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Summary 
Like interleukin 2 (IL-2), interferon 'y (IFN-'y) is an early response gene in T cells and both 
are prototypical T helper cell type 1 (Th-1) lymphokines. Yet IL-2 and IFN-3, production are 
independently regulated, as demonstrated by their differential expression in certain T cell subsets, 
suggesting that the regulatory elements in these two genes must differ. To explore this possibility, 
the 5' flank of the human IFN-q/ gene was analyzed. Expression of IFN-y promoter-driven 
fl-galactosidase reporter constructs containing 538 bp of 5' flank was similar to that by constructs 
driven by the IL-2 promoter in activated Jurkat T cells; expression nearly as great was observed 
with the construct containing only 108 bp of IFN-~/5' flank. These IFN-'y promoter constructs 
faithfully mirrored expression of the endogenous gene, in that expression required activation 
both with ionomycin and PMA, was inhibited by cyclosporin A, and was not observed in U937 
or THP-1 cells. The region between -108 and -40  bp in the IFN-'y promoter was required 
for promoter function and contained two elements that are conserved across species. Deletion 
of 10 bp within either element reduced promoter function by 70%, whereas deletions in 
nonconserved portions of this region had little effect on promoter function. The distal conserved 
element ( -96 to -80 bp) contained a consensus GATA motif and a potential regulatory motif 
found in the promoter regions of the GM-CSF and macrophage inflammatory protein (MIP) 
genes. Factors binding to this element, including GATA-3, were found in Jurkat nuclear extracts 
by electromobility shift assays and two of the three complexes observed were altered in response 
to activation. One or both of these motifs are present in the 5' flank of multiple, other lymphokine 
genes, including IL-3, IL-4, IL-5, and GM-CSF, but neither is present in the promoter of the 
IL-2 gene. The proximal conserved element ( -73 to -48 bp) shares homology with the NFIL- 
2A element in the IL-2 promoter; these elements compete for binding of factors in Jurkat nuclear 
extracts, although the NFIL-2A element but not the IFN-3, element binds Oct-1. Factors binding 
to this element in the IFN-3, gene were present in extracts from resting and activated Jurkat 
T cells. However, by in vivo footprinting of intact cells, this element was protected from metbylation 
only with activation. The factors in Jurkat extracts that bound to the proximal and distal conserved 
elements were not detected in U937 or THP-1 extracts. Notably, the critical regions of the IFN-'y 
promoter do not contain sequences homologous to the NF-AT or AP-1 sites in the IL-2 promoter. 
The differences in essential c/s elements in the IFN-3, and IL-2 promoters, and the factors binding 
thereto, may play an important role in the differential expression of these genes in naive vs. memory 
T cells and in the relative preservation of IFN-'y as compared to IL-2 gene expression in anergic 
Th-1 T cell clones. 

I FN-'y is an important immunomodulatory molecule pro- 
duced by activated T cells and NK cells (1, 2). Though 

named according to its ability to induce cellular resistance 
to viral infection, IFN-'y has little genetic homology with 

the classical interferons, IFN-cx and IFN-fl (3, 4), and its pri- 
mary role is modulation of nonspecific and antigen-specific 
immune responses via widespread receptors (3, 5). The effects 
of IFN-y on the afferent and efferent aspects of immunity 
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are multiple and indude: (a) enhanced expression of MHC 
class I and of MHC-linked proteins involved in antigen pro- 
cessing and transport (6); (b) increased expression of MHC 
class II on conventional APC and de novo expression on non- 
professional APCs leading to enhanced antigen presentation 
to CD4 T cells; (c) regulation of T helper cell differentiation 
and B cell isotype expression (7, 8); (d) activation of macro- 
phages; and (e) enhanced NK cell cytotoxicity (1). 

Like IL-2, IFN-'y is an early response gene expressed by 
T cells upon activation. Yet the IL-2 and IFN-3, genes are 
independently regulated as demonstrated by their differen- 
tial expression in certain subsets of T cells. Production of 
IL-2 is comparable in naive and memory T cell populations; 
and in both populations IL-2 is expressed predominately by 
the CD4 + T cell subset (7-10). IFN-3~ is produced to a 
greater extent by the CD8 + subset than by the CD4 + 
subset, and in both subsets it is produced almost solely by 
memory T cells, with very little expression by naive T cells 
(2, 9-13). Moreover, NK cells express IFN-'y but not IL-2 
(1, 14). The differential regulation of the IFN-3' and IL-2 
genes in T cells has been shown to occur primarily if not 
solely at the level of gene transcription (10, 15). 

Unlike the relatively well-characterized promoter-enhancer 
of the IL-2 gene, much less is known about the regulation 
of IFN-y transcription. Introduction of an 8.6-kb fragment 
containing the human IFN-'y gene into transgenic mice pro- 
duced appropriately regulated tissue-specific expression, in- 
dicating the key regulatory elements are located within this 
fragment containing 2.7 kb of S' flank and 1.0 kb of 3' flank. 
These results also suggest that the murine and human genes 
share evolutionarily-conserved regulatory factors (16). In T 
cell lines capable of expressing IFN-% two constitutive T 
cell-specific DNase hypersensitivity sites have been identified, 
one in the 5' flank and another in the first intron; in addi- 
tion, there is an activation inducible, hypersensitivity site 
",,200 bp 5' from the transcription start site (17, 18). Consis- 
tent with the location of the hypersensitivity sites, transient 
transfection of reporter constructs with human IFN-'lr se- 
quences linked to the basal SV40 promoter into a murine 
T lymphoblastoid cell line suggested that T cell- and 
activation-spedfic, inducible regulatory elements were present 
between -540 and -47  bp (relative to the transcription start 
site). Enhancer activity also was identified in the first intron, 
which was inducible in a T cell line but constitutively active 
in a fibroblast cell line (19). Similarly, analyses in the human 
Jurkat T cell line and short-term cultured human T cells sug- 
gested that elements regulating the IFN-~/promoter are con- 
tained within ~550 bp of the transcription start site and that 
the key elements may be located within the proximal 200 
bp (20-22). 

Such findings offer the possibility that IFN-'y gene expres- 
sion, like that of the IL-2 gene, is governed primarily by a 
series of essential regulatory elements (and factors binding 
thereto) within a relatively compact region of the 5' flanking 
sequence of the gene. We have sought to provide a higher 
resolution delineation of the regulatory elements of the 5' 
flank of the IFN-~/gene and to provide an initial character- 
ization of the factors binding to these elements. In this re- 

port, evidence is provided to suggest that two essential ele- 
ments within 108 bp of the transcription initiation site of 
the IFN-3, gene are sufficient to confer activation-specific pro- 
motet function in T cells. These elements are conserved across 
species and for the most part differ from those governing 
IL-2 expression. 

Materiah and Methods 

Cells. A line ofJurkat T cells, that express IFN-3, following 
activation, was originally obtained from H. Spits, DNAX Insti- 
tute, Palo Alto, CA. This line was maintained in tLPMI 1640 (Bio- 
Whittaker, Inc., Walkersville, MD) supplemented with 10% FCS 
(Hyclone Labs., Logan, UT), 25 mM Hepes, 2 mM t-glutamine, 
100 U/ml penicillin, 100 ~g/ml streptomycin, and 20 ~g/ml gen- 
tamicin (RPMI + 10% FCS). Cells cultured continuously for >6 
wk progressively lost the capacity to produce IFN-% even though 
they continued to produce Ib2. Accordingly, aliquots of ceUs frozen 
at early passage were recovered from liquid nitrogen monthly, and 
used for experiments between I and 5 wk after thawing. Cells main- 
tained under these conditions produced 200-3,000 pg/ml of IFN-% 
as determined by sandwich ELISA (antibodies provided by Genen- 
tech, San Francisco, CA), when activated with 1.5/~M ionomycin 
and 50 ng/ml PMA; unstimulated cells produced <20 pg/ml. Two 
monocyte-macrophage cell lines, U937 and THP-1, were obtained 
from American Type Culture Collection, R_ockviUe, MD, and main- 
tained in RPMI 1640 supplemented as described previously. 

Plasmid Constructs. The IFN-3, plasmids were constructed by 
subclouing fragments of the IFN-~/gene into a promoterless LacZ 
plasmid, pEQ3, which was derived from PON 1 by mutating the 
bases flanking the ATG site to create an optimal sequence for mam- 
malian translation initiation (23). With the exception of the - 2700 
to -538 bp BamHI-XbaI fragment (base pairs numbered relative 
to the transcription start site), the designated sequences of the IFN-3, 
gene were generated by PCR amplification using the human 
genomic BamHI fragment, obtained from P. Gray, Genentech, Inc., 
San Francisco, CA, as a template (24). Constructs were generated 
by amplifying the entire fragment (pIFN-29, -39, and -108) or a 
proximal portion (all the other constructs) with primers that gener- 
ated a BglII site at a variable 5' terminus and a BamHI site at the 
common 3' terminus (+ 64 bp); the TATA box begins at -28 bp. 
These fragments were cloned into the BglII site of pEQ3, regener- 
ating only the 5' BglII site. For the constructs in which - 538 was 
the 5' end (including those with internal deletions A -  108/-40, 
A - 177/-  109, A - 214/- 178, and A - 258/- 109), a distal portion 
was amplified with a 5' primer containing the XbaI site at -538 
and a 3' primer containing a BglII site; these fragments were then 
cloned into the appropriate promoter construct containir~g the prox- 
imal portion. The pIFN-2.7 construct was created by cloning the 
BamHI-XbaI genomic fragment into the XbaI site at - 538 in the 
pIFN-538 construct. A partial Bell digestion of the pIFN-538 con- 
struct generated the pIFN-339 construct. The 5' truncation con- 
structs, with the exception of pIFN-108, contain a BglII site at 
-39, while the internal deletion constructs noted above contain 
a BglII site at the junction of the deletion. The -538 constructs 
with scanning 10-bp internal deletions from -108 to -29 each 
contain a BglII site at -177 and were prepared using PCR site- 
directed mutagenesis and splicing by overlap expression (25). The 
sequence of PCR generated fxagments and junctions was confirmed 
after subdoning with Vent (exo-) DNA polymerase dideoxynucleo- 
tide chain termination sequencing. 

The pIL2-568 plasmid contains the HindIII fragment (-568 
to +50) of the IL2 promoter (obtained from G. Crabtree, Stanford 
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University, Stanford, CA) subcloned into the pEQ3 LacZ plasmid. 
The B-actin CAT plasmid was prepared by subcloning the B-actin 
promoter (obtained from L. Kedes, University of Southern 
California, Los Angeles, CA) into a promoterless plasmid containing 
the chloramphenical acetyl-transferase (CAT) 1 gene. The pEQ 176 
plasmid, containing the CMV immediate-early gene promoter 
driving LacZ transcription was obtained from A. Geballe, The Fred 
Hutchinson Cancer Research Center, Seattle, WA. 

Transient Transfection Assays. Cells were transiently transfected 
by electroporation using a gene pulser set at 0.25 kV and 960/~f 
capacitance (Bio-Rad Laboratories, Richmond, CA) with both an 
IFN-3, LacZ plasmid and a control B-actin CAT plasmid in 0.5 
ml volume of RPMI 1640. Where indicated, cells were pretreated 
for 10 min with cyclosporin A (CSA). 1 h after electroporation 
cells were diluted to 106 cells/ml in RPMI + 10% FCS, and a 
portion of the cells were stimulated with 25 ng PMA and/or 1.5 
/~M ionomycin. After incubation for 40 h cell lysates were pre- 
pared by three cycles of rapid freezing and thawing. Lysates were 
assayed for B-galactosidase activity spectrophotometrically using 
chloro-phenol red as substrate (26) and CAT by ELISA (5 Prime 
3 Prime, Inc., West Chester, PA). B-Galactosidase activity was cor- 
rected for transfection efficiency by normalizing to the measured 
CAT value. Results are expressed as a percentage of the stimulated 
plFN-538 value in each transfection series. Data from the indicated 
number of transfections are presented as the mean + the standard 
error of the mean. 

Electrophoretic Mobility Shift Assay. Nuclear extracts were pre- 
pared from unstimulated and stimulated Jurkat T cells, and both 
U937 and THP-1 monocytic cells as described (27, 28), in the pres- 
ence of phosphatase inhibitors (50 mM NaF, 0.2 mM NaVO4). 
Cells were stimulated for 2 h unless indicated otherwise, because 
IFN-3, mILNA accumulation under our conditions was maximal 
between 2 and 6 h. Recombinant murine GATA-1 was prepared 
by DEAE-dextran transfection of COS cells with an expression 
plasmid, pXM, containing murine GATA-1 eDNA (obtained from 
D. Martin, The Fred Hutchinson Cancer Research Center, Seattle) 
(29, 30). Whole cell lysates from the GATA-1 transfected and mock 
transfected cells were prepared as described (30). The protein con- 
tent of nuclear and COS cell extracts was quantitated using 
Coomassie blue Plus (Pierce Chem. Co., Rockford, IL). In vitro 
transcription and translation of recombinant human GATA-3 was 
performed as previously described (31). 

Oligonucleotides were labeled with 7-[32p]dATP using T4 ki- 
nase, annealed, and filled in with the Klenow fragment of DNA 
polymerase when necessary, then purified by nondenaturing 10% 
PAGE. Nuclear extract was preincubated at room temperature with 
buffer and competitors for 5-10 rain before addition of the indi- 
cated probe. Binding reactions were incubated for 15-30 min at 
30~ and, except as noted, contained the following: 12,000 cpm 
probe, 175 ng polydI-dC (Pharmacia Fine Chemicals, Piscataway, 
NJ), 2 #g nuclear extract or COS cell lysate, and designated an- 
nealed cold oligonucleotide competitor in a 15-/zl reaction volume. 
Reaction buffer consisted of 10 mM Tris-HC1, pH 7.5, 50 mM 
NaCI, 1 mM EDTA, 5% glycerol, 1 mM DTT, 2 mM PMSF, and 
2 #g/ml pepstatin A. In experiments using Oct-1 anti-peptide an- 
tiserum (provided by K. Ullman and G. Crabtree, Stanford Univer- 
sity), the peptide and antiserum were preincubated together for 
15 rain before the addition of protein. Bound complexes were 
resolved on 4% PAGE gels at room temperature in low ionic buffer 
(5 mM Tris-HC1, 3 mM sodium acetate, 1 mM EDTA, pH 7.9). 

i Abbreviations used in thislmper: CAT, chloramphenical acetyl-transferase; 
CSA, cyclosporin A; E/VISA, dectromobility shift assay; MIP, macrophage 
inflammatory protein. 
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Electromobility shift assay (EMSA) using recombinant GATA-3 
(provided by J. Leiden, University of Chicago, Chicago, IL) or a 
routine monoclonal antibody to GATA-3 (o~GATA-3; provided by 
D. Engel, Northwestern University, Chicago, IL) were resolved 
in 0.25 x TBE as described previously (31). Stimulated Jurkat nu- 
clear extract was preincubated with 1 #g polydI-dC and 2/zl of 
the monoclonal antibody for 10 rain at 4~ before the addition 
of probe. 

In Vivo Footprinting. In vivo footprinting was performed on 
Jurkat T cells placed in medium containing 10% FCS and 0.5% 
dimethyl sulfate (DMS; freshly prepared) for 4 rain at room tem- 
perature. The cell suspension was diluted 20-fold by adding ice- 
cold PBS followed by centrifugation. After washing the cell pellet 
with ice-cold PBS, nuclei were prepared and DNA was purified 
by the addition of 200 #g/ml of proteinase K, 10 mM Tris-HC1 
(pH 7.8), 100 mM NaCI, 2.5 mM EDTA, 0.5% SDS for 4 h at 
50~ The DNA was then phenol-chloroform extracted, precipi- 
tated in ethanol, and t~tissolved in 10 mM Tris-HC1, pH 7.8, 0.1 
mM EDTA at 50~ overnight. After reprecipitation in 300 mM 
sodium acetate and ethanol, the DNA was resuspended in 1 M 
piperidine and allowed to react in sealed tubes at 90~ for 30 rain. 
Piperidine was removed by drying in a Speedvac, redissolving pellets 
in water and lyophylization, which was repeated twice. Pellets were 
resuspended in water and precipitated in 3.75 M ammonium ace- 
tate and ethanol three times. Ligation-mediated PCR (32, 33) was 
performed using an IFN-7 specific coding strand primer 1, 5'- 
CACAGGTGC, C~ATAATG-3' (-216 to -200 bp relative to the 
mRNA cap site) annealed to the piperidine-cleaved DNA fragments 
and extended to blunt ends by using Sequenase (33). The oligonu- 
cleotide linker, 

5'-GCGGTGACCTAGGAGATCTGAATTC-3' 
3'-CTAGACTTAAG-5' 

was ligated to the blunt-ended primer-extended molecules according 
to published procedure (32). After precipitation of the DNA, human 
IFN-7-specific fragments were amplified with Taq polymerase by 
using the longer oligonucleotide of the linker and primer 2, 5'-TAA- 
TGGGTCTGTCTCATCGTCAAAGGAC-3'. 20 amplification cycles 
were performed. Primer 3, 5'-TAATGGGTCTGTCTCATCGTCA- 
AAGGACCCAAGG-3' was labeled with T4 kinase and used for 
the last extension. The sequence ladders were visualized separately 
on a standard sequencing gel. 

Northern Analysis. Total cellular RNA was isolated and pre- 
pared as previously described (34). The full-length human elonga- 
tion factor 1-cr eDNA and a 400-bp fragment of the human IFN-y 
eDNA were labeled by the random hexamer primer method and 
used as described (9). 

Results 
Important cis Regulatory Elements Are within 108 bp of the 

~anscription Start Site To identify the c/s dements regulating 
transcription of the human IFN-7 gene we transfected 
~-galactosidase reporter constructs containing various por- 
tions of the 5' flank into Jurkat T calls. For comparison we 
also transfected constructs containing no promoter, pEQ3, 
or the wdl-characterized IL-2 promoter, pIL2 -568 (35). 
The first series of five IFN-7 promoter constructs (Fig. 1) 
contained progressive truncations of the IFN-7 5' flank from 
2.7 kb to 39 bp 5' of the transcription start site. Optimal 
expression was seen with 538 bp of 5' flank (pIFN-538), 
though expression with constructs containing only 108 bp 



Figure 1. Transfection analysis of the IFN-3, promoter. 
The promoterless vector plasmid pEQ3 or reporter 
plasmids containing various portions of the IFN-3, 5' 
flanking sequence or the 11.,2 promoter driving transcrip- 
tion ofa fl-galactosidase gene (line figures on the left) were 
transiently transfected into Jurkat T cells with a control 
/~-actin CAT phsmid. A portion of the cells were stimu- 
lated with PMA (50 ng/mi) plus ionomycin (1.5/~M). 
Cell lysates were assayed for/~-galactosidase activity and 
CAT protein. Results are expressed as a ratio of the stimu- 
lated plFN-538 value after correction for transfection 
efficiency, and represent means • SEM of at least three 
transfections. /5-Galactosidase activity in lysates of the 
stimulated plFN-538-transfected cells was 10-25 nmol 
CPR/10 ~ cells/rain. 

of 5' flank (plFN-108) was nearly as great. The results with 
these IFN-'y constructs were comparable to those with the 
IL-2 promoter construct (plL2 - 568), which has been shown 
by others to contain all the c/s elements necessary for appro- 
priate expression after transfection in T cell lines, and for proper 
expression in transgenic mice (35-38). Truncation of the pro- 
moter to -39 bp markedly diminished activation-induced 
expression. In the absence of stimulation there was minimal 
or no expression with these constructs. The promoterless 
pEQ3 plasmid gave values with or without activation of 
<0.25 nmol/106 cells per min (data not shown). 

To examine the importance of regions within the near 5' 
flank, four constructs containing internal deletions within 
the plFN-538 construct were created and similarly transfected 
into Jurkat T cells. The results are depicted in the bottom 
portion of Fig. 1. The most striking effect was seen with 
the deletion of sequences from -108 to -40 (pIFNA -108/ 
-40), which reduced expression >95%, comparable to that 
seen with the promoterless pEQ3 vector. Deletion of sequences 
between -177 and -109 gave maximum expression ('~l.5- 
fold that of plFN-538). Comparison of these internal dele- 
tion constructs and the 5' truncation constructs suggests that: 
(a) the elements essential for activation-induced expression 
are contained within 108 bp of the transcription start site; 
(b) the region between -177 and -109 has a modest net 
negative effect on induced expression; (c) the region between 
-337 and -258 has a modest net positive effect on induced 
expression; and (d) the region between - 214 and - 178 may 
repress constitutive expression since deletion of that region 
led to increased unstimulated expression. 

In Vitro Transfection Assays of lFN-~/ Reporter Constructs Par- 
allel Endogenous IFN-'y Gene Activation Requirements, CSA Sen- 
sitivity, and Cell Specificity. The induction of IFN-3, in T 
cells requires interaction between the TCR and antigen 
presented in association with the MHC on an APC, as well 
as accessory signals provided by the APC (38-40). Signals 
delivered through the TCR can be mimicked by PMA, acting 

in concert with a calcium ionophore. The immunophilin 
ligands CSA and FK506 can block induction of IFN-'y, IL-2, 
and certain other lymphokines (41) by pathways downstream 
of the increase in intracelhlar Ca + +, most probably through 
interaction with calcineurin (42, 43). As shown in Fig. 2, 
the efficient induction of the plFN-538 or pIFN-108 reporter 
constructs required both PMA and ionomycin. Further, in- 
duction was reduced 70-90% with CSA pretreatment of cells. 
These results paralleled those of the pIL2-568 construct and 
the production of IFN-3' protein by Jurkat T cells (Fig. 2). 

To determine if these IFN-3, constructs were expressed in 
hematopoietic cells that do not produce IFN-3,, we trans- 
fected them and the plL2 -568, and pEQ 176 (the pEQ3 
vector with the strong cytomegalovirus immediate-early pro- 

Figure 2. Induction of the 108-bp IFN-3~ promoter requires PMA plus 
ionomycin and is sensitive to suppression by CSA. The plFN-538 and - 108 
constructs were transiently transfected into Jurkat T cells that were subse- 
quently incubated in media containing PMA, ionomycin, both, or pretreated 
with CSA (100 or 500 ng/ml), then incubated with PMA + ionomycin. 
This figure depicts means • SEM of three transfections (except the 100 
ng/ml CSA data, which was repeated twice); results of each treatment 
group are expressed as ratio of the PMA + ionomycin value for each phsmid. 
Production of endogenous IFN-qt protein measured in supernatants from 
identically treated Jurkat T cells paralleled the transfection results: un- 
stimulated, <4 pg/ml; ionomycin alone, 23 pg/ml; PMA alone, 70 pg/ml; 
both, 541 pg/ml; and 500 ng/ml CSA plus PMA and ionomycin, <4 pg/ml 
as determined by ELISA. 
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moter driving Lac Z) constructs into two monocytic cell lines, 
THP-1 and U937 (data not shown). The pEQ 176 plasmid 
gave expression four- to eightfold higher than the promoter- 
less pEQ3 plasmid in THP-1 and U937 cells and was further 
induced 120-fold by stimulation with ionomycin and PMA 
in the U937 cell line. Expression of the plFN-538, plFN- 
108, or plL2-568 plasmids was equivalent to that of the 
promoterless pEQ3 in THP-1 cells and in unstimulated U937 
cells and not more than two- to fourfold greater than pEQ3 
plasmid in stimulated U937 cells. This contrasts markedly 
with the results in activated Jurkat T cells in which these 
IFN-3, and IL-2 constructs produced *60- to 100-fold greater 
expression than the promoterless pEQ3 (Fig. 1). Thus, the 
activation signal requirement, CSA inhibition and lack of ex- 
pression in the monocytic cell lines with these IFN-3' reporter 
constructs faithfully paralleled expression of the endogenous 
IFN-3, gene. 

Potential Importance of the -108 to -40 Region Based on 
Sequence Homology to Known Regulatory Elements and Cross- 
species Conservation. The data from the initial transfection 
analyses described above indicated that sequences between 
-108 and -40, within the context of the IFN-%, TATAA 
box and sequence extending to + 64 bp, were both necessary 
and su~cient for activation-specific and CSA-sensitive induc- 
tion. In seeking to define the critical elements in this region, 
we first searched this sequence for homology to known regula- 
tory elements as well as sequences conserved between the 
human, rat, and murine genes. These searches revealed two 
regions in which the sequences are highly conserved across 
species and contain homologies to known regulatory factors 
(Fig. 3). 

Two consensus GATA motifs are present in the human gene, 
the most 3' of which is conserved in the rodent genes and 
contained within the distal conserved element (-96 to -80 

bp). GATA motifs are found in the promoters-enhancers of 
the TCR 04 ~/, and/~ chain genes, and bind the T lineage-re- 
stricted factor GATA-3 (31, 44-46). Abutting the 3' GATA 
motif in the distal conserved element of the human IFN-'y 
gene are sequences ( -  89 to - 82 bp) identical to those found 
in the promoter region of the human and routine GM-CSF 
genes (-56 to -46 bp and -63 to -53 bp, respectively), 
as well as members of the macrophage inflammatory protein 
(MIP) gene family (47). In the GM-CSF promoter this motif 
is located within an activation responsive DNase I footprint 
using extracts from MLA 144 cells (gibbon ape T cells) (48) 
and is part of the conserved lymphokine element 0 (CLEO) 
(49). 

The proximal conserved element ( -  73 to - 48 bp) in the 
human IFN-qr gene contains a 17- out of 24-bp match to 
the NFIL-2A site of the human IL-2 gene. In the IL-2 pro- 
moter this element is necessary for maximal induction with 
activation (36), and has been shown to bind both Oct-1 and 
the activation-specific factor OAP-40 (27). 

Thus, excluding the obviously conserved TATAA box and 
transcription start site, there appear to be two highly con- 
served, and thus potentially important, regulatory elements 
within the -108 to -40 bp region. The distal element, -96 
to -80, encompasses the 3' GATA homology and the GM- 
CSF/MIP sequence; the proximal element, -73 to -48, con- 
tains the NFIL-2A homology. 

Deletions within Either Conserved Element in the pIFN-538 
Construct Markedly Reduce Activation-induced Transcription. To 
map the location of important c/s regulatory elements within 
the -108 to -40 region, we created a series of constructs 
with 10-bp internal deletions scanning across this region within 
the pIFN-538 construct. Results of transfections with these 
constructs are demonstrated in Fig. 4. Consistent with their 
conservation across species, deletions that included the 3' por- 

GATA GM-CSF NFIL-2A TATA 

D I S T A L  P R O X I M A L  

C O N S E R V E D  C O N S E R V E D  E L E M E N T  TATA 
E L E M E N T  

-108 -98 -88 -78 -68 -58 -48 -38 -28 
I I I I I I I l I 

* * * *  * * *  * * * * * * * * * * * * * * * * * * * *  * * * * * * * * * * * * * * * * * * * * * * * * * * *  * * * * *  * * * *  * *  * * * * * * * * *  

M O U S E  T~.~CTTAaCTCCCCCCa~TCaCCa~CTT cc CTTGTGAAAA~CGTAATC~GAGGAGCCTTCGATCAGG 
****** 

**** **** ** ** **** * 

GATA ~A~AGA 
~ . ~ T ~ - T A ~ T ~ r  IL-2 complement  . �9 * * * * * * 

* * *  * * *  

~TC~TCACCAT GM-CSF ~ c ~ T  consensus 
* * * * * * *  octamor site 

~TcAccAG MIP 1 ~/l~ N F I L 2 A  

Figure 3. The sequences conserved between the human, rat, and mouse IFN-3, genes in the near 5' flank are shown. Consensus GATA motifs and 
homologies to elements in the human GM-CSF ( -56  to -46  bp), MIP la/ ;3,  and human Ib2 ( -93  to -69  bp) genes are boxed and shown in 
detail below. Sequences are numbered relative to the transcription start site of the human gene. 
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Figure 4. Elements within both conserved regions 
are essential for activation-induced expression of the 
IFN-~/promoter. Transient transfection analyses in 
Jurkat T cells using reporter constructs containing scan- 
ning 10 bp internal deletions within the - 108 to - 40 
bp region of the pIFN-538 plasmid. The constructs 
are shown in line figures on the right. Results were 
corrected for transfection efficiency and analyzed as de- 
scribed in Fig. 1. Resuks represent the mean (_+ SEM) 
of at least four independent transfections. 

tions of each of the conserved dements significantly dimin- 
ished expression. The A -  88/-79 construct deleted the se- 
quences homologous to elements in the promoter region of 
GM-CSF and MIP genes within the distal conserved element 
and reduced expression 69% (p = 0.001). Within the con- 
served proximal element, the A -  58/-49 construct, which 
deleted the 3' portion of the NFIL-2A-like element, reduced 
expression by 72% ~ = 0.005). The two constructs that 
contained deletions within the 5' portions of the conserved 
elements either did not alter expression (A -98 / -89 ,  which 
included the GATA motif in the distal element), or reduced 
expression to a lesser extent (A-  68/-59, encompassing the 
homology to the OAP-40 binding site in the proximal ele- 
ment), which was not statistically significant (35%, p = 0.11). 
Deletion of the distal GATA motif (A -108/ -  99) which is 
not conserved in the rodent genes, had no effect on expres- 
sion, nor did the A - 7 8 / - 6 9 ,  A-48 / -39 ,  or A - 3 8 / - 2 9  
deletions. 

EMSA Demonstrate Multiple Factors in Jurkat T Cell Extracts, 
Including GATA-3, binding to the Distal Conserved Element 
(-96 to -80 bp), Containing the GATA, and GM-CSF/MIP 
Motifs. To demonstrate factors binding to the regulatory 
regions defined by transfection, we performed EMSA with 
Jurkat nuclear extracts. A probe encompassing the distal con- 
served dement, which contained the GM-CSF/MIP motif 
and the conserved 3' GATA moti f ( -  98 to - 78 bp) produced 
three specific complexes (designated Aa, Ba, and Ca; Fig. 5 
A, lanes 3-4); the pattern of complexes produced by a probe 
which extended upstream and also contained the 5' noncon- 
served GATA motif was identical, though complexes formed 
with this probe migrated slightly faster overall (WT-L; - 115 
to - 78, Fig. 5 A, lanes 1-2). Additional evidence suggested 
that the 5' nonconserved GATA motif either did not con- 
tribute or was not necessary for the formation of these three 
complexes: (a) the complexes formed with either probe were 
competed equally wall by oligonudeotides with or without 
the 5' GATA motif and (b) mutation of the 5' GATA motif 
had little or no effect on the capacity of an oligonudeotide 
containing an intact 3' GATA motif to compete for binding 
to the probes containing one or both GATA motifs (data not 

shown). In contrast, mutation of the 3' GATA motif did affect 
formation of and competition for these complexes (Fig. 5, 
A and B). EMSA demonstrated a more rapid electrophoretic 
mobility of the most abundant complex in extracts from the 
stimulated Jurkat T cells (designated Cd') compared with the 
unstimulated cells (Ca); in addition, an increased quantity 
of the middle complex (designated Bd) in the stimulated ex- 
tracts was noted. Using nuclear extracts prepared in parallel 
after 2, 4, 6, 12, or 24 h of stimulation, we found that both 
the qualitative change from the Ca to the Cd' complex and 
the quantitative change in the Bd complex occurred by 2 h 
(Fig. 6, the Ba complex is somewhat better seen with the 
M1 probe, which reduces complexes Cd and Ca'). These 
changes paralleled temporally the accumulation of IFN-3, 
mRNA seen upon Northern analysis, which peaked by 2-6 h 
and declined thereafter (Fig. 6). 

Two reciprocal approaches were used to identify the specific 
bases critical to these complexes: (a) comparison of the ability 
of probes M1-4 (Fig. 5 C), containing mutations within ei- 
ther the GATA motif (M1, M2) or the GM-CSF/MIP motif 
(M3, M4), to generate complexes in an EMSA (Fig. 5 A), 
and (b) comparison of the ability of these unlabeled oligonu- 
cleotides to compete for the binding of the complexes by the 
wild-type IFN-y distal conserved element probe (Fig. 5 B). 
Formation of the least abundant, slowest migrating complex 
Ad, which was present in both unstimulated and stimulated 
extracts, appeared to require an intact GM-CSF/MIP motif 
for optimal binding since both M3 and M4 probes failed to 
generate complex Aa (Fig. 5 A, lanes 7-10). Complex Bd 
demonstrated the greatest stability or least stringent recog- 
nition, since it was formed (Fig. 5 A) and competed (Fig. 
5 B) by all the oligonucleotides except M3. Complexes Cd 
and Ca' were identical in both the ability to be bound by 
the mutant probes (Fig. 5 A, lanes 5-10) and to compete 
complexes bound to the wild-type IFN-y probe (Fig. 5 B, 
lanes 3-7; competition for complex Ca in unstimulated ex- 
tracts was identical; data not shown). Binding was reduced 
by M1 and M2, abolished by M3, and unaffected by M4. The 
M3 mutation (centered in the GM-CSF motif) was dearly 
the most disruptive alteration of this distal element, since 
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Figure 5. EMSA demonstrating 
binding of proteins in nuclear ex- 
tracts to the distal conserved element 
of the IFN-'y promoter. (A) EMSA 
with labeled oligonucleotide probes 
encompassing the distal conserved 
element in the IFN-3t promoter 
(WT) and mutations therein (M1, 
M3, and M4) or extending to in- 
clude the nonconserved 5' GATA 
motif (wild-type long; WT.L) using 
nuclear extracts from unstimulated 
(U) or ionomycin + PMA-stimu- 
hted (S) Jurkat T cells. Specific com- 
plexes are designated (Aa, Bd, 
CdC/). (B) EMSA using the WT 
probe of the distal conserved ele- 
ment illustrates the reciprocal results 
obtained by competition for factors 
bound in stimulated Jurkat nuclear 
extract by unlabeled WT IFN-"/oli- 
gonucleotide, or oligonucleotides 
containing mutations (MI-M4), or 
the TCRc~ GATA element. Reac- 
tions contained 5 ng of the indicated 
competitors. (C) The sequences of 
oligonudeotides used in these ex- 
periments as well as the GM-CSF 
sequence for comparison. The 
GATA motifs are underlined and 
mutations are highlighted. 

only a very faint complex Bd was formed with this oligo- 
nucleotide as probe (Fig. 5 A, lanes 7-8) and M3 failed to 
compete for any of the complexes formed by the wild-type 
probe (Fig. 5 B, lane 5). 

We pursued several experimental approaches in an attempt 
to determine whether GATA-3 was included in the complex 
observed with the distal conserved element. Initially, we de- 
termined that the IFN-3' element bound recombinant human 
GATA-3 (rGATA-3) (Fig. 7 A). Under these conditions, which 
were optimal for detection of binding to the TCRoe site (Fig. 
7 B), the IFN-3' GATA motif competed somewhat less effec- 

tively for binding of rGATA-3 to itself or to the TCRc~ site 
(data not shown) than did the wild-type TCRc~ site. In an 
EMSA with stimulated Jurkat nuclear extract and the IFN-y 
wild-type probe, a slower migrating super-shifted complex 
was observed using a monoclonal antibody specific to GATA-3 
(Fig. 7 C, lane 2). This super-shifted band was not observed 
with three irrelevant monoclonal antibodies that recognized 
cell surface antigens (Fig. 7 C, lane 3; two additional control 
antibody supernatants were also tested; data not shown). To 
demonstrate which bases were critical for binding, more 
detailed studies were done using recombinant murine GATA- 1 
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Figure 6. Activation-induced changes in EMSA complexes bound to 
the distal conserved element of the IFN-qr promoter parallel mRNA ac- 
cumulation. (-4) EMSA demonstration of complexes generated with both 
the wild-type and M1 probes (sequences shown in Fig. 5 C) incubated 
with nuclear extracts prepared from Jurkat T cells stimulated with PMA 
plus ionomycin for the indicated time periods. (B) Northern analysis of 
15/xg total RNA isolated from similarly treated Jurkat T cells probed 
for IFN-'y mlLNA and elongation factor 1-o~ mRNA, which confirmed 
equivalent loading of RNA, 

(rGATA-1) because it was more readily produced than 
rGATA-3, had a homologous DNA binding domain, and, 
like GATA-3, was capable of activating transcription of the 
TCK/~ promoter (46). When conditions optimal for binding 
of nudear extracts or rGATA proteins to the IFN-~/probe 
were used, both the IFN-~/and the TCKot elements bound 
rGATA-1 equally and demonstrated identical competition with 
each other and with the mutated IFN-'y probes (Fig. 7 D, 
lanes 1-6; data for binding to the TCRot site not shown). 
The complexes formed with the IFN-')' probe and rGATA-1 
migrated with a mobility similar to that of the complex Ca'. 
As would be predicted, competition for binding of rGATA-1 
was markedly reduced by mutations in either half of the GATA 
motif, M1 and M2 (Fig. 7 D, lanes 3 and 4), paralleling, al- 
beit to a greater degree, the effects of these mutations on 
competition for formation of complexes Ca and Ca' with 
Jurkat extract (Fig. 5 B, lanes 3 and 4). In contrast, the M3 
mutation in the GM-CSF motif did not affect the binding 
of rGATA-1, as shown by competition of M3 for binding 
of rGATA-1 to the IFN-~/probe (Fig. 7 D, lane 5), though 
this mutation abolished binding of proteins in Jurkat extracts 
(Fig. 5). Other factors found in the Jurkat extract that bind 
to the GM-CSF/MIP motif contained in the IFN-~/element 
must play a pivotal role in formation of each of these com- 
plexes because the TCKc~ probe bound (data not shown) and 

competed effectively for rGATA-I (Fig. 7 D, lane 7) and 
rGATA-3 (Fig. 7 A), but this oligonucleotide failed to generate 
a comparable complex with stimulated Jurkat extract (Fig. 
7 D, lane 8) or to compete any of the complexes produced 
by the IFN-3' probe with Jurkat extract in EMSA conditions 
optimized for the IFN-3' probe (Fig. 5 B, lane 7). 

Thus, GATA-3 in Jurkat nuclear extract and rGATA pro- 
teins bind the IFN-'y distal conserved element. However, mu- 
tations within the GATA motif only inhibited the formation 
of complex Ca and Cd' partially and did not affect complex 
A or B, and deletion of this motif did not significantly alter 
expression. Thus, GATA-3 does not appear to play a critical 
role in promoter function under the conditions studied. In 
contrast, the factor(s) binding to the GM-CSF/MIP motif 
may play a more pivotal role, since mutations blocked forma- 
tion of each complex and deletion markedly reduced promoter 
function. 

EMSA Demonstrate Multiple Factors Binding to the Proximal 
Conserved Element ( -  71 to - 40 bp) Containing the NFIL-2A 
Homology. In Viva Footprinting Reveals an Activation-specific Foot- 
print within the Most 3' Portion of the Element. A probe con- 
taining sequences in the proximal conserved element ( -  71 to 
- 40) of the IFN-3, gene, including the NFIL-2A homology, 

when incubated with unstimnlated nuclear extract generated 
several specific complexes designated Ap, Bp, Cpl, and Cp2 
(Fig. 8 A). Competitor oligonucleotides with mutations in 
either the 5' or 3' portion of the element did not compete 
any of the complexes as efficiently as wild-type oligonucleo- 
tide (Fig. 8 A, compare lane 9 with lanes 10 and 11). To allow 
a direct comparison, the first lane of this gel shows the com- 
plexes produced by the octarner site of the DtLot gene (50) 
and the second lane contains the complexes produced by the 
NFIL-2A site of the IL-2 gene (27). The IFN-qr and IL-2 
probes appear to share affinity for factors giving rise to com- 
plexes Cpl and Cp2 since both produced an identical rapidly 
migrating doublet, for which the NFIL-2A and the IFN-y 
oligonucleotide competed equally well (Fig. 8 A, lanes 3-5). 
The NFIL-2A oligonucleotide competed the factor(s) in the 
uppermost complex Ap, formed with the IFN-3' probe 
(though only at the higher concentration of competitor), and 
failed to generate a complex with the same electrophoretic 
mobility when used as a probe. The complexes generated by 
the IFN-y probe with stimulated extracts were identical to 
those shown with unstimulated extracts (data not shown). 
These results indicated that the proximal conserved element 
of the IFN-'y promoter bound multiple factors that appeared 
to require recognition of specific sequences in both halves 
of the element and to share partial affinity with the NFIL- 
2A site of the IL-2 gene. 

In contrast to the competition between the NFIL-2A and 
IFN-'/oligonucleotides, the DKot octamer oligonucleotide 
failed to consistently alter any of the complexes formed with 
the IFN-3' probe (Fig. 8 A, lane 6). Furthermore, the com- 
plex shown to contain Oct-1 by antisera super-shifting (data 
not shown), which is shared by the DKc~ and the NFIL-2A 
probes (marked as Oct-1 in Fig. 8 A), migrated differently 
than any of the complexes produced by the IFN-~/probe. 
Likewise, Oct-1 antisera had no effect upon any of the com- 
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Figure 7. The GATA motif in the distal conserved element of the IFN-3, promoter binds rGATA-3 and rGATA-1. (A) EMSA performed using an 
IFN-3, probe (exact sequence, B), shows a specific rGATA-3 complex (as we1] as nonspecific binding in the unprogrammed lysate) that is competed 
by the TCRa GATA motif. This EMSA was run in 0.25 x TBE buffer, that is optimal for binding of rGATA-3 to the TCRo~ probe. (/3) Sequence 
of oligonucleotides used in the rGATA-3 EMSA. The GATA motifs are underlined in the IFN-~ sequence. (C) EMSA demonstrating complexes seen 
with stimulated Jurkat extract and the IFN-3' WT probe in 0.25 x TBE buffer (lane I). Addition of 2/zl of monoclonal antibody to GATA-3 in 
lane 2 generates a super-shifted band (GATA-3), which is not seen with the control antibody, 24G2, lane 3. (/9) EMSA demonstrating the sequences 
essential for binding of rGATA-1 to the WT IFN-3, probe lanes 1-7, (sequences of these probes and competitors are shown in Fig. 5 C; Tot denotes the TCRcr 
oligonucleotide). Reactions contained 5 ng competitor DNA, and EMSA was run in low ionic strength buffer, which is optimal for detection of specific 
binding to the IFN-3, probe. To allow a direct comparison on the same gel the last three lanes show complexes generated by the TCRo~ probe with 
stimulated (lane 8) or the WT IFN-3' probe with unstimuhted or stimulated Jurkat nuclear extracts (lanes 9 and 10). 

plexes generated by the IFN-3' probe (data not shown). Thus, 
unlike the NFIL-2A site, this element in the IFN-3, gene does 
not appear to bind the ubiquitous transcription factor, Oct- l ,  
although competi t ion with  the NFIL-2A site suggests other 
factors may be shared between the two genes. 

Though  we did not see differences using EMSA, the ira- 
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portance of  this region for activation specific expression sug- 
gested by transfection analyses was further supported by in 
vivo footprint analysis. As shown in Fig. 9, a footprint was 
consistently detected over the 3' portion of the proximal con- 
served element in stimulated but not unstimulated Jurkat T 
cells. This protected base lies in the NFIL-2A site homology  



Figure 8. EMSA demonstrating 
binding to the proximal conserved 
dement of the IFN-3' promoter. (A) 
EMSA using the designated labeled 
probes binding factors in unstimu- 
lated Jurkat nuclear extracts in the 
presence of 5 ng of the specified 
competitor (hnes 4-6) or 15 ng 
(lanes 9-12). The complexes con- 
taining Oct-l, as demonstrated by 
antiserum super-shifting (not 
shown) with the DILc~ octamer 
probe (OCT) or the NFIb2A (11.2) 
probe are labeled, as are the specific 
complexes generated by the prox- 
imal IFN-3r probe. The complexes 
in lane 12, due to an artifact in the 
gel, appear to have migrated farther 
than those in the other lanes. (/3) 
Exact oligonudeotide sequences of 
the probes or competitors used in 
the EMSA above are shown; (OCT) 
the DR~ oligonudeotide; (IL2) the 
NFIb2A oligonucleotide. 

at a CpG dinucleotide, which is not present in the IL-2 de- 
ment, but is conserved in the IFN-3' genes of human, rat, 
and mouse. 

Factors Binding to Either the Distal or Proximal Conserved Ele- 
ments of the IFN-'y Gene Are Not Found in U937 or THP-I 
Nuclear Extracts. EMSA using nuclear extracts from resting 
or activated U937 and THP-1 monocytic ceils with either 
the distal or proximal conserved dements of the IFN-'y gene 

as probes did not produce complexes (U937) or yielded a 
poorly defined band (THP-1) that was not similar to those 
seen with Jurkat extracts (Fig. 10). These THP-1 and U937 
extracts contained intact DNA-binding proteins because they 
did generate discrete complexes with the human immunodefi- 
ciency virus long terminal repeat NF-~B element (Fig. 10). 
These results paralleled the poor expression of the IFN-3' 
reporter constructs in these cells in transient transfection assays. 

Figure 9. Activation-specific in vivo footprint of the proximal element 
of the IFN-'y promoter visualized by ligation-mediated PCR amplification. 
The complementary strand is shown, as revealed using coding strand primers. 
The sequence contained within the brackets is indicated to the right of 
the gel. Lanes I and 2 contain DNA from unstimulated and PMA plus 
ionomycin-stimulated Jurkat T cells, respectively. The protected base is 
marked by an asterisk, the Y portion of the NFIL-2A homology in the 
proximal-conserved element of the IFN-'y promoter is booted and the SnaB1 
restriction enzyme site is marked by the bar. Similar results were obtained 
in two other experiments. 

Discussion 

The production of IFN-% a pleiotropic and potent im- 
munomodulatory cytokine, is closely regulated both by the 
selectivity of the cells in which it is produced, and by the 
activation-specific control of expression within those cells. 
By transient transfection of reporter constructs, we have 
identified the immediate 108 bp of 5' flanking sequence of 
the IFN-3, promoter as both necessary and sufficient for 
activation-induced promoter function in Jurkat T cells, which 
was comparable to that seen with the well-characterized IL-2 
promoter. Regions conferring modest positive ( -  337 to - 258 
bp) and negative ( -  177 to - 109 bp) effects upon activation- 
induced expression, and one that may repress low level con- 
stitutive expression (-214 to -178), were also identified. 
However, they were not required for faithful promoter func- 
tion. Results with constructs containing 538 or 108 bp of 
IFN-y flank appeared to accurately reflect the endogenous 
gene's requirements for induction, suppression by CSA, and 
expression in T cells, but not in monocyte-macrophage cell 
lines. Moreover, two highly conserved c/s regulatory elements 
have been mapped within this 108-bp 5' flanking region. Using 
EMSA, factors binding to these elements have been identified 
in Jurkat nuclear extracts, but not in extracts from mono- 
cyte-macrophage cell lines. The abundance or apparent mo- 
bility of the factors binding to the distal element and the 
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Figure 10. EMSA demomtrating 
factors binding to either the distal 
or proximal conserved elements of 
the IFN-3' gene are not found in 
monocytic nuclear extracts. The first 
six lanes of this EMSA contain the 
distal WT IFN-7 probe with 2.5 
#g of either unstimulated (U) or 
ionomycin plus PMA-stimulated (S) 
nuclear extracts from the designated 
cell types: Jurkat T cells and two 
monocytic-macrophage cell lines, 
U937 and THP-1. Similarly the 
middle six lanes contain the prox- 
imal WT IFN-7 probe with these 
same nuclear extracts. The last four 
lanes contain the NFKB binding site 
of the HIV LTR as probe and the 
stimulated extracts of these cells. 
This demonstrates that the U937 
and THP-1 nuclear extracts do con- 
tain NFKB proteins. 

binding in vivo of factors to the proximal element were al- 
tered in response to T cell activation, supporting their role 
in activation-specific expression of IFN-% 

The current data are consistent with previously published 
studies that indicated the importance of the near 5' flank of 
the IFN-y gene in its regulation, but more precisely define 
the region required for proper expression and identify two 
cis elements within this region as critical. Previous studies 
demonstrated that "~500 bp of 5' flank was sufficient for 
activation-induced expression in a murine T cell line (19) and 
that the - 215 to - 53 region conferred expression in primed 
short-term cultured human T cells (20). Chrivia et al. (20), 
using 5' truncation promoter constructs, found the -251 
to -215 region to contain a strong element repressing both 
basal and induced transcription, whereas Brown et al. (21), 
also using 5' truncation constructs, did not. Our internal de- 
letion constructs suggest that the -214 to -178 region at- 
tenuates constitutive expression, and the -177 to -109 re- 
gion has a modest net negative effect on activation-induced 
promoter activity. In transient transfection assays of Jurkat 
T cells with Bal-31 5' deletions of the I F N ~  promoter, Brown 
et al. (21) found that maximal activation-induced expression 
was observed with 284 bp of 5' flank (~40-fold induction), 
although near maximal induction (~20-fold) was obtained 
with 181 bp of 5' flank. In our truncation and internal dele- 
tion constructs, sequences between -337 and -258 also had 
a modest net positive effect on expression. The latter group 
subsequently reported the presence of a bipartite region in 
the 5' flank of the IFN-7 gene, in which sequences between 
- 3 6  and - 3 0  bp and -124 and -114 bp appeared to in- 
teract in the formation of complexes with DNA probes and 
to play a role in activation-induced expression (22). Our data 
do not support an essential role for the bipartite region 
identified by Brown et al. (a) The -124 to -114 site was 
5' of the flanking sequence sufficient for nearly maximal in- 
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duction in our assays, though an additional positive role for 
this site is not excluded by the current findings. (b) Our 
A - 3 8 / - 2 9  construct, which removed the proximal portion 
of the putative bipartite element (Fig. 4), produced expres- 
sion that was at least as great as the wild-type -538 con- 
struct. (c) This putative bipartite element was not as highly 
conserved in the murine or rat genes (6 of 11 bp and 3 of 
7 bp complete identity across species in the proximal and distal 
portions, respectively), as the critical elements identified in 
the current studies, suggesting that this bipartite region is 
less likely to play an essential regulatory role. The differences 
in findings may reflect technical differences in the reporter 
analyses in the studies and the complexity of this compact 
promoter. 

Within the - 108 to - 40 bp region of the human IFN-7 
gene, which was necessary and sufficient for faithful expres- 
sion, two regions with nearly complete cross-species iden- 
tity were found to contain critical regulatory elements by 
scanning deletional analysis (Fig. 4). The distal conserved ele- 
ment contains an 8-bp sequence, which is shared with an 
important regulatory element in the GM-CSF gene, and a 
consensus GATA motif (Fig. 3). Deletion of the GM-CSF/MIP 
motif profoundly reduced promoter function. The concept 
that the IFN-7 and the GM-CSF promoters may share tran- 
scription factors is attractive. Both cytokines are expressed 
well by memory T cells, whereas neonatal, naive T cells ex- 
press very little IFN-7 and in these cells GM-CSF expression 
is diminished and delayed relative to adult and memory T 
cells (8, 11-13, 51). Also, the delayed GM-CSF expression 
in neonatal T cells appears to reflect IL-2-dependent produc- 
tion rather than expression occurring as a direct result of ac- 
tivation through TCR-related pathways (13). The GM- 
CSF/MIP motif (47), that is identical in the two genes, 
overlaps the most 5' portion of the previously identified CLEO 
element (49). In the GM-CSF promoter, Nimer et al. (52) 



found that mutation of two bases in this shared motif markedly 
reduced promoter activity in transient transfection assays of 
MLA-144 gibbon T cells and activated primary human T 
cells. The distal conserved element in the IFN-3, promoter 
demonstrated three specific complexes by EMSA. The M4 
mutant oligonucleotide, which replicates the mutation shown 
by Nimer et al. (52) to impede the function of the GM-CSF 
promoter in T cells, inhibited formation of complex Ad 
only. However, mutation of three bases centered within the 
GM-CSF/MIP motif (M3, Fig. 5 C) essentially abolished 
binding of each of the three complexes. The effects of the 
M3 mutation upon binding of factors by EMSA paralleled 
results obtained when the GM-CSF/MIP motif was deleted 
from reported constructs, indicating that this motif is essen- 
tial for the function of the distal conserved element and plays 
a critical role in IFN-3~ promoter function. 

Just 5' of the GM-CSF/MIP motif in the distal conserved 
element of the IFN-y promoter is a consensus GATA motif 
that is capable of binding rGATA-3 and rGATA-1. Deletion 
of this GATA motif had little effect on reporter gene expres- 
sion and mutations had less effect on EMSA complexes than 
did the M3 mutation in the GM-CSF/MIP motif. Yet the 
formation of the Ca and Ca' complexes was impeded by mu- 
tations within the GATA motif and GATA-3 was contained 
within these complexes. Of note, the promoter regions of 
several other lymphokine genes (including IL-3, IL-4, IL-5, 
and GM-CSF genes, but not the IL-2 gene) contain consensus 
GATA motifs, suggesting that GATA-binding proteins may 
contribute to regulation of these lymphokines. Also, CD3- 
CD16 § NK clones, that would be expected to express 
IFN-'y and not IL-2, recently have been shown to express 
GATA-3 mRNA (53). Although a critical role for the GATA 
motif or GATA-3 was not evident in the current studies, full 
elucidation of GATA-3's role in the formation and activation- 
induced alteration of the complexes formed with the distal 
conserved element and in the regulation of IFN-'y gene ex- 
pression will require additional investigation. 

The second and more proximal conserved element that was 
critical for expression with activation, shares sequence ho- 
mology with the NFIL-2A site of the IL-2 gene. This prox- 
imal IFN-'y element appeared to bind more than one factor 
and the binding of each required that both the 5' and 3' por- 
tion of the element be intact. Like those binding to the prox- 
imal element, factors binding to this proximal element were 
not detected in monocytic cell line extracts. Although by 
EMSA proteins binding to this element did not appear to 
differ between unstimulated and stimulated Jurkat cells, 
binding to this element appeared to be regulated by activa- 
tion in intact cells, since an in vivo footprint was seen only 
after activation. Unlike the NFIL-2A element (27), this IFN-3' 
element did not bind Oct-l, but shared a~nity with other 
factors binding to the NFIL-2A site. OAP-40, which binds 
to the 5' half of the NFIL-2A element, may be one such factor 
(27). It is the 3' portion of the NFIL-2A element that binds 
Oct-1. The failure of the proximal conserved element of the 
IFN-3' gene to bind Oct-1 may relate to the presence of a 
CpG rather than a TpG dinucleotide in its 3' portion; it is 
this CpG dinucleotide that lies within the activation-specific 

in vivo footprint. This CpG dinucleotide provides a poten- 
tial site for methylation of the endogenous IFN-3r gene by 
methyltransferases, thus allowing an additional putative level 
of regulatory control by altering the accessibility of critical 
cis elements for the binding of transcriptional regulatory 
factors. In recent studies the extent of methylation of this 
site, as measured by the methylation sensitive restriction en- 
zyme Sna B1, was found to correlate inversely with IFN-y 
gene expression in several T cell subsets including: (a) mu- 
rine TH-0, TH-1, and TH-2 T-cell clones (Young, H. A., 
J. Ye, J. Lederer, A. Lichtman, P. Ghosh, J. R. Gerard, 
L. A. Penix, C. B. Wilson, A. J. Melvin, D. B. Lewis, et 
al., manuscript in preparation), (b) freshly isolated human 
naive, neonatal, and adult memory T cells (A. Melvin, and 
D. B. Lewis, manuscript in preparation) and (c) human NK 
cells (H. A. Young, unpublished observations). 

In this report we have identified a 108-bp 5' flanking re- 
gion of the IFN-3~ promoter that is necessary and su~cient 
to direct activation-specific and CSA-inhibitable expression 
in T cells, and that contains two highly conserved cis ele- 
ments critical for promoter function. In addition to these 
elements, other regions of the 5' flank appeared to modulate 
IFN-3' promoter activity. Further, it is likely that in the con- 
text of the intact gene, and in response to signals transduced 
through accessory ligands such as CD28, additional com- 
plexity contributes to proper regulation of this gene. Por- 
tions of the first intron have enhancer activity that, however, 
is not T cell specific (1, 19). Elements in the 5' flank that 
are responsive to estrogen (54) and to the tax protein of HTLV 
(21) may enhance IFN-3' expression in the appropriate con- 
text. This additional complexity notwithstanding, the cur- 
rent data provide insight into potential mechanisms by which 
the IL-2 and IFN-3~ genes may be independently regulated, 
though both are expressed early after T cell activation, re- 
quire the same signals for induction and are inhibited by CSA. 
The distal conserved element contains GATA and GM- 
CSF-MIP motifs not found in the IL-2 promoter, but present 
in the promoters of several other lymphokine genes that are 
preferentially expressed in memory vs. naive T cells. The prox- 
imal conserved element is homologous to the NFIL-2A ele- 
ment in the IL-2 promoter. Although sharing affinity for 
factors in T cell extracts, the NFIL-2A element binds Oct-l, 
but the IFN-3~ proximal element does not. NF-AT and AP-1 
elements, which appear to play a critical role in IL-2 pro- 
moter function (37, 55), are not present in the IFN-'y pro- 
moter sequences that were essential for expression (108 bp 
of 5' flank) or yielded optimal expression (538 bp of 5' flank). 
Since impaired function of the proximal AP-1 element in the 
IL-2 promoter appears to be the critical change leading to 
loss of IL-2 expression in anergic TH-1 T cell clones, the 
relative preservation of IFN-3/as compared to IL-2 expres- 
sion in anergic T cells may be related to the lack of a typical 
AP-1 element in the IFN-'y promoter (15). Conversely, meth- 
ylation within the proximal element of the IFN-'y gene, at 
a CpG dinucleotide not present in the NFIL-2A element of 
the IL-2 gene, may play a role in the limited expression of 
IFN-'y in naive T cells. The identification of these two essen- 
tial regulatory elements in the IFN-'y promoter provides a 
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focus for future studies to define the molecular nature of the 
factors and events regulating their activation-induced func- 

tion and to determine their role in the control of IFN-7 ex- 
pression in vivo. 
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