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Abstract: A new double-open-cubane core Cd(II)-O-Cu(II) bimetallic ligand mixed cluster of
type [Cl2Cu4Cd2(NNO)6(NN)2(NO3)2].CH3CN was made available in EtOH/CH3CN solution.
The 1-hydroxymethyl-3,5-dimethylpyrazole (NNOH) and 3,5-dimethylpyrazole (NNH) act as
N,O-polydentate anion ligands in coordinating the Cu(II) and Cd(II) centers. The structure of
the cluster in the solid state was proved by XRD study and confirmed in the liquid state by UV-vis
analysis. The XRD result supported the construction of two octahedral and one square pyramid
geometries types around the four Cu(II) centers and only octahedral geometry around Cd(II) two
centers. Interestingly, NNOH ligand acts as a tetra-µ3-oxo and tri-µ2-oxo ligand; meanwhile, the N-N
in NNH acts as classical bidentate anion/neutral ligands. The interactions in the lattice were
detected experimentally by the XRD-packing result and computed via Hirschfeld surface analysis
(HSA). The UV-vis., FT-IR and Energy Dispersive X-ray (EDX), supported the desired double-open
cubane cluster composition. The oxidation potential of the desired cluster was evaluated using a
3,5-DTB-catechol 3,5-DTB-quinone as a catecholase model reaction.

Keywords: Cd-O-Cu cluster; XRD/HSA; catecholase; spectral

1. Introduction

Multinuclear cluster chemistry has gained high interest due to their biochemistry potential
applications and structural diversity [1]. The synthesis of multinuclear Cu(II) complexes have
been planned via various factors, for example, counter ions, ligands, reagents sequence, solvents,
temperature and pH [2]. Cu(II) complexes with various ligands compositions and polynuclear structures
are recorded in the literature with their molecular biology, magnetism applications and catalysis.
Multi-copper clusters can enhance several oxidation reactions of amines and alcohols [3–7]. Copper (II)
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complexes clusters can also serve as metallo-pharmaceutical agents as antitumor, antimicrobials,
antibacterial, antifungal, antipyretic, antidiabetic and antiviral agents [8–12]. The use of O, N, P-ligands
as polydentate was been a good preference to build multilateral and multinuclear architectures cluster
because of their electronic, steric effect and several coordination modes [13–16]. Tetra-nuclear Cu(II)
clusters are existing as hot-urge points in bioinorganic modeling, magnetochemistry, multielectron
transfer and catalysis. In the two last decades, plenty of cubane clusters were prepared by using
alkoxo-bridged NOO or NNO types of donor ligands were prepared until now [17–22].

On the other hand, clusters with multiple spin molecular centers revealed a good catalytic aspect,
especially in industrial oxidation processes [23–29]. Clusters with chelate mixed alcoholic pyrazole
ligands and metal have recently received less interest due to their difficulty in preparation, low stability
and rear in collecting suitable crystals to be judged by XRD single structure analysis [25–28].

We recently synthesized several novel tetra-nuclear metal cubane clusters; their structures were
evaluated by XRD analysis, and their cluster catecholase catalytic activities were also evaluated by
converting catechol to O-quinone as an oxidation model [21,22,30]. In this piece of work, the bimetallic
Cd-O-Cu double-open cubane [Cl2Cu4Cd2(NNO)6(NN)2(NO3)2].CH3CN cluster made available using
chelate NNOH and NNH ligands, the structure of the cluster was proven by XRD, the tetrahedral-µ3-O
and trigonal pyramidal-µ2-O bridges were detected. The octahedral and square pyramid geometries
were resolved for both the metal centers. Moreover, physicochemical and HS analyses were determined
to ensure the catecholase catalytic process of the desired cluster in mild or harsh conditions.

2. Results and Discussion

2.1. Cluster Preparation

The desired bimetallic cluster was prepared by stirring CuCl2.2H2O and Cd(NO3)2.4H2O metallic
salts together with 1-hydroxymethyl-3,5-dimethylpyrazole (NNOH) and 3,5-dimethylpyrazole (NNH)
at RT for 24 h using EtOH:CH3CN solution (Scheme 1). The desired reaction of clusterization was
performed at RT in an open O2 atmosphere with equivalent amounts of each ligand and metal salt,
and the final bimetallic [Cl2Cu4Cd2(NNO)6(NN)2(NO3)2].CH3CN cluster was isolated in 78% yield.
Moreover, the 3D structure was definite by XRD analysis (for the first time).
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Scheme 1. Synthesis of the [Cl2Cu4Cd2(NNO)6(NN)2(NO3)2].CH3CN bimetallic cluster.

2.2. Single Crystal X-ray Diffraction (SC-XRD) Investigation

The 3D structure of the newly desired cluster is shown in Figure 1, whereas the selected atomic
and angles distances are provided in Table 1. The cluster crystallized in the monoclinic/P21/c crystal
system and space group, respectively. The cluster crystalized with 4Cu and 2Cd metal ion double open
cubane core centers with [Cl2Cu4Cd2(NNO)6(NN)2(NO3)2].CH3CN formula. All the organic NNOH
and NNH and inorganic NO3 and Cl ligands acted as chelate or bridge anion donors, which stabilized
the cluster as neutral with no, counter ions (Figure 1a). No solvents like MeOH or water molecules were
detected, but only one uncoordinated CH3CN molecule was present in the crystal lattice (Figure 1b).
The cationic units of the two Cd(II) and four Cu(II) centers were not directly bonded. On the other hand,
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all the centers had methoxo-bridge like 4µ3-O, 2µ2-O, 2µ2-NO3 or 2µ2-Cl- bridge functional groups.
Furthermore, both NN− ligands, which acted as terminal bridge donors bidentate that coordinated to
the Cu(II) centers only, supported the formation of two different Cu(II) geometrical centers: terminal
2Cu(II) centers with 6-coordinate [2N, 3O, 1Cl], constructing an octahedral center. Both centers were
saturated with one O∩O-bidentate NO3 ligand (Figure 1c). Conversely, the other Cu(II) core centers
were sterically forced to be with 5-coordinate [2N, 3O], constructing a square pyramid geometry center
with τ[1O2O6N1N] = 3.12 ◦C (Figure 1d). Both core 2Cd(II) centers were constructed with distorted
octahedral centers once the 6-coordinates [1N, 4O, 1Cl] were recorded (Figure 1e). It was delightful
to observe that NNO− ligands coordinated with the both Cu and Cd centers via η3:η1-O,N-modes
of coordination, hence the di-µ2-methoxo-trigonal pyramid-O center (Figure 1f), and two different
tetra-µ3-methoxo-tetrahedral-O centers (Figure 1g,h).

Table 1. Selected bond (Å) and angles lengths (◦) of the desired cluster.

No. Bond Type Bond Length Å No. Angle Type Angle Value (◦)

1 Cu2 N1 1.972 (5) 1 N2 Cu1 N8 170.5 (2)
2 Cu1 N2 1.951 (6) 2 N2 Cu1 O3 94.5 (2)
3 Cu1 O3 2.030 (4) 3 N2 Cu1 O4 93.7 (2)
4 Cu1 O4 2.041 (6) 4 N2 Cu1 O5 92.8 (2)
5 Cu1 O5 2.662 (8) 5 N2 Cu1 Cl1 96.3 (2)
6 Cu1 Cl1 2.712 (3) 6 N8 Cu1 O3 80.1 (2)
7 Cu2 O1 2.008 (4) 7 N8 Cu1 O4 89.3 (2)
8 Cu2 N6 2.010 (5) 8 N8 Cu1 O5 81.9 (2)
2 Cu1 N8 1.995 (6) 9 N8 Cu1 Cl1 91.5 (2)
10 Cu2 O2 1.927 (4) 10 O3 Cu1 O4 161.0 (2)
11 Cu2 O3 2.279 (5) 11 O3 Cu1 O5 110.5 (2)
12 Cd1 Cl1 2.542 (3) 12 O3 Cu1 Cl1 89.2 (1)
13 Cd1 N4 2.301 (5) 13 O4 Cu1 O5 51.9 (2)
14 Cd1 O1 2.472 (4) 14 O4 Cu1 Cl1 106.9 (2)
15 Cd1 O2 2.235 (5) 15 O5 Cu1 Cl1 157.5 (2)
16 Cd1 O1 2.299 (5) 16 N1 Cu2 N6 101.6 (2)
17 Cd1 O3 2.362 (4) 17 N1 Cu2 O1 93.2 (2)
18 Cl1 Cu1 2.712 (3) 18 N1 Cu2 O2 167.2 (2)
19 N1 N2 1.395 (9) 19 N1 Cu2 O3 90.6 (2)

Experimentally, several polar shorter interactions < 3 Å were detected in the crystal lattice since
the cluster contains O, N and Cl heteroatoms together with polar H atoms. The non-bonded O atom of
NO3 ligands played a critical role in the building of the net of H-bonds in cluster lattice. Therefore,
4 × 2 HCH . . . .O-NO2 with 2.58 and 2.70 Å (Figure 2a) with full geometric parameters (Å, degree) are
illustrated in Table 2 are recorded. The C-H . . . ..πC=C ring of NN ligands as a short interaction with
2.80 Å distance played a critical role in stabilizing the crystal lattice since four bonds of such type
were recorded (Figure 2b) and the interesting solvent interactions 2Cl . . . . Π CNCH3CN with 3.56 Å
(Figure 2c) [31–35].

Table 2. Geometric parameters (Å, degree) for C-H . . . O interactions.

D-H d(D-H) d(H..A) <DHA d(D..A) A

C6-H6A 0.970 2.620 127.17 3.298 O2 i

C18-H18A 0.970 2.578 141.13 3.388 O6 ii

Symmetry code: i: −x + 1, −y + 1, −z + 1; ii: −x + 1, −y + 1, −z + 1.
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Figure 1. (a) ORTEP structure (50% probability) of the bimetallic cluster, (b) molecular structure
without protons showing no water in the crystal lattice, (c) octahedral geometry around Cu(II)
centers, (d) pyramid geometry around the other Cu(II) centers, (e) distorted octahedral geometry
around Cd(II) centers, (f) di-µ2-methoxo-trigonal pyramid-O centers, (g) and (h) two different
tertra-µ3-methoxo-tetrahedral-O centers.
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2.3. HS and 2D-FP Investigation

The surface was mapped to obtain more interaction information on the molecule and its
surrounding molecules in the crystal lattice that played critical roles in stabilizing the structural
formula via short intermolecular forces reflected by red spot sizes on the normalized dnorm [36–41].
The results illustrated in Figure 3 showed that the values of HS with three-dimensional shape and cave
centers and shape ranged from 0.723 to 1.874 a.u. The red spots were behind the polar atoms such as
oxygen, nitrogen, chlorine and hydrogen. Eleven red points were detected on the computed cluster
surface, and they were attributed to the existence of 8 H-bond interactions. Two C-H . . . ..O-NO2

(Figure 3a–c) formed H-bonds with a distance of 2.56 and 2.72 Å and two Cring-H . . . .C=C with a length
of 2.76 Å (Figure 3d). The computed HS and experimental XRD interactions were highly matched in
their positions and structural parameter values.

The 2D-FP plots illustrated in Figure 4 were constructed from the 2D-HS by considering outside
and inside closest-neighbor molecules. These integrated visions on contacts were helpful in the
imagining of nonpolar and polar atoms interactions contributions in the cluster lattice. The other
atom . . . atom contact rations were resolved as H . . . H (60.0%). Intermolecular contacts showed the
larger contribution part and H . . . ..M (Cu and Cd) (0.0%) interactions ratio. Early studies concerned H
. . . H connections as steric repulsive interactions that disturb the molecular system [42]. Moreover,
the understanding of H . . . H interactions was verified and changed in the 1990s since a new type
of interaction named the dihydrogen bond (DHB) was recorded in crystal structures of different
organometallic complexes [42–45]. The other atom . . . atom intermolecular forces are illustrated in the
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2.4. FT-IR and EDX Investigations

For the preparation of [Cl2Cu4Cd2(NNO)6(NN)2(NO3)2], the CH3CN cluster was followed up by
FT-IR, as shown in Figure 5. The obtained bimetallic cluster reflected several IR bands matching with
its continent functional groups. Several stretching vibrations were exposed in the cluster backbone like
aliphatic and aromatic C-H, NO3, C=N, MeCN, C-O, C=C, Cu-O, Cd-O, Cu-N, Cd-N and M-Cl, which
were cited to their expected wavenumbers (see experimental part). Kinetically, the important changes
supporting the clusterization process were the vanishing of N-H (in NNH ligand) peak at 3170 cm−1

by the complexation NNH with metal centers and the appearing of new M-O/M-N bands at >400 cm−1

chemical shifts [21,22]. The broad peak at ~3400 cm−1 was mostly due to humidity on the crystal
surface of the cluster. Peaks at ~2930–2820 cm−1 in both the ligand and the cluster were attributed to
C-H stretching vibrations, the C=N stretching vibration in the free ligand shifted from 1610 cm−1 to
1560 cm−1 upon coordination to the metal center. The appearance of broad peaks at 265–2500 cm−1 in
the cluster was only due to the presence of MeCN stretching vibration. The C=C and C-O stretching
vibrations in both ligand and cluster were the same, with ~1480 and 1100 cm−1, respectively. The M-O
and M-N bonds for the both metals (Cu and Cd) vibrations were in the low range ~400–450 cm−1.



Int. J. Mol. Sci. 2020, 21, 8787 7 of 14

Int. J. Mol. Sci. 2020, 21, x 7 of 14 

 

attributed to C-H stretching vibrations, the C=N stretching vibration in the free ligand shifted from 
1610 cm−1 to 1560 cm−1 upon coordination to the metal center. The appearance of broad peaks at 265–
2500 cm−1 in the cluster was only due to the presence of MeCN stretching vibration. The C=C and C-
O stretching vibrations in both ligand and cluster were the same, with ~1480 and 1100 cm−1, 
respectively. The M-O and M-N bonds for the both metals (Cu and Cd) vibrations were in the low 
range ~400–450 cm−1. 

 
Figure 5. FT-IR of (a) 3,5-dimethylpyrazole (NNH) ligand and (b) the desired cluster. 

The qualitative compositions of the cluster were confirmed by EDX analysis, as presented in 
Figure 6. The presence of Cu atoms was confirmed by energy signals at 1.2, 8.2 and 9.1 keV. 
Meanwhile, the Cd atoms peaks were cited to 3.3 and 3.5 keV positions, moreover, Cl to 2.4 keV 
position, respectively. Moreover, C, N and O atoms were cited to their expected atomic energy peaks 
as seen in Figure 6. 

 

Figure 6. EDX spectra of the desired cluster. 

2.5. Electronic Transfer and Optical Energy Gap 

The electronic absorption of the novel desired cluster and its free ligands in DMSO solvent were 
combined, as illustrated in Figure 7a. Peaks in the UV-region: the recorded λmax = 280 nm (ε = 1.0 × 103 

L mol−1 cm−1) for the cluster, λmax = 282 nm (ε = 1.8 × 103 L mol−1 cm−1) for NNH ligand and λmax = 286 

Figure 5. FT-IR of (a) 3,5-dimethylpyrazole (NNH) ligand and (b) the desired cluster.

The qualitative compositions of the cluster were confirmed by EDX analysis, as presented in
Figure 6. The presence of Cu atoms was confirmed by energy signals at 1.2, 8.2 and 9.1 keV. Meanwhile,
the Cd atoms peaks were cited to 3.3 and 3.5 keV positions, moreover, Cl to 2.4 keV position, respectively.
Moreover, C, N and O atoms were cited to their expected atomic energy peaks as seen in Figure 6.
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2.5. Electronic Transfer and Optical Energy Gap

The electronic absorption of the novel desired cluster and its free ligands in DMSO solvent
were combined, as illustrated in Figure 7a. Peaks in the UV-region: the recorded λmax = 280 nm
(ε = 1.0 × 103 L mol−1 cm−1) for the cluster, λmax = 282 nm (ε = 1.8 × 103 L mol−1 cm−1) for NNH
ligand and λmax = 286 nm (ε = 1.6 × 103 L mol−1 cm−1) for NNOH ligand all can be assigned to π→π*
ligands e-transition. The two broad and low-intensity peaks in the visible region at λmax = 605 nm
(ε = 2.2 × 102 L mol−1 cm−1) and λmax = 685 nm (ε = 8.4 × 102 L mol−1 cm−1) cited to the Cu(II) d-d
e-transfer in the cluster only confirmed the N-M and O-M bond coordination [46]. The experimental
optical band gap energies (∆Eg) in DMSO were obtained by using the Tauc relation [40]. The organic
ligands direct ∆Eg was found to be 4.18 eV, as seen in Figure 7b. Meanwhile, the metallic direct ∆Eg
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was found to be 1.73 eV, as seen in Figure 7c. The attained ∆Eg results reflected the 4Cu(II) cluster
centers complexes within the visible region; meanwhile, the NNO and NN ligands with invisible
region electron transfer. Therefore, clusters with such optical performance properties are expected to
be an important material for solar cells, optoelectronic devices and photonic devices [47].
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2.6. Cluster Oxidation Potential toward Catecholase of Catechol

One of the goals of the present study is to evaluate the aerobic catecholase catalytic oxidation
founding of the cluster. To accomplish this, 0.1 M of 3,5-di-tert-butylbenzene-1,2-diol (3,5-DBT) was
mixed with 1 × 10−4 M of the desired cluster in DMF solvent under stirring an open RT system for
around 1 h (Scheme 2). The formation of the 3,5-di-tert-butylcyclohexa-3,5-diene-1,2-dione (3,5-DTBQ)
product was monitored by UV-vis analysis in 250–500 nm range [20,21,44], as seen in Figure 8.
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In Figure 8a, the absorptions of 3,5-DTBQ product at λmax~400 nm were gradually raised by time
only with the presence of the cluster catalyst. The result revealed without ambiguity that the cluster
acts as an excellent oxidation catalyst since the reaction was completely finished within 1 h. Moreover,
neither side products nor products were detected by the UV-vis absorption in the absence of the cluster
Figure 8b.

The oxidation rates of the cluster using several concentrations of 3,5-DBT find to be suited to the
Michaelis–Menten plot (Figure 9a), which was linearized to Lineweaver–Burk plot (Figure 9b), in order
to figure out the Vmax, KM and Kcat kinetic parameters. The kinetic parameter values were compared
to similar catalytic processes [48–54]. In general, the cluster catalyst results were excellent compared to
other complexes, where many factors like solvents, substrate and complex nature control the ability of
catalysts [2,20,51].
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3. Materials and Methods

The commercially available CdCl2.4H2O and Cu(NO3)2.6H2O salts, solvents and chemicals,
were served without purification. The NNOH and NNH were prepared in our lab [22]. EDX was
performed using Brucker D/MAX 2500 X-ray diffractometer, with λ = 1.54 Å Cu K radiation, TU-1901
double-beam UV-visible spectrophotometer was used to measure the UV-vis. The TG was carried
out using TGA SDT-Q600, FT-IR spectra were performed in the range of 4000–400 cm−1 of frequency
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using a PerkinElmer Spectrum, and HS calculation was performed using CRYSTAL EXPLORER 3.1
package [33].

3.1. Synthesis of [Cl2Cu4Cd2(NNO)6(NN)2(NO3)2].CH3CN Bimetallic Cluster

0.16 mmol of each salt CdCl2.4H2O and Cu(NO3)2.6H2O were dissolved in 50 mL of ethanol
solvent. After complete dissolving, 0.16 mmol of NNOH and NNH each (in 20 mL of CH3CN) were
added to the reaction mixture, which was stirred for 24 h in an open condition. The reaction was then
stopped and subjected to the solvent-evaporation process. After 3 weeks, light green plate crystals
of [Cl2Cu4Cd2(NNO)6(NN)2(NO3)2].CH3CN cluster had formed in 74% yield. Peaks of selected
IR vibrations are listed as ν = 3018 (C-H), (1520–1380) (NO3), 2936 (C-H), 1622 (C=N), (2200–2550)
(-CN), 1485 (C=C), 1020 (C-O), cm−1. The peak at 420–550 cm–1 belongs to M–O and M–N stretching
vibrations [21,22]. UV-vis. (DMSO) at λmax = 280, 605 and 685 nm and m.p. > 340 ◦C.

3.2. Catechol Oxidation Reaction

The catalytic part was performed using the procedure described recently in the literature [22].

3.3. X-Ray

Single crystal X-ray data were collected on a Bruker D8 Quest diffractometer (MoKα radiation
λ = 0.71073 Å) at 298 K. The structure was solved by direct methods and refined by full-matrix
least-squares methods based on F2 using the SHELXL software [34]. Crystal data for the desired cluster
is illustrated in Table 3.

Table 3. Crystal data and structure refinement of the desired cluster.

Empirical Formula C48 H71 Cd2 Cl2 Cu4 N19 O12

Formula weight 1656.09

CCDC 1956507

Temperature 298(2) K

Wavelength 0.71073 Å

Crystal system Monoclinic

Space group P 21/c

Unit cell dimensions

a = 10.860(9) Å

b = 20.665(19) Å

c = 17.212(16) Å

B = 95.96(3)◦

Volume 3842(6) Å3

Z 2

Density (calculated) 1.432 g/cm3

Absorption coefficient 1.759 mm−1

F(000) 1668

Crystal size 0.220 × 0.180 × 0.060 mm3

Theta range for data collection 2.576 to 29.850◦.

Index ranges −14 ≤ h ≤ 14, −27 ≤ k ≤ 27, −23 ≤ L ≤ 24

Reflections collected 107,448

Independent reflections 9719 [R(int) = 0.0711]

Refinement method Full-matrix least-squares on F2
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Table 3. Cont.

Empirical Formula C48 H71 Cd2 Cl2 Cu4 N19 O12

Data/restraints/parameters 9719/2/401

Goodness-of-fit on F2 1.111

Final R indices [I>2sigma(I)] R1 = 0.0719, wR2 = 0.2085

R indices (all data) R1 = 0.1029, wR2 = 0.2370

Largest diff. peak and hole 1.825 and −1.000 e.Å−3

4. Conclusions

A new [Cl2Cu4Cd2(NNO)6(NN)2(NO3)2].CH3CN cluster of type double-open cubane core with
Cd(II)-O-Cu(II) center was made available. The 3D structure of the newly synthesized cluster
was proven by XRD crystal. The XRD showed the presence of both octahedral and square
pyramid metal ions geometry centers. Moreover, the di-µ2-methoxo-trigonal pyramid-O center and
tetra-µ3-methoxo-tetrahedral-O centers were recorded. Several shot interactions like HCH . . . .O-NO2,
C-H . . . .πC=CNN and Cl . . . . Π CN were detected in the lattice by XRD and computed via HS-analysis.
Furthermore, the cluster composition and structural behavior were proved spectrally furthermore via
FT-IR, EDX and UV-vis. Finally, the cluster recorded an excellent catecholase potential when it was
applied to the Catechol O-quinone room condition oxidation reaction.
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