
Research Article
A Predictive Model Based on Pyroptosis-Related Gene Features
Can Effectively Predict Clear Cell Renal Cell Carcinoma Prognosis
and May Be an Underlying Target for Immunotherapy

Yufu Wang, Jinhui Liu, Lishuo Zhang, and Yifei Li

Department I of Urology, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xue Fu Road, Nangang District,
Harbin 150001, China

Correspondence should be addressed to Yifei Li; liyifeiyd@126.com

Received 5 May 2022; Revised 6 June 2022; Accepted 13 June 2022; Published 8 July 2022

Academic Editor: Dong Pan

Copyright © 2022 Yufu Wang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Background and Objective. Recent studies show that pyroptosis-related gene affects tumor cell proliferation, invasion, and
migration. But the diagnostic and prognostic value of pyroptosis-related gene in clear cell renal cell carcinoma (ccRCC) is
unknown. In the present research, a prognosis model according to pyroptosis-related gene was established to forecast
prognosis among patients with ccRCC. Methods. The clinical information and RNA-seq data of ccRCC patients were collected
from the TCGA dataset to first explore differential pyroptosis-related genes (PRGs). Univariate Cox regression and consensus
clustering were applied to identify ccRCC subtypes. The prognostic PRGs were subjected to LASSO regression analysis to
establish a prognostic model and to investigate its value and function. Finally, the relationship of the model immunity
checkpoints and immunity infiltration was assessed. Results. The receiver operating characteristic (ROC) showed that the 1-
year, 3-year, and 5-year prediction rates of the prognostic model were 0.715, 0.693, and 0.732, respectively. The high-risk
group had lower overall survival and higher stage than the low-risk group. Functional enrichment analysis showed that PRGs
were significantly enriched mainly in the PPAR pathway, inflammatory pathway, and immune activity. ccRCC patient
prognosis correlates with immune components in the microenvironment, and immune checkpoint molecules are significantly
expressed in the high-risk group. Immunotherapy may be effective in the high-risk group. Conclusion. Pyroptosis-related gene
has an important impact on the progression of ccRCC and can be used as an independent predictor of patient prognosis. In
addition, immune checkpoint molecules are significantly upregulated in high-risk populations, which may be a potential target
for immunotherapy.

1. Introduction

ccRCC is the most familiar histologic type of renal cell carci-
noma (RCC), accounting for about 85% of whole main
tumors of kidney. Although surgical treatment can achieve
better therapeutic results in early phases, this cannot be
always monitored until the later stages of the disease. In
addition, because the disease usually progresses rapidly and
30–40% of patients with localized disease still experience
recurrence and metastasis after surgical resection, the prog-
nosis for patients is generally poor [1, 2]. The neoplasm
immunity microcircumstances exert a crucial part in pro-
gression of many tumors, as well as usage in targeted therapy

against the tumor immune microenvironment is considered
to be a promising therapeutic modality [3]. However, as the
neoplasm immunity microcircumstances can be a compli-
cated ecosystem, the current characterization of the compo-
sition and cellular status of infiltrating ccRCC immune cells
has not been fully elucidated [4]. Therefore, understanding
immune cell infiltration in the ccRCC microenvironment
from a pyroptosis perspective is significant for developing
targets for potential immunotherapy.

Inflammation is the initiation of certain types of malig-
nant tumor changes, which exerts a vital part in develop-
ment of many tumors [5]. Inflammation is conductive to
malignant cellula proliferating and is an important player

Hindawi
Disease Markers
Volume 2022, Article ID 6402599, 21 pages
https://doi.org/10.1155/2022/6402599

https://orcid.org/0000-0002-3700-5767
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/6402599


in tumor escape and progression [6]. Pyroptosis is a pro-
grammed death induced by various stimuli that trigger the
inflammasome [7]. Pyroptosis activation leads to cytoplas-
mic swell, plasmalemma dissolution, and chromosome dis-
persion and promotes the discharge of cellular substances

(IL-1β as well as IL-18) [8]. There are two main pathways
for pyroptosis to trigger inflammation: the canonical inflam-
masome pathway and noncanonical inflammatory corpuscle
path. Canonical inflammatory corpuscle path triggers
pyroptosis via caspase-1-mediated secretion of
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proinflammatory factors (pro-IL-18 as well as pro-IL-1β)
leading to cell lysis. The noncanonical inflammatory corpus-
cle path induced pyroptosis mainly via activating caspase-11
as well as caspase-4/5 to cleave gasdermin D (GSDMD) [9,
10].

In recent years, pyroptosis is shown to be related to
many human illness, but its relationship with cancer prog-
nosis has been elusive. The main reason is that pyroptosis
has a double part among cancer progression [11–14]. In
one aspect, pyroptosis triggered by inflammasomes leads to
the release of a large number of cytokines that alter the
immune microenvironment and help tumors evade immune
surveillance [15, 16]. For example, Barber et al. found strong

caspase-1 expression during Barrett’s esophagus (BE) to
esophageal adenocarcinoma (EAC), confirming that stromal
caspase-1 expression is closely related to the development of
esophageal adenocarcinoma [17]. Marta data showed
GSDMB expression could be upregulated in breast cancer
patients contrasted to normal breast tissue, high levels of
which expression correlated with decreased survival and
increased metastasis [18]. On the other hand, cytokines pro-
duced by pyroptosis-related gene also activated immunity
system to improve efficiency of cancer immunotherapy.
For example, under hypoxia, PD-L1 uses caspase-8 to specif-
ically cleave GSDMC and produce the N-terminal domain,
triggering pyroptosis and promoting tumor necrosis [19].
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Figure 2: Discriminatively expressed PRGs and their mutual effects. (a) Heat map of discriminative expression of pyroptosis-related gene
among normal as well as cancer tissues. ∗P < 0:05; ∗∗P < 0:01; ∗∗∗ P < 0:001. (b) The PPI net showed mutual effects with PRGs
(mutual effect scores = 0:7). (c) Relevant networks of PRGs. (d) Heat map of pyroptosis differential gene single nucleotide variation
(SNV) expression in the pan-cancer spectrum.
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Cui et al. showed that MST1 may inhibit the progression of
glandular ductal adenocarcinoma (PDAC) cell proliferation
and migration and invasion through reactive oxygen spe-
cies- (ROS-) induced pyroptosis [20]. Thus, it can be vital
to study role and mechanism of pyroptosis in cancer devel-
opment for treatment as well as prognosis.

Currently, there are increasing discoveries about the
mechanism and function of pyroptosis in tumors. However,
the function of pyroptosis in ccRCC is not clear. We estab-
lished a pyroptosis-related prognosis model according to
the resulting pyroptosis-related genes (PRGs) to understand
the potential value in ccRCC, which offers novel thoughts for
intervening in the diagnostics and therapy among patients
with ccRCC.

2. Materials and Methods

2.1. Data Source. The research devise and workflow are indi-
cated in Figure 1. As of December 31, 2021, the cancer
genome profile (TCGA) databases (https://http://portal.gdc
.cancer.gov/repository) RNA sequencing (RNA-seq) data
and corresponding clinical features were obtained from
539 ccRCC patients and 72 normal renal tissue. Expression
information of the two datasets was standardized to values
of millions of fragments per kilobase (FPKM) prior to
contrast.

2.2. Identification of Discriminatively Expressed Relevant
Genes. According to differentially expressed pyroptosis-

related gene relevant genes, ccRCC patients were classified
into different groups using consensus clustering. A consen-
sus cluster consisting of differentially expressed PRGs was
constructed using the “ConsensusClusterPlus” package,
and we performed 1,000 replicates to ensure the stability of
our classification. Kaplan-Meier study was conducted with
R “survival” package to assess differences in prognosis of
ccRCC patients in distinct parts. Typing heat visualizes this
prognostically relevant gene expression difference and anal-
yses this relationship based on clinical-pathological
parameters.

2.3. Consensus Clustering of Differentially Expressed PRGs
and Prognostic Relevance in ccRCC. Based on discrimina-
tively expressed PRGs, ccRCC sick persons could be classi-
fied into different groups using consensus clustering. A
consensus cluster consisting of differentially expressed PRGs
was constructed using the “ConsensusClusterPlus” package,
and we performed 1,000 replicates to ensure the stability of
our classification. Kaplan-Meier study was conducted with
R “survival” package to assess differences in prognosis
among ccRCC patients in distinct parts. The typing heat
map visualizes this prognostically relevant gene expression
difference and analyses this relationship based on clinical-
pathological parameters.

2.4. Construction of Prognostic Model of ccRCC Based on
PRGs. To evaluate the process value of genes associated with
pyroptosis-related gene, we next used a Cox regression study
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Figure 3: TCGA cohort subtype classification and relationship with different clinical characteristics and survival. (a) Agreement cluster
cumulative distribution function (CDF) with k = 2 ~ 9. (b) Relative alert in the area below CDF profile for k = 2 to 9. (c) Distribution of
each sample for k between 2 and 9. (d) When k = 2, the ccRCC cohort from TCGA is split into two distinct clusters. (e) Kaplan-Meier
overall survival profile of two. (f) Heat map showing distribution of clinicopathological variables between the two clusters.
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to determine prognostic value of PRGs and identified genes
which were remarkably related to overall survival of ccRCC
sick persons. Then, the least absolute shrinkage and selection
operator (LASSO) regression algorithm was used for charac-
ter selection, and ten times cross-validation was adopted.
The R software package “glmnet” was used for aforemen-
tioned study. After concentration and normalization of the
TCGA expression data (applying the “proportion” function
in R), a risk score = coef ðPRG1Þ expr ðPRG1Þ + coe2f ðPRG
2Þ expr ðPRG2Þ +⋯+coef ðPRG9Þ expr ðPRG9Þ was calcu-
lated. Where coef denotes the coefficient, coef (PRGn) is
the coefficient of PRGs associated with prognosis, and expr
(PRGn) is the expression of PRGs. The risking value for
every sick persons was counted using this formula; and then,
TCGA ccRCC sick persons were separated in low and high-
risking parts based on the middle risking value. In the end,
ccRCC surviving distinctions among two parts could be
compared via Kaplan-Meier analysis. PCA and t-SNE analy-
ses of prognosis-related gene models could be conducted
with “Rtsne” and “ggplot2” R packages. ROC curve analysis
was performed at 1, 3, and 5 years using the “survival,”
“survminer,” and “time-ROC” R software packages.

2.5. Cox Regression Analysis of Prognostic Models and
Correlation with Clinical Pathological Characteristics. In
order to further elucidate underlying function of PRGs
among ccRCC, we used pheatmap to construct nine prog-

nostically relevant gene risk heat maps. Prognostic-
associated gene PPI networks were constructed using
STRING and subjected to Spearman correlation analysis.
The prognostic model was subjected to Cox regression anal-
ysis, and forest plots were drawn through “forestplot” R
package. In addition, R “suivival” package could be applied
for prognostic gene KM survival curve distribution.

2.6. Gene Set Enrichment Analysis. CcRCC patients in the
TCGA queue were separated in two parts according to mid-
dle risking value. Screening among low and high risking
parts was based on definite standards (jlog 2FCj ≥ 1 as well
as FDR q value < 0.05). The “clusterProfiler” R package
was used for GO and KEGG study of genes associated with
prognosis. In addition, KEGG pathway enrichment was per-
formed using the Cytoscape plugin “ClueGO.”

2.7. Immunohistochemical Staining Characteristics of
Prognostic Genes. Using the HPA (the mankind protein
atlas) database (https://www.proteinatlas.org), immune-
histochemical staining images of prognostic genes among
ccRCC tumor tissues as well as normal tissues were studied.
HPA database is use of the integration of various genomics
technologies to draw a map of all human proteins in cellulas,
tissues, and organs, including antibody-based image forma-
tion, MS-based proteomics, transcription omics, and sys-
tematic biology, all of which have free open access to data.
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Figure 4: Establishment of risking model in TCGA cohort. (a) Cox univariate study to determine the forest plot of the association between
14 PRGs and OS. (b) The best nine genes associated with OS were screened in LASSO regression model. (c) LASSO coefficient distribution
determined by optimal lambda. (d) Distribution of patients according to risking value. (e) Kaplan–Meier profiles for overall survival in high
as well as low risk patients. (f) Surviving condition of every sick person (low risk population: left dashed line; high risk population: right
dashed line). (g) PCA and t-SNE plots of ccRCC according to risking score. (h) ROC profile demonstrates the prediction efficiency of
risking value.
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2.8. Correlation between Prognosis Genes as well as Immunity
Infiltration. We used R language ESTIMATE algorithm
using the Rx64 version 4.0.5 feature to count proportion of
immunity and stromal cellulas in the TME for every speci-

men. Stromal core was positively related to matrix cells,
immunity core value was positively related to immune cells,
and the sum of the two was regarded as the total score. If the
corresponding score in the microenvironment is higher, the

CASP3

CASP4

CASP5

CHMP3

CHMP4C

AIM2

CASP9

GSDMB

PYCARD

Risk
Age
Gender
Grade⁎⁎⁎
Stage⁎⁎⁎
T⁎⁎⁎

M⁎⁎⁎
N⁎

N⁎

N0
N1
unknown

M⁎⁎⁎

M0
M1
unknown

T⁎⁎⁎

T1
T2
T3
T4

Stage⁎⁎⁎

Stage I
Stage II
Stage III
Stage IV
unknown

Grade⁎⁎⁎

G1
G2
G3
G4
unknown

Gender
Female
Male

Age
<= 65
> 65

Risk
Low
High

–6

–4

–2

0

2

4

6

(a)

(b)

1 0.36 –0.02 –0.39 –0.48 0.15 –0.13 –0.09 –0.26

1 0.02 –0.23 –0.35 –0.14 –0.13 –0.22 –0.33

1 0.34 0.09 0.11 0.16 0.02 –0.02

1 0.26 0.08 0.37 0.26 0.35

1 0.14 0.45 0.35 0.48

1 0.45 0.43 0.42

1 0.6 0.62

1 0.67

1

CHMP3

CHMP4C

CASP9

GSDMB

PYCARD

CASP3

CASP4

CASP5

AIM2

–1.0

–0.5

0.0

0.5

1.0
Corr

CH
M

P3

CH
M

P4
C

CA
SP

9

G
SD

M
B

PY
CA

RD

CA
SP

3

CA
SP

4

CA
SP

4

A
IM

2

(c)

Figure 5: Screening of prognostic risk genes. (a) Heat map was used for link among clinical pathological character as well as risking parts
(green: low expression; red: high expression, P < 0:05). (b) PPI net shows interaction of risk genes (lines represent interacting genes). (c)
Spearman correlation analysis among gene expressions.

8 Disease Markers



Age

Gender

Grade

T

M

N

Riskscore

0.008

0.879

<0.001

<0.001

<0.001

0.001

<0.001

pvalue

1.024 (1.006−1.043)

1.033 (0.680−1.568)

2.167 (1.640−2.863)

1.860 (1.474−2.347)

4.115 (2.673−6.335)

2.952 (1.526−5.710)

4.088 (2.764−6.045)

Hazard ratio

Hazard ratio

0.5 1 2 4 8

(a)

Age

Grade

T

M

N

Riskscore

0.006

0.154

0.396

<0.001

0.807

<0.001

pvalue

1.026 (1.007−1.045)

1.288 (0.910−1.825)

1.133 (0.849−1.513)

2.550 (1.507−4.315)

0.907 (0.417−1.975)

2.464 (1.541−3.939)

Hazard ratio

Hazard ratio

0.25 0.5 1 2 4 8

(b)

0 2 4 6 8 10 12

0.0

0.2

0.4

0.6

0.8

1.0
CHMP4C

Survival years (OS)

Su
rv

iv
al

 ra
te

High exp (N = 265)
Low exp (N = 265)

log−rank P = 0.001
HR = 0.604 (95% CI, 0.445−0.82)

(c)

0.0

0.2

0.4

0.6

0.8

1.0

High exp (N = 265)
Low exp (N = 265)

log−rank P = 0
HR = 0.461 (95% CI, 0.337−0.631)

0 2 4 6 8 10 12

CHMP3

Survival years (OS)

Su
rv

iv
al

 ra
te

(d)

High exp (N = 265)
Low exp (N = 265)

log−rank P = 0.006
HR = 1.53 (95% CI, 1.13−2.06)0.0

0.2

0.4

0.6

0.8

1.0

Su
rv

iv
al

 ra
te

0 2 4 6 8 10 12

CASP9

Survival years (OS)

(e)

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv

iv
al

 ra
te

High exp (N = 265)
Low exp (N = 265)

log−rank P = 0.023
HR = 1.42 (95% CI, 1.05−1.92)

0 2 4 6 8 10 12

CASP3

Survival years (OS)

(f)

High exp (N = 265)
Low exp (N = 265)

log−rank P = 0.001
HR = 1.65 (95% CI, 1.22–2.24)0.0

0.2

0.4

0.6

0.8

1.0

Su
rv

iv
al

 ra
te

0 2 4 6 8 10 12

CASP4

Survival years (OS)

(g)

High exp (N = 265)
Low exp (N = 265)

log−rank P = 0.005
HR = 1.54 (95% CI, 1.14−2.09)0.0

0.2

0.4

0.6

0.8

1.0

Su
rv

iv
al

 ra
te

0 2 4 6 8 10 12

CASP5

Survival years (OS)

(h)

Figure 6: Continued.

9Disease Markers



corresponding content is higher. We next studied associa-
tion among prognosis genes as well as immunity infiltration
by TIMER. TIMER is a dependable database for analyzing
the abundant tumor-infiltration immunity cellulas.

2.9. Experimental. Wilcoxon test was applied to contrast 2
parts, as well as Kruskal-Wallis measurement was applied
to contrast more than 2 parts. Spearman was used for rele-
vance analysis between genes and gene expression. Kaplan-
Meier analyses were applied to assess overall survival, as well
as log-rank tests were applied to contrast overall survival
parts. The Mann–Whitney test was used when comparing
immune cell infiltration and immune pathway activation
between the two groups. Mann–Whitney measurement was
applied to compare the infiltration of immune cells as well
as activation of immunity pathways among 2 parts. Gene
expression data and all statistical analysis could be com-
pleted in R (v4.1.1).

3. Results

3.1. The Study Procedure of the Research Is Indicated in
Figure 1. We summarize this work into the following
flowchart.

3.2. Identification of PRGs among Normal as well as Cancer
Tissue. Contrast expression standards of 52 PRGs among
72 normal tissues as well as 539 tumor tissues from
TCGA-ccRCC data and discovered that all 41 cell PRGs
were discriminatively expressed among cancer as well as
neighboring noncancer tissues (P < 0:01). Nine of these
genes (NLRP2, TP63, CYCS, CASP9, IL1A, CHMP2B,
CHMP4C, CHMP3, and IL1B) were downregulated, while
32 genes (HMGB1, CHMP4B, IRF2, CHMP2A, CHMP6,
TP53, GPX4, CASP3, PLCG1, NOD1, GSDMD, CASP8,
IL18, CHMP4A, IRF1, BAX, NLRP1, CASP4, NLRP3,
GSDMA, NLRP6, CASP1, NLRC4, GSDMB, PYCARD,
GSDMC, NLRP7, NOD2, GZMB, CASP5, AIM2, and
GZMA) were upregulated in cancer tissues. Discriminative
gene expression in 2 parts is showed as a heat map
(Figure 2(a), blue: low expression standard; red: high expres-
sion standard).

To further explore mutual effects of the PRGs, we per-
formed protein-protein interactions (PPIs). The results
showed that NLRP1, GSDMD, NLRC4, CASP1, CASP3,
NLRP3, CASP8, PYCARD, CHMP4A, and AIM2 may be
central genes (Figure 2(b)). In addition, the correlation net
of overall pyroptosis-related gene differentially associated
genes can be indicated in Figure 2(c) (red: positive
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Figure 6: Procedure value of prognosis models. (a, b) Univariate as well as multivariate Cox regression analysis of risking scores. (c) Kaplan-
Meier surviving profile for CHMP3. (d) Kaplan-Meier surviving profile for CHMP4C. (e) Kaplan-Meier surviving profile for CASP9. (f)
Kaplan-Meier surviving curve for CASP3. (g) Kaplan-Meier surviving curve for CASP4. (h) Kaplan-Meier surviving curve for CASP5. (i)
Kaplan-Meier surviving curve for GSDMB. (j) Kaplan-Meier surviving curve for AIM2. (k) Kaplan-Meier survival curve for PYCARD.
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correlation; blue: negative correlation). Finally, pan-cancer
expression profiling revealed the presence of single nucleo-
tide variants (SNVs) in the majority of clear cellular cancer
of kidney (Figure 2(d)).

3.3. Consensus Clustering Identified Two ccRCC Clusters. To
find out link among PRGs as well as different groupings of
ccRCC, we conducted an agreement clustering study on
530 ccRCC sick persons with complete clinical data in
TCGA queue. By adding cluster variable (k) from 2 to 10,
we discovered k = 2 was the most appropriate selection to
partition the ccRCC sick person queue in 2 clusters
(Figures 3(a)–3(d)). Kaplan-Meier curves showed that clus-
ter two had a significantly worse overall survival time than
cluster one prognosis, which was statistically significant
(P < 0:001, Figure 3(e)). In addition, the gene expression
curves and clinic characters are indicated with a heat map
(abscissa represents the sample, and ordinate represents
the typing differential gene). Characteristics included gen-
der, age (≤65 or >65 years), stage (I-IV), grade (G1-G4),
TNM stage, and cluster subtype. Compared with C1, we
found that C2 could be remarkably related to a higher stage,
grade, and TNM stage (Figure 3(f)).

3.4. Construction and Validation of Nine Pyroptosis-Related
Gene Models. All 530 corresponding sick persons are with
entire surviving information in ccRCC sample. Univariate
Cox regression study was applied as an initial screening for
survival relation genes. Fourteen genes (CASP3, CASP4,
CASP5, CHMP3, CHMP4A, CHMP2B, CHMP4C,
GSDMD, GZMB, IL1A, AIM2, CASP9, GSDMB, and
PYCARD) that satisfied standards of P < 0:05 were kept for
next study, of which 11 genes (CASP3, CASP4, CASP5,
CHMP4A, GSDMD, GZMB, IL1A, AIM2, CASP9, GSDMB,
and PYCARD) increased the risk of disease, while the other
three genes (CHMP3, CHMP2B, and CHMP4C) were pro-
tective genes (Figure 4(a)). The prognostic model con-
structed by nine genes could be selected according to best
score by LASSO Cox regression analysis (Figures 4(b) and
4(c)). Risking value can be calculated below: Risking score
= ð0:121CASP3 exp:Þ + ð0:107CASP4 exp:Þ + ð0:207CASP5

exp:Þ + ð0:098AIM2 exp:Þ + ð0:331CASP9 exp:Þ + ð0:286
GSDMBexp:Þ + ð0:0003PYCARDexp:Þ ð−0:350CHMP3 exp:
Þ + ð−0:172CHMP4Cexp:Þ. They were separated in high risk
as well as low risk parts based on middle risking value
(Figure 4(d)). PCA study as well as t-SNE analysis indicated
sick persons with distinct risking could be well distinguished
in 2 parts (Figure 4(g)). Kaplan-Meier curves show remark-
ably worse OS in high-risk part than in the low-score part
(P < 0:001, Figure 4(e)). It was indicated by Figure 4(f) that
sick persons in high-risk value part could be strongly related
to a high risking of death rate, but sick persons in low risk
part had surviving possibility. Moreover, ROC profile study
was conducted to evaluate discrimination ability of gene fea-
tures using R package “survival ROC” (Figure 4(h)).

3.5. Correlation between Prognosis Models as well as Clinical
Pathological Factors. We studied the association of PRG
expression profiles using different risk groups as well as clin-
ical pathological features using heat maps. The results
showed that a significant difference in tumor phase was
examined among low-risk as well as high-risk patients, like
more stage IV as well as fewer T1 specimens in high risk sick
persons (Figure 5(a)), P < 0:05. Nine gene interactions in the
prognostic model were explored using PPI and Spearman
correlation analyses (Figures 5(b) and 5(c)).

3.6. Prognostic Models Are Independent Prognosis Elements.
We used Cox regression analysis to evaluate whether prog-
nosis model could act as an independent prognosis element.
Univariate Cox regression study showed that age, grade,
TNM, and risk score were related to prognosis, P < 0:001
(Figure 6(a)). Second, a multivariate Cox regression study
indicated risk value, age, and M phase were independent ele-
ments influencing the prognosis among ccRCC sick persons,
P < 0:001 (Figure 6(b)). In addition, Kaplan-Meier survival
curves for gene expression in the prognostic model are indi-
cated in Figures 6(c)–6(k). The consequences indicated there
were seven prognostic genes with high expression negatively
relevant to surviving rate of ccRCC sick persons (CASP3,
CASP4, CASP5, AIM2, CASP9, GSDMB, and PYCARD),
and two prognostic genes with high expression positively
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Figure 8: Prognostic risk genes are associated with immune checkpoints. (a) Expression of immune checkpoints in renal clear cell
carcinoma (G1) and normal tissues. (b–h) Contrast to low risking part, expression standards of PD-L1 (CD274), CTLA4, PDCD1LG2
(PD-L2), LAG3 (CD223), TIGIT, HAVCR2 (TIM-3), and PDCD1 (PD-1) could be remarkably upregulated in high risk part, P < 0:001.
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Figure 9: Continued.
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correlated with surviving rate of ccRCC sick persons
(CHMP3 and CHMP4C), P < 0:05.

3.7. Enrichment Functional Analysis of Prognostic Models. In
order to further find out distinctions in gene function as well
as paths among risk genes, KEGG and GO function enrich-
ment studies of the risk genes could be performed. GO
results indicated that PRGs were primarily referred to
inflammatory responses, immune activity, chemokine-
mediated signaling pathways, and inflammatory cell chemo-
taxis (Figures 7(a) and 7(b)). Moreover, KEGG path analysis
showed PRGs could be highly abundant among PPAR sig-
naling pathway, Staphylococcus aureus infection, glycoly-
sis/gluconeogenesis, and Toll-like receptor signaling
pathway (P < 0:05; Figures 7(c) and 7(d)). ClueGO showed
a network diagram of the correlation between prognostic
genes and pyroptosis (Figures 7(e) and 7(f)).

3.8. Prognostic Risk Scores Correlate with the Expression of
Immunity Checking Points. In order to determine if our risk-
ing model can reflect the status of the immune microenvi-
ronment and provide guidance for immunotherapy
response, we extracted 539 renal clear cell carcinoma tissues
as well as 59 normal specimens through TCGA database.
Results of eight immune checkpoint tests are shown in
Figure 8(a), and G1 represents renal clear cell carcinoma
samples. We then analyzed the differential expression of
immunity checking points among sick persons at different
risks. In high risk group, PDCD1 (PD-1), CTLA4,
PDCD1LG2 (PD-L2), TIGIT, and LAG3 (CD223) could be
significantly highly expressed, P < 0:05 (Figures 8(c)–8(h)).
However, PD-L1 (CD274) and HAVCR2 (TIM-3) could
not be significantly distinct, with P scores of 0.55 as well as
0.58, separately (Figures 8(b) and 8(g)).

3.9. Immunostaining Images of Genes in Prognostic Models in
Normal Renal Tissue and Renal Clear Cell Carcinoma. In
order to confirm the diagnosis of prognostic genes differen-
tially expressed in renal clear cell carcinoma as well as nor-
mal tissues, we utilized HPA database for further
validation, as well as consequences are indicated in

Figure 9. Compared with normal renal tissues, CASP3,
CASP4, Caspase-5, AIM2, CASP9, GSDMB, and PYCARD
in renal clear cell carcinoma tissues stained deeper and more
widely, showing positive expression (Figures 9(a)–9(b) and
9(i)). Meanwhile, CHMP3 and CHMP4C were significantly
stained in normal renal tissues, and the staining range was
small in cancer tissues (Figures 9(g) and 9(h)).

3.10. Expression of Pyroptosis-Related Genes Correlates with
Immune Infiltration. Inflammatory responses triggered by
pyroptosis exert a crucial part in cancer immunity microcir-
cumstance. First, we analyzed the association of stromal
components, immune components, and total components
in the microenvironment with ccRCC. The consequences
indicated only proportion of ImmuneScore could be nega-
tively related to overall survival, and the ratio of other com-
ponents was not significantly correlated with overall survival
(Figures 10(a)–10(c)). Moreover, to further comprehend the
relation among nine prognostic genes as well as immunity
infiltrating in the ccRCC microcircumstance, the correlation
between the expression of prognostic genes (CASP3, CASP4,
CASP5, CHMP3 (VPS24), CHMP4C, CASP9, AIM2,
GSDMB, and PYCARD) and immunity infiltrating in
ccRCC was elucidated with TIMER database. Results
showed that CASP3, CASP4, CASP5, and AIM2 expressions
in prognostic genes indicated a significant positive relation
with macrophage, neutrophil, and dendritic cell in the six
immune cells screened, P < 0:01 (Figures 10(d)–10(f) and
10(j)). Moreover, expression of AIM2 could be also posi-
tively related to B cell and CD8 + T cell, P < 0:01
(Figure 10(j)). However, there was little significant correla-
tion between CASP9, GSDMB, CHMP3 (VPS24), CHMP4C,
and PYCARD expression and the six immune cells screened
(Figures 10(g)–10(i), 10(k), and 10(l)).

4. Discussion

In this current paper, we sought to find out prognostic value
of pyroptosis-related genes among ccRCC as well as the rela-
tionship with tumor immune infiltration and immune
checkpoints. We found that the mRNA levels of most of

Normal tissue
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(i)

Figure 9: Images of discriminative expression in ccRCC patients as well as normal tissues. Differential coloring pictures of normal renal
tissue as well as tumor tissue using antibodies. (a) CASP3. (b) CASP4. (c) GSDMB. (d) AIM2. (e) PYCARD. (f) Caspase-5. (g) CHMP3.
(h) CHMP4C. (i) CASP9.
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the currently 52 known pyroptosis-related gene relevant
genes were discriminatively expressed in ccRCC as well as
normal tissues, many of which had single nucleotide varia-
tions. Cluster study indicated that C2 could be strongly
related to higher renal clear cell carcinoma stage. Univariate
and multivariate Cox regression studies indicated risk score
was an independent prognosis risk element, as well as our
screened prognosis model was able to effectively forecast
one-year, three-year, and five-year entire surviving in ccRCC
sick persons. A growing number of researches have indi-
cated cellula death mediated by pyroptosis plays a key part
in progression of many cancers and can affect all stages of
tumors [21]. This mode of cell death is illustrated to be
referred to tumor regulation in hepatocellular carcinoma,
gastric cancer, breast cancer, and esophageal cancer [22]. A
recent report showed that CASP4, CASP5, AIM2, and
GSDMB were significantly upregulated in ccRCC, and these
upregulated genes could be remarkably related to immune
infiltration and poor survival among ccRCC [23–25]. The
study also found that models such as CASP3, CASP9, and
PYCARD may exert a key part in development of ccRCC,
highlighting for the first time the possible role of these genes
in ccRCC. Our findings will improve the understanding of
PRGs in ccRCC and provide new options for managing
and modulating the treatment of ccRCC shortly.

In recent years, pyro-degeneration is a newly recognized
type of programmed cell death (PCD). It can be featured via
inflammatory corpuscle activating as well as the release of
large amounts of inflammatory cytokines, mainly involved
in proinflammatory responses [26]. On the one hand,
inflammatory responses triggered by pyroptosis exert antitu-
mor effects. On the other hand, excessive inflammation
caused by pyroptosis may disrupt immune defense thereby
promoting tumor progression [27–29]. Our finding that
inflammatory responses triggered by pyroptosis-related

genes in the microenvironment lead to poor prognosis in
ccRCC patients provides an important reference for under-
standing prognosis value as well as the underlying link of
pyroptosis associated genes among ccRCC. Previous studies
have shown that CASP3, CASP9, and PYCARD are involved
in tumor invasion and metastasis. For example, CASP3 is
reported to be referred to the spread of tumor cellulas in gas-
trointestinal tumors, and targeted CASP3 therapy can
inhibit the development of cancer cells [30]. CASP9 is a
protein-coding gene, and many reports have shown that
CASP9 gene polymorphisms are associated with increased
tumor risk, but this conclusion is controversial [31, 32]. In
gliomas, high expression of PYCARD is related to poor
patient prognosis and is used as an independent predictor
of chemoresistance [33]. However, the model shows high
risk is positively associated with low overall survival as well
as higher stage, and targeting these genes is a new option
for therapy of ccRCC sick persons.

Cancer microcircumstance is a complicated group com-
position where cancer cellulas recruit large numbers of neu-
trophils and macrophages to help evade immune
surveillance [34, 35]. We found that the prognosis of ccRCC
patients was mainly negatively correlated with the immune
component, and patients with higher immune proportions
had worse prognosis. Function enrichment indicated
pyroptosis-related genes could be primarily referred to
innate immune regulation such as leukocyte recruitment,
neutrophil activation, and activation of inflammatory signal-
ing pathways such as PPAR signaling pathway and Staphylo-
coccus aureus infection. In addition, immune correlation
also confirmed that the genes could be primarily referred
to macrophage, neutrophil, and dendritic cell regulation.
Numerous researches have indicated immunity cellulas in
ccRCC microcircumstance have a close link with tumor
cells. For example, Braun et al. found a higher proportion
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Figure 10: Relationship among prognosis genes as well as immunity infiltrating (TIMER) in microenvironment. (a–c) Contents of each
component in the microenvironment and survival curves of ccRCC patients. (d) CASP3. (e) CASP4. (f) CASP5. (g) CASP9. (h) GSDMB.
(i) PYCARD. (j) AIM2. (k) CHMP3 (VPS24). (l) CHMP4C.
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of exhausted CD8 + T cells and immunosuppressive M2-like
macrophages in patients with advanced ccRCC, and this
inhibitory effect showed progressive immune dysfunction
as the disease stage of ccRCC progressed [36]. Tessier-
Cloutier et al. found that ccRCC microenvironment is infil-
trated with a large number of neutrophils, many of which
act directly on tumor tissue by releasing elastase thereby
promoting tumor spread [37]. The consequences indicate
therapy against microenvironmental immunity cellulas can
be an efficient strategy for delaying disease progression and
activating immune responses.

In addition, our study found significantly higher expres-
sion of PDCD1 (PD-1), CTLA4, PDCD1LG2 (PD-L2),
TIGIT, and LAG3 (CD223) in populations from the high
risking part, which are potential targets for immunity check-
ing point blockade treatment in ccRCC patients. Many
researches have indicated T cell function in human cancer
microcircumstance is closely related to the ability of T cells
to recognize antigens [38]. Influenced by a variety of signal-
ing pathways and cytokines in the TME, only fewer tumor-
reactive T cells are functional in the microenvironment. An
important driving force is the overexpression of immune
checkpoint molecules causing long-lasting antitumor
responses that are difficult for T cells to produce [39].
Tumor cells would use the inhibitory checkpoint PD-L1/
PD-1 signaling of T cell activity to evade T cell immune kill-
ing [40]. Such as in nonsmall cell lung cancer (NSCLC) as
well as hepatocellular carcinoma (HCC), a malfunction CD
8 + T cell population was discovered to be positively related
to high levels of expression of suppressor receptor genes
(PD1, PD-L1, LAG3, CTLA4, TIGIT, and HAVCR2) [41,
42]. Zhang et al. found that TIGIT receptor binding to
CD155 leads to CD8 + T cell inactivation which supports
gastric cancer (GC) development and progression [43].
Therefore, we suspect that in ccRCC patients, pyroptosis
produces cytokines that promote immune checkpoint
expression while massively recruiting immune cells thereby
creating an immunosuppressive microenvironment. How-
ever, our study only preliminarily uncovers the relevant link
among PGRs as well as tumor immunity microcircum-
stances, and more prospective studies are required in the
future.

Of course, the study has some boundedness. Every anal-
ysis was performed with TCGA ccRCC queue, as well as
in vitro tests are needed to next identify the consequences.
Moreover, the molecular mechanism of PGRs in ccRCC
development should be explored.

5. Conclusion

In conclusion, we evaluated the diagnostic and prognosis
value of cell PGRs in ccRCC sick persons by comprehensive
and systematic bioinformatics analysis. Our results may offer
novel ideas in the part of pyroptosis-related gene in micro-
environment among ccRCC patients, paving way for future
assessment of ccRCC prognosis and development of more
effective immunotherapeutic strategies.
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