosheets of
hydrotalcite cross-aggregated with each other (as shown in Figure 1b), and the thickness
of the sheets was reduced, thus indicating the aggregation effect of the micelle surfactant.
When the concentration of the surfactant increased to 2.8%, the degree of aggregation of
the hydrotalcite nanosheets increased, forming a regular and orderly flower-like three-
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dimensional structure, as shown in Figure 1c (where the magnification is 3000 times)
and Figure 1d (where the magnification is 20,000 times). When using a high surfactant
concentration of 4.8%, the sample showed a large area of agglomeration due to the uneven
mixing of the micelle template and the salt solution (Figure 1e), which reflected that the
layered structure of hydrotalcite was decomposed.
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Figure 1. SEM images (a–e) (a = 0%; b = 1.8%; c,d = 2.8%; and e = 3.8%) and XRD patterns (f) of MgAl-
LDH (layered double hydroxide) derived from of surfactant solutions of different concentrations.

The phase purity of the obtained hydrotalcite was determined by XRD analysis. As
shown in Figure 1f, when the concentrations of the surfactant were 1.8% and 2.8%, the XRD
patterns of the prepared MgAl-LDH (1.8%CB-LDH and 2.8%CB-LDH, respectively) showed
characteristic diffractions of LDH materials corresponding to the (003), (006), (009), (015),
(018), (110), and (113) crystal planes [19,20], which was consistent with the layered structure
of hydrotalcite in the SEM images. Moreover, the intensity of the diffraction peak in the
hydrotalcite (2.8%CB-LDH) was lower than that of traditional hydrotalcite (0.9MLDH),
indicating the reduction in the spacing of the hydrotalcite layers. However, when the
concentration of the surfactant increased to 4.8%, the layered structure disappeared and
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the impurity phase appeared in the sample (4.8%CB-LDH), which was also consistent with
the results of SEM.

Figure 2a presents the FTIR spectrum of MgAl-LDH (LDH) prepared without micelle
and MgAl-LDH (2.8%CB-LDH) derived from the 2.8% surfactant aged at 160 ◦C for 6 h. The
broad and strong absorption peak observed at 3448 cm−1 was assigned to the stretching
vibration of the O-H groups in the hydroxide layer and the water molecules. Another
adsorption band around 1384 cm−1 corresponded to the asymmetric stretching vibration of
C-O, indicating the existence of the carbonate anion in the MgAl-LDH [21]. The absorption
bands in the range of 900–400 cm−1 were attributed to metal–oxygen stretching, metal–
hydroxyl stretching, and deformation vibration modes of metal–oxygen in LDH layers [22].
The infrared spectrum of MgAl-LDH (2.8%CB-LDH) was observed to be almost identical
to that of MgAl-LDH (LDH). However, it was found that the two characteristic bands at
2850 and 2919 cm−1 were related to the CH2 bending vibration over MgAl-LDH (2.8%CB-
LDH) [23], thus indicating the interaction between the surfactant and the hydrotalcite
surface.
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To get an insight into the structure properties of the as-obtained samples, N2 adsorption–
desorption isotherms and pore size distributions measurements were carried out on MgAl-
LDH (LDH) and MgAl-LDH (2.8%CB-LDH). From Figure 2b, it can be observed that the
N2 adsorption–desorption isotherms of the two samples exhibited a type IV isotherm,
thus indicating the existence of mesopores. However, an apparent hysteresis loop could
be distinguished on the adsorption–desorption isotherms of MgAl-LDH (2.8%CB-LDH),
reflecting the increase of the adsorption capacity at a higher relative pressure (p/p0 > 0.5)
due to the existence of macropores [24].

This finding could be further illustrated by the broad size distribution from 5 to 80 nm,
as shown in the inset in Figure 2b. Therefore, the meso–macroporous structures played a
dominant role in the MgAl-LDH (2.8%CB-LDH), as further suggested by the BET results
of the MgAl-LDH listed in Table 1. Obviously, the introduction of colloidal templates led
to a distinct increase in BET surface area (from 51.91 to 126.31 m2/g) and pore volume
(from 0.2039 to 0.3040 cm3/g). It is worth noting that the decrease in the pore size of the
MgAl-LDH (2.8%CB-LDH) could be explained as an increase in the number of pores per
unit volume. Therefore, the hierarchical MgAl-LDH (2.8%CB-LDH) has a high adsorption
potential for sulfonated lignite.

The formation process of the hierarchical MgAl-LDH based on the above analysis
is shown in Figure 3. First, the positive charge (CTAB+) of the CTAB molecule and the
oxygen anion of salicylate ion (Sal−) attract each other in the three-dimensional network
structure composed of CTAB and salicylic acid; as a result, Br− was released into the
solution (Figure 3a). The increase of surfactant concentration led to dissociation of micelles
and increased the amount of free Br− in solution. After mixing with metal salts, the
hydrothermal reaction occurred, and urea gradually decomposed as the temperature rose.
Since the solubility product constant of Al(OH)3 was much smaller than that of Mg(OH)2,
Al3+ preferentially precipitated to form a large amount of Al(OH)4−. Subsequently, Mg2+

began to precipitate on the surface of Al(OH)3 and obtained hydrotalcite nuclei that grew
into hydrotalcite nanosheets (Figure 3b). Due to the strong interaction between Mg2+

and Br−, Br− was selectively adsorbed on the positively charged layer of hydrotalcite
(Figure 3c) so that new hydrotalcite nanosheets could be attached and experience random
cross-growth before finally forming the flower-like morphology of hierarchical hydrotalcite;
see Figure 3d.
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Figure 3. The formation process of hierarchical hydrotalcite (a) represents the formation process of
surfactant micelles, (b) represents the mixing process of mixing metal salt solution and surfactant
micelles, (c) represents the interaction between hydrotalcite and surfactant micelles, and (d) represents
the morphology of the multidimensional MgAl-LDH nanoparticles).
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Table 1. Brunauer–Emmett–Teller (BET) surface area, pore volume and pore diameter of the different
MgAl-LDH nanoparticles.

Sample Specific Area (m2/g) Pore Volume (cm3/g) Pore Diameter (nm)

2.8%CB-LDH 126.31 0.3040 9.6264
LDH 51.91 0.2039 15.709

3.2. Adsorption Performance
3.2.1. Effect of Different Adsorbents

Sulfonated lignite was chosen as the target contaminant to study the adsorption
behavior of as-prepared samples. Under the conditions of 25 ◦C, an initial pH = 7, an
adsorbent dosage of 0.05 g, and a sulfonated lignite initial concentration of 100 mg/L, the
adsorption performance of hydrotalcite prepared under different surfactant concentrations
of sulfonated lignite is shown in Figure 4a.
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The prepared hydrotalcite derived from micellar template had a significantly better
removal efficiency of sulfonated lignite with increasing the surfactant concentrations from
0% to 3.8%. A significantly better removal efficiency was also shown with the adsorption
capacities of 86.0 and 186.0 mg/g and the removal rates of 43.0% and 93.0%, respectively.
In combination with the rose-like morphology of 2.8%-LDH, it was possible to see that
the larger specific surface area promoted the exposure of adsorption-active sites, thereby
improving the removal performance of pollutants.

However, the adsorption capacity and removal rate decreased to 165.7 mg/g and
82.8%, respectively, when we used an excessive amount of surfactant with 4.8% due to the
increasing of viscosity and large amount of the surfactant.

3.2.2. Effect of Absorbent Dosage

The adsorbent dosage is of great significance to the adsorption process of sulfonated
lignite. At an initial SL concentration of 400 mg/L, the effects of the amount of adsorbent
when varied from 0.4 to 1.1 g/L were investigated and are summarized in Figure 4b. As the
amount of adsorbent increased, the equilibrium adsorption capacity obviously decreased,
while the removal efficiency gradually increased. As the adsorbent dose increased from 0.6
to 0.9 g/L, the SL removal efficiency remarkably increased. And due to enough adsorption
sites, the SL removal efficiency reached a maximum value of 99.2% when the adsorbent
dosage is 1.0 g/L. However, it was found that the removal rate was basically unchanged,
even after increasing the amount of adsorbent due to the saturation adsorption of 2.8%CB-
0.9MLDH [25]. Therefore, 1.0 g/L was selected as the optimal dosage in the following
experiments.

3.2.3. Effect of Initial Solution pH

In the adsorption process of pollutants, the initial pH of the solution determines the
surface charge of the adsorbent and the extent of ionization or speciation of pollutant
molecules [26]. Therefore, the effect of solution pH on SL adsorption performance over
2.8%CB-LDH was evaluated with an initial pH ranging from 4 to 10 at an initial SL
concentration of 400 mg/L, an adsorbent dosage of 1.0 g/L, and a temperature 25 ◦C. The
corresponding result is shown in Figure 5a. From the results, it was observed that the
adsorption capacity decreased from 396.8 to 371.2 mg/g and the removal rate decreased
from 99.2% to 92.8% with an increasing pH from 4 to 7.

The main reason for these effects was the electrostatic attraction between a large
amount of H+ on the surface of the adsorbent and the SO3

− of sulfonated lignite, which
strengthened the adsorption process. When the pH was further increased to 10, the
adsorbed amount and removal rate for sulfonated lignite dropped to 281.2 mg/g and
70.1%, respectively. At alkaline conditions, SL was partially ionized to produce SO4

2− or
other anionic ions, which produce competitive adsorption levels with SO3

−, thus resulting
in a decrease in adsorption performance [26].

3.2.4. Kinetic Studies

Adsorption kinetics is one of the important factors in evaluating the efficiency of the
adsorbent [27]. The effects of contact time on the adsorption property were investigated by
performing experiments at different SL concentrations (100 and 200 mg/L) and varying
contact times at 25 ◦C and pH = 7. As shown in Figure 5b, equilibrium time was not
affected by all initial SL concentrations, and the approximate equilibrium adsorption could
be achieved within 90 min. The adsorption rate was relatively high at the first 15 min due to
the availability of abundant adsorption sites on the surface of the adsorbent. After a lapse of
time, the remaining vacant adsorption sites were difficult occupy because of the repulsive
force between the sulfonated lignite molecules and bulk phases [28], which resulted in a
low adsorption rate until the achievement of equilibrium. The absorbed amounts of SL at
equilibrium were found to be 199.9 and 358.5 mg/g for initial SL concentrations of 100 and
200 mg/L, respectively. A higher initial SL concentration expanded the effective contact
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area with the adsorbent, providing the necessary driving force for sulfonated lignite to
transcend the mass transfer resistance on the interface [29].
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Figure 5. (a) Effect of initial solution pH on SL adsorption using 2.8%CB-LDH and (b) effect of
contact time on SL adsorption using 2.8%CB-LDH for initial SL concentrations of 100 and 200 mg/L.

Four kinetic models were chosen to determine the mechanisms and rate-controlling
step for the adsorption of sulfonated lignite over 2.8%CB-LDH. The fitting isotherm and
kinetic parameters obtained by the linear regression are shown in Figure 6 and Table 2,
respectively. The correlation coefficient (R2) obtained from the pseudo-second-order kinetic
model (R2 > 0.999) was higher than that obtained from the pseudo-first-order kinetic
model (R2 was in the range of 0.948–0.952). Furthermore, the experimental equilibrium
capacity (qe,exp) were close to the calculated equilibrium capacity (qe,cal) obtained from the
pseudo-second-order model. These results illustrated that the pseudo-second-order kinetic
model was more suitable in explaining the adsorption process of SL onto 2.8%CB-LDH.
In addition, it was found that the linear fitting correlation coefficient of the intra-particle
diffusion model could reach up to 0.997, while the linear fitting correlation coefficient of the
liquid diffusion model was between 0.948 and 0.952, thus indicating that the intra-particle
diffusion model was the main rate control step of adsorption. Therefore, the specific
surface area and pore structure of the hierarchical MgAl-LDH play an important role in the
adsorption process.
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Table 2. Parameters of the four dynamics models.

Models Parameters
Concentration (mg/L)

100 200

Pseudo-first-order
qe (mg/g) model 44.09 151.11

K1 (h−1) 0.0464 0.0481
R2 0.952 0.948

Pseudo-second-order

qe (mg/g) model 202.84 377.36
qe (mg/g) experiment 199.90 358.47

K2 (g/m gh) 0.0027 0.0005
R2 0.999 0.999

Intra particle diffusion

Ki1 (mg/gh1/2) 2.0146 17.5846
R1

2 0.978 0.989
Ki2 (mg/gh1/2) 0.34004 8.5827

R2
2 0.989 0.997

Kid (mg/gh1/2) 0.1427 0.2736
R3

2 0.664 0.640

Liquid film diffusion Kfd (h−1) 0.0464 0.0481
R2 0.952 0.948

3.2.5. Adsorption Isotherm

Equilibrium adsorption isotherms are usually used to describe the interaction between
the concentration of the adsorbent and the adsorbed amount at a constant temperature [30].
In this work, the adsorption data were further fitted by the well-known Langmuir, Fre-
undlich, and Dubinin–Radushkevich (D–R) models. The fitting isotherms are shown in
Figure 7, and the calculated parameters through regression analysis based on experimental
data are summarized in Table 3. It was found that the correlation coefficients (R2 > 0.998) of
the Freundlich model were higher than those of the Langmuir model (R2 was in the range
of 0.963–0.967), which was more qualified to explicated the adsorption process. Therefore,
the adsorption of sulfonated lignite on hierarchical MgAl-LDH led to the formation of
irregular multilayer adsorption on the outer surface of the adsorbent, which was consistent
with the results of Gasser et al. [31]. The values of n (1.6937 and 1.7802 at 298 and 303 K)
for best-fit Freundlich model were greater than 1, indicating that the adsorption process of
sulfonated lignite proceeded easily. The values of activation energy calculated in the D–R
model were 403 and 562.2 J/mol at 298 K and 303 K, which are both less than 8 kJ/mol,
indicating that electrostatic gravity is the main force in the adsorption process [32].

Table 3. Isothermal model parameters of SL adsorption by 2.8%CB-LDH.

Models Parameters
Temperature

298 K 303 K

Langmuir
qm,cal (mg/g) 1014.20 970.87

KL (L/mg) 0.0421 0.0632
R2 0.963 0967

Freundlich
KF (L/g) 72.7445 94.0373

n 1.6937 1.7802
R2 0.999 0.998

D–R model
Qm (mg/g) 512.90 507.29
β (mol2/kJ2) 3.0781 1.5822

R2 0.738 0.740
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tion process. It became more negative with decreases in temperature (−7.60, −7.08, and 
−6.57 kJ/mol at 288, 298, and 308 K, respectively), revealing that the adsorption of sul-
fonated lignite on hierarchical MgAl-LDH was more effective at lower temperatures [33]. 
Simultaneously, the values of the standard enthalpy change (ΔH) and the standard en-
tropy change (ΔS) were also negative, which revealed the exothermic nature and decrease 
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(b) Freundlich model, and (c) Dubinin–Radushkevich (D–R) model.
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3.2.6. Thermodynamic Studies

To confirm the nature of the adsorption process, experimental data for SL adsorption
at equilibrium under different temperatures were used to evaluate the thermodynamic
parameters. The fitting isotherms are shown in Figure 8, and the calculated parameters are
summarized in Table 4.
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Table 4. Thermodynamic parameters for the adsorption of SL by 2.8%CB-LDH.

T (K) ∆S [J/(mol·k)] ∆H [kJ/mol] ∆G (kJ/mol) R2

288
−51.77 −22.51

−7.60
0.9999298 −7.08

308 −6.57

The values of the standard Gibbs free energy change (∆G) at various temperatures
was negative, thus demonstrating the feasibility and spontaneous nature of the adsorp-
tion process. It became more negative with decreases in temperature (−7.60, −7.08, and
−6.57 kJ/mol at 288, 298, and 308 K, respectively), revealing that the adsorption of sul-
fonated lignite on hierarchical MgAl-LDH was more effective at lower temperatures [33].
Simultaneously, the values of the standard enthalpy change (∆H) and the standard entropy
change (∆S) were also negative, which revealed the exothermic nature and decrease in
randomness between liquid and solid interfaces during the adsorption process [34]. How-
ever, it should also be noted that the entropy of the system and surroundings might have
increased because the adsorption reaction was not an isolated process [35].

3.3. Regeneration of Adsorbent

In the experiment, an NaOH solution was used to study the regeneration of the
hierarchical MgAl-LDH. At room temperature, the hierarchical MgAl-LDH with saturated
adsorption was immersed in an aqueous solution with a pH of 13 and stirred for 12 h
to achieve the desorption process, which was the adsorbent for primary regeneration
after repeated washing. The regeneration performance of the hierarchical MgAl-LDH
was investigated when the initial concentration of the sulfonated lignite was 400 mg/L
at the 25 ◦C and pH = 7 conditions. It can be seen from Figure 9 that after three cycles of
regeneration, the adsorption capacity of the hierarchical MgAl-LDH on sulfonated lignite
slightly decreased from 399.9 to 367.8 mg/g, reflecting the good regeneration performance
of prepared hierarchical MgAl-LDH.
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3.4. Adsorption Mechanism of Hierarchical MgAl-LDH

To study the infrared spectrum characteristics of the hierarchical MgAl-LDH when
adsorbing a sulfonated lignite solution, the FTIR spectra of hierarchical MgAl-LDH before
and after adsorption are shown in Figure 10a. The sample after adsorption showed an
asymmetric stretching vibration of O=S=O at 1117 cm−1, indicating that the sulfonated
lignite was adsorbed on the surface of hierarchical MgAl-LDH. Moreover, the shifting
of stretching vibration bands of O–H to a higher wavenumber from 3449 to 3455 cm−1

indicated the formation of coordination bonds between the functional groups (such as
hydroxyl and carboxyl) in the sulfonated lignite molecule and the hydroxyl group in the
hierarchical MgAl-LDH. In addition, it was found that the similarity of frequency bands
before and after adsorption indicated that most of the functional groups on the surface of
the material are well-maintained after adsorption [36].

The XRD patterns of the hierarchical MgAl-LDH before and after sulfonated lignite
adsorption are shown in Figure 10b. A series of characteristic diffractions of the hierar-
chical hydrotalcite at 11.2◦, 22.9◦, 34.3◦, 38.9◦, 46.4◦, 60.1◦, and 61.5◦ corresponded to the
(003), (006), (009), (015), (018), (110), and (003) crystal planes (JPCDS, no. 54-1030). After
adsorption, the intensity of a series of diffraction peaks of the hierarchical hydrotalcite
weakened, indicating that the layered shape of the hydrotalcite was destroyed to a certain
extent. The adsorption mechanism of the hierarchical MgAl-LDH on the adsorption of
sulfonated lignite comprised the comprehensive effects of physical adsorption and chem-
ical adsorption. Sulfonated lignite decomposed into negatively charged R–SO3

− in the
solution, which attracted the cations on the surface and interlayers of the hierarchical
MgAl-LDH based on the electrostatic attraction. Subsequently, the sulfonated lignite en-
tered the meso–macroporous structures of the hierarchical MgAl-LDH through internal
diffusion. Therefore, physical adsorption is dominant in the initial stage of adsorption. On
the other hand, hierarchical MgAl-LDH contains large numbers of active adsorption sites
(such as hydroxyls) [37,38] that are combined with sulfonated lignite molecules through
physical and chemical effects such as surface complexation, Van der Waals forces, hydrogen
bonding, ion exchange [39], and (especially) the ion exchange between R–SO3

− and CO3
2−.
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3.5. Comparison of Different Adsorbents

In order to determine the performance of the prepared material, this paper compared
the adsorption effects of hierarchical MgAl-LDH and reported adsorbents on sulfonated
lignite. The results are shown in Table 5. It can be seen from the table that regardless of the
type of adsorbent (fly ash or modified fly ash) or adsorption model (pseudo-second-order
or Langmuir models), the adsorption capacity of the prepared hierarchical MgAl-LDH for
sulfonated lignite in an aqueous solution was higher than the reported adsorbent by show-
ing great high adsorption capacity of 1014.20 mg/g at 298 K. Based on these results, it can
be concluded that the prepared hydrotalcite material with a hierarchical structure would
have great application prospects in efficiently removing drilling wastewater containing
sulfonated lignite.
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Table 5. Comparison of the adsorption performance of different adsorbents on sulfonated lignite.

Adsorbents The Source of the Sample Pseudo-Second-Order (qe,cal) Langmuir
Model (qe,cal)

Reference100 mg/L SL 200 mg/L SL

Acid modified Shand fly ash Shand Power Station - 278.97 321.84

[40]Boundary Dam Power Station - 325.48 366.95

Microwave irradiated modified fly ash Shand Power Station - 52.27 92.69

Boundary Dam Power Station - 56.08 104.53

Fly ash Shand Power Station 156.25 250.00 285.71
[28]Boundary Dam Power Station 23.80 49.50 81.31

Prepared MgAl-LDH laboratory 202.84 377.36 1014.20 -

4. Conclusions

In this study, hierarchical MgAl-LDH with a like-flower morphology was successfully
prepared using CTAB and salicylic acid as soft colloidal templates via a hydrothermal
synthesis approach. This method proved to have great application potential for the adsorp-
tion of sulfonated lignite from an aqueous solution. BET, SEM, FTIR, and XRD analyses
indicated that the worm-like micelles played an important role in the morphology and
pore structure of MgAl-LDH nanoparticles. The specific surface area of the hierarchical
MgAl-LDH was found to be as high as 126.3137 m2/g, and a mesoporous and macroporous
structure was obtained with a pore size ranging from 5 to 80 nm. Furthermore, the adsorp-
tion process of sulfonated lignite followed the pseudo-second-order kinetic equation, and
the intra particle diffusion was the rate-limiting step. Meanwhile, the adsorption isotherm
conformed to the Freundlich model. The adsorption thermodynamic model indicated that
the adsorption process was exothermic and spontaneous in nature. The main adsorption
mechanism was electrostatic attraction between the hierarchical MgAl-LDH and sulfonated
lignite.
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