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Valley polarization assisted spin polarization
in two dimensions
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Valleytronics is rapidly emerging as an exciting area of basic and applied research. In

two-dimensional systems, valley polarization can dramatically modify physical properties

through electron–electron interactions as demonstrated by such phenomena as the fractional

quantum Hall effect and the metal-insulator transition. Here, we address the electrons’ spin

alignment in a magnetic field in silicon-on-insulator quantum wells under valley polarization.

In stark contrast to expectations from a non-interacting model, we show experimentally that

less magnetic field can be required to fully spin polarize a valley-polarized system than a

valley-degenerate one. Furthermore, we show that these observations are quantitatively

described by parameter-free ab initio quantum Monte Carlo simulations. We interpret the

results as a manifestation of the greater stability of the spin- and valley-degenerate system

against ferromagnetic instability and Wigner crystalization, which in turn suggests the

existence of a new strongly correlated electron liquid at low electron densities.
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T
he valley degree of freedom has a long history as a subject
of pure and applied research as it is an intrinsic property of
the band structure of silicon and germanium, the historical

materials in microelectronics1. Valley degeneracy had generally
been viewed as a drawback as it limits the mobility of
Complementary Metal Oxide Semiconductor devices due to
intervalley scattering2. Microelectronics manufacturers have
consequently put much effort into manipulating valley bands
through strain, to improve transport properties. This approach
has been successful, and strained silicon has been in use in
microelectronics since the 90-nm node3.

More recently, however, the valley degree of freedom is
becoming recognized as an opportunity, rather than a hindrance,
and this is leading to the emergence of a field of research now
known as valleytronics in which valleys are exploited in addition
to charge and spin. Valleytronics has received a recent boost
owing to the discovery of graphene and other new topical
materials also possessing the valley degree of freedom and by the
proposal of valleytronics devices4–10. A vital ingredient to the
development of valleytronics is valley polarization. Analogous to
spin polarization in spintronics which when achieved under
equilibrium conditions leads to key phenomenology such as
ferromagnetism, valley polarization can also be expected to yield
rich and useful physics.

Experimental research into the physical consequences of valley
polarizing a two-dimensional electron system in the steady state is
led by studies of AlAs and Si-based structures. It has been
demonstrated that valley polarization dramatically affects
phenomena such as the fractional quantum Hall effect11–14 and
the metal insulator transition15–18, two effects in which electron–
electron interactions are central. Pioneering experiments
performed in AlAs indicate that valley polarization also has a
strong impact on another effect where electron–electron
interactions play crucial roles: spin polarization. It has been
demonstrated that valley polarization leads to a strong
enhancement of spin susceptibility and symmetrically, spin
polarization enhances valley susceptibility19–21.

In this article, we first confirm the enhancement of spin
susceptibility by valley polarization in silicon, which in contrast to
AlAs has an isotropic in-plane effective mass, which simplifies
interpretation of transport phenomena. More importantly, we
explore a new regime in the interaction-disorder parameter space
where a qualitatively new behaviour emerges. This is achieved by
using electrically controlled valley polarization in a simple two-
dimensional electron gas (2DEG) in foundry compatible silicon-
on-insulator (100) MOSFETs22,23 (Metal Oxide Semiconductor
Field Effect Transistors). We present magneto-resistance (MR)
data, which indicate that for low enough electron densities, valley
polarizing the 2DEG reduces the field of full spin polarization.
This represents not only a quantitative failure of the single particle
picture but a qualitative one, in which the observed behaviour is
opposite to the prediction of the non-interacting framework.

Results
Single-particle picture. Let us first describe briefly how spin
polarization is expected to respond to valley polarization in a
non-interacting 2DEG. In the non-interacting model, the density
of states of a 2DEG is independent of energy and can be written
as gsgvD0, where D0¼mb/2p‘ 2, gs and gv are spin and valley
degeneracies, mb is the electron band mass and ‘ is the reduced
Planck’s constant. In a (001) silicon 2DEG, gs¼ gv¼ 2 and the
system is composed of four independent spin-valley subbands
with equal density of states D0, as depicted in Fig. 1a. All states
are filled up to the Fermi energy E0

F ¼ n=gsgvD0 � n=4D0 at zero
temperature, where n is the electron sheet density.

Applying a magnetic field parallel to the electron gas raises the
bottom of the spin down bands compared with that of the spin up
bands by the Zeeman splitting Dz¼ gmBB (Fig. 1b), where g is the
Landé g-factor (g¼ 2 in Si) and mB is the Bohr magneton. Spin
down electrons are consequently transferred to the spin up band:
the system spin polarises. The spin (valley) polarization is defined
as ps¼ (nm� nk)/n (resp. pv¼ (nþ � n� )/n) with nm and nk

being the spin up and spin down electron densities, respectively
(nþ and n� are the electron densities in the þ and � valleys).
At pv¼ 0, full spin polarization is achieved when Dz ¼ 2E0

F
(Fig. 1c). It follows that the field Bp required for full spin
polarization should double when the system is valley polarized
because the kinetic energy in the valley-polarized system (Fig. 1d)
is twice that of the unpolarized one (Fig. 1a). For more details on
this single-particle picture, see Supplementary Discussion.

Experimental determination of Bp. The field of full spin polar-
ization Bp of a 2DEG can be extracted from measuring the
electrical resistance under in-plane magnetic field. Spin polar-
ization has the effect of reducing the ability of the 2DEG to screen
disorder, and as a consequence, increases the resistance due to
enhanced scattering until, in the simplest case, the MR saturates
to a constant value24. This is a signature that full spin polarization
is reached and the spin degree of freedom is completely frozen.

However, this situation is only rarely observed in experiments
where it is more common to observe a shoulder in the MR19,25–32

when the spin system freezes but the resistance continues to
change because of spin-independent effects such as the coupling
of the magnetic field to the electrons’ orbital motion31,33.

In the absence of a comprehensive description of the high-field
behaviour, we follow previous literature in empirically estimating
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Bp as the field, where the MR has reached 97.5% of its high-field
dependence19,28 (The behaviour in the spin-polarized regime at
high fields was fitted to a quadratic behaviour with no particular
physical meaning. See dotted lines in Fig. 2). Results are shown as
red dots in Fig. 2.

We note that we have also estimated Bp following other
methods used in the literature28 (inflexion point in the MR,
intersection of the high-field asymptote and tangent at the
inflexion point and so on). All methods provided a qualitatively
similar behaviour in the changes of Bp with valley polarization.
We have chosen the method described above as we believe it
provides a better quantitative estimation of Bp compared with
other methods which underestimate it.

Evolution of Bp with valley polarization. At large density
(Fig. 2b,c), we observe an increase of Bp with valley polarization, a
behaviour that is qualitatively consistent with the single-particle
picture (see refs. 22,23 and Methods for details on the electrical
control and determination of pv). It should be stressed, however, that
quantitatively, the single-particle model fails completely. The values
of Bp are always much lower than expected. Also, instead of the
doubling of Bp from pv¼ 0 to pv¼ 1, we observe only a moderate
increase of Bp. For example, we measure Bp( pv¼ 0)¼ 11.75 T
and Bp(pv¼ 1)¼ 13.9 T for n¼ 2.5� 1015 m� 2, whereas the
single-particle picture predicts Bp(pv¼ 0)¼ 28.85 T and
Bp(pv¼ 1)¼ 51.7 T, respectively. These observations are consistent
with the strong enhancement of spin susceptibility with valley
polarization seen in AlAs19–21. We note in addition that the
quantitative failure of the single-particle model has also been
observed in numerous experiments where valley polarization could
not be tuned, regardless of valley degeneracy25–32.

At lower density (Fig. 2a), the single-particle picture fails
qualitatively. Here, our data show that Bp moves to lower and
lower magnetic field as valley polarization is increased. That is, it
becomes easier to spin polarize a valley-polarized electron gas
than a valley degenerate one at low enough density.

Exclusion of disorder as the origin of the observation. One
cause for the reduction of Bp with valley polarization could be an
increase in disorder, which is known to reduce Bp

28. At first sight,
this explanation might seem plausible as valley polarization is
achieved by pressing the 2DEG against the buried Si/SiO2

interface (see Methods), and hence, the 2DEG experiences higher
disorder due to interface roughness. The amplitude of this effect

can be estimated in our device, where transport can also be
investigated at the top Si/SiO2 interface. At this interface, valley
splitting is negligible23 but disorder is comparable as
demonstrated by our high-resolution transmission electron
microscope (TEM) images (Fig. 3) and independent
measurements with holes which do not possess the valley
degree of freedom and show similar mobility at both
interfaces34. This enables us to separate the effects of disorder
and valley polarization, which are mixed at the buried interface.

Figure 3c,d shows the MR of the 2DEG for comparable
magnitudes of out-of-plane electric bias (estimated from the
phenomenological parameter dn; see Methods) when electrons
are pressed against the buried or front Si/SiO2 interface. The
magnitude of the bare disorder potential increases with |dn|,
whereas valley polarization is enhanced only for dn40 (ref. 23).
Insight into the variation of the bare disorder with dn40 is found
from the comparison of the resistance at (ps¼ 1;pv¼ 0) and
(ps¼ 0;pv¼ 1) (highlighted in Fig. 3c).

Spin and valley degeneracy can be treated as formally
equivalent in the ‘screening’ description of transport described
in ref. 24. Therefore, in the absence of variation of disorder due to
the process of polarizing, one should expect the same increase of
resistance due to equivalent reduction of screening, regardless of
which degeneracy is lifted17.

We find that the resistances are indeed almost the same at
(ps¼ 1;pv¼ 0) and (ps¼ 0;pv¼ 1). Therefore, we conclude that
the major part of the increase in resistance with dn40 seen in
Fig. 3a at B¼ 0 T can be attributed to a reduced screening because
of valley polarization and not to a significant increase of bare
disorder. Furthermore, the increase of disorder with dn40 can be
estimated to be about 10% from the observed 10% difference
between the resistance at (ps¼ 0;pv¼ 1) and (ps¼ 1;pv¼ 0). This
estimation of the variation of disorder with |dn| is confirmed by
transport at the front interface where the entire change in
resistance must be attributed to a change in disorder. The data at
B¼ 0 T in Fig. 3d reveal a 14% increase in the resistance for
dn¼ � 0.9� 1016 m� 2 (comparable in amplitude to that neces-
sary for full valley polarization at the buried interface). The weak
dependence of disorder on dno0 is well illustrated in the
resistance map shown in Fig. 4, where contours of constant
resistance run parallel to the constant density lines in the relevant
regime of density.

Importantly, Fig. 3d shows that the field of full spin
polarization is almost unchanged when electrons are pressed
against the front interface. That is, the 14% change in the bare
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disorder with dn in these experiments is not sufficient to cause a
substantial change in Bp. We even note a small initial increase of
Bp, which might be attributed to the removal of a small valley
splitting at symmetry (dn¼ 0) as electrons are moved away from
the buried interface. Alternatively, this small increase could be
due to a broadening of the spin band edge due to the increased
disorder felt by the 2DEG. Either way, we can conclude from this
that the increase of the bare disorder with |dn| cannot explain the
behaviour seen in Fig. 2a, leaving valley polarization as the only
culprit.

As a final confirmation, we have checked that increasing dn
above full valley polarization does not lead to any further change
in Bp (see the upper curve in Fig. 2b) despite the fact that, as
already mentioned, the bare disorder potential continues to
slowly increase with dn. This has also been confirmed in other
samples. This set of experiments, therefore, allows us to conclude
that valley polarization itself is responsible for the reduction of Bp

observed in Fig. 2.

Quantum Monte Carlo (QMC) simulations. The reduction in Bp

compared with single-particle expectations is interpreted as
resulting from electron–electron Coulomb interactions, which
favour spin alignment and this has already been confirmed the-
oretically35–40. However, it is particularly challenging to make
quantitatively reliable predictions for Bp. Even in the absence of
disorder, Hartree Fock or random phase approximation (RPA)
calculations do not capture the crucial role of correlations at low
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density and one has to resort to QMC simulations39. In our low-
density intrinsically disordered system, the interplay of disorder
and interactions further complicates the problem.

Here, we use a Green’s function QMC approach, known to
fully account for the effect of interactions in the presence
of disorder41, to predict quantitatively the values of Bp in
the interacting 2DEG with and without valley polarization
(see Methods and ref. 41).

The energy per electron for a given spin polarization state ps is
given by:41

E ¼ E0þ Epp2
s : ð1Þ

We calculate the energy E0 of the spin unpolarized and the
energy E(ps¼ 1) of the spin polarized system to obtain the
energy per electron needed to fully spin polarize the system
Ep¼E(ps¼ 1)�E0. The predicted field of full spin polarization is
then calculated as Bp¼ 4Ep/(gmB). The resulting Bp as function of
electron density can be easily compared with those extracted from
the experiments with no adjustable parameter; the only input for
the simulation being the amplitude W of the bare disorder (which
we can estimate from the peak mobility of the sample) and the
electron density (see Methods and ref. 41 for more details on how
disorder is taken into account in the model). This approach has
been firmly validated by the successful quantitative comparison to
the experimental measurements of seven different studies in Si at
pv¼ 0 (ref. 41). Here, we have extended those calculations to the
case of pv¼ 1 using mpeak¼ 8,000 cm2 V� 1 s� 1 measured in
our sample as a single input parameter for both Bp(pv¼ 0)
and Bp(pv¼ 1) (see Methods for the determination of mpeak).
Assuming that a single input parameter mpeak determined
at pv¼ 0 is enough to describe all the data seems reasonable,
as we have demonstrated that the bare disorder only varies weakly
with |dn|.

The result of the calculation is displayed in Fig. 5a. In both
valley-degenerate and valley-polarized cases, the calculation
predicts a much lower field of full spin polarization than the
single-particle model. Importantly, the curves corresponding to
Bp(pv¼ 0) and Bp(pv¼ 1) cross so that at low density the full spin
polarization is predicted to occur at a lower field in a valley-

polarized system. The full dependence of this effect from low to
high interaction is illustrated in Fig. 5b. This figure shows the
predicted ratio of the Zeeman splitting at full spin polarization
and the non-interacting Fermi energy E0

F as function of the
interaction parameter rs¼ 1/(pn)1/2aB (here aB is the Bohr radius)
using the mobility of our sample. At low rs, the behaviour is that
of a non-interacting system. The effect of interaction becomes
more and more important as rs increases and the curves
corresponding to pv¼ 1 and pv¼ 0 eventually cross over at
around rs¼ 6.

For a more quantitative comparison between experiments and
theory, the experimental values of Bp are plotted in Fig. 5a and in
Fig. 5b the experimental difference DBp¼Bp(pv¼ 1)�Bp(pv¼ 0)
is plotted together with the prediction. The theory describes the
experiments very well with no adjustable parameters, demon-
strating that the theory captures the essential physics behind the
behaviour of Bp.

Discussion
As a first remark, we should point out that the possibility of
observing the new behaviour reported here results from the
cooperative effect of disorder and interaction. Indeed, the
calculations in the disorder-free system indicate that electron–
electron interactions are the leading effect in reducing the
polarization energies. Evidence for the crossing of Bp(pv¼ 0) and
Bp(pv¼ 1) curves is also seen for clean systems (see Fig. 6. See also
Fig. 2 in ref. 39, where it is observed that the spin susceptibility
enhancement w/w0(pv¼ 1)42w/w0(pv¼ 0) for large enough rs, a
feature reminiscent of the crossing of Bp curves). However, in Si,
this crossing is expected to occur at around n¼ 1015 m� 2, too
low to be accessed experimentally in our valley tunable samples.
By further enhancing the effects of electron–electron interactions,
disorder shifts by a small amount, all curves to larger densities,
just enough to allow the observation of the new phenomenology.
The weak dependence on disorder implies that our comparison is
robust against errors in the determination of the bare disorder
potential. This accounts for why Bp is found to be independent of
dno0 in Fig. 3d and justifies the use of a single input parameter
to describe both pv¼ 0 and pv¼ 1. Nevertheless, including
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disorder is necessary to achieve quantitative comparison. This
effect of disorder may explain why, in previous experiments in
AlAs at similar values of rs, only the enhancement of spin
susceptibility and not the reduction of Bp with valley polarization
was observed19. Indeed, in AlAs the mobility was five times larger
than in our samples and therefore the crossing would be shifted
to larger rs. However, the crossing must have been approached
very close as the criteria w/w0(pv¼ 1)42w/w0(pv¼ 0) is almost
reached in Fig. 3 of ref. 19. In addition, we should also point out
that the comparison between QMC calculations and experimental
results in valley tunable AlAs is complicated by the mass
anisotropy in the system as concluded in ref. 42. The situation is
more simple in narrow AlAs quantum wells where effective mass
is isotropic43 and QMC works well35.

As a second remark, we note that our study further confirms
that QMC is an appropriate theory to predict the polarization
energies of 2DEGs. Previous studies have shown that the
disorder-free QMC describes correctly the measurements in AlAs
(apart from pv¼ 1 in valley tunable AlAs with anisotropic
effective mass) and GaAs if the finite thickness of the system is
included35,39. We have also shown in ref. 41 that the QMC
including disorder describes the available experimental data in
silicon at pv¼ 0. Therefore, QMC is able to determine the
polarization energies of most investigated samples without
adjustable parameters.

As a concluding remark, we now discuss our result in a more
general context. Early QMC simulations44 on clean 2DEGs at
B¼ 0 T showed that the energy of the spin and valley-polarized
system becomes lower than that of the two component system in
the region rs]20 before Wigner crystallization at rsB34. A
ferromagnetic instability had therefore been expected in the valley-
polarized system. In contrast, and in qualitative contradiction with
results from Hartree–Fock calculations, no such instability was
observed in the QMC simulations for the valley- and spin-
degenerate system, which was found to be the stable phase all the
way up to Wigner crystallization at rsB42 (see Fig. 1 in ref. 44).
Our experiments and QMC simulations confirm and demonstrate
that this scenario remains valid in real disordered systems, rather
than it being only a special case of hypothetical disorder-free
systems. Results from simulations displayed in Fig. 5a show that
Bp(pv¼ 1) is approaching 0 at a finite electron density indicating a
ferromagnetic instability in the valley-polarized system. The
instability occurs at a lower rs in our disordered system compared
with the clean one44. In contrast, no sign of such instability is seen
in the curve for Bp(pv¼ 0) down to the lowest electron densities we

have studied. Experimentally, the mobility of our sample obviously
does not allow us to reach the very low densities necessary
for the observation of spontaneous spin polarization or Wigner
crystallization. Yet, the crossing of the curves Bp(pv¼ 0) and
Bp(pv¼ 1) provides strong experimental evidence of the higher
stability of the spin–valley degenerate system because they
demonstrate that interaction-induced spin alignment is much
less efficient in the valley unpolarized system than in the valley-
polarized system. The strong enhancement of spin susceptibility
with valley polarization in AlAs19 also supports this interpretation.
The excellent agreement between the theory and our experiments
suggests that the result can be extrapolated to cleaner spin–valley
degenerate systems with greater interaction. In those systems, in
the absence of ferromagnetic instability, we anticipate the presence
of a strongly correlated electron liquid. This may result in
a rich physics, which might soon be accessed exploiting recent
developments in high-mobility silicon systems45,46.

Methods
Samples and control of valley polarization. The samples consist of a SiO2/
Si(100)/SiO2 quantum well of nominally 10-nm-thick silicon with front- and back-
gate oxide thicknesses of 75 and 380 nm, respectively. The fabrication procedure of
these samples is described in ref. 22. A degenerately phosphorus-doped polysilicon
layer was used as front gate, whereas the substrate was used as a back gate.

It is well known that valley degeneracy can be lifted at the (001) Si/SiO2

interface in Si MOSFETs and that the valley splitting can be increased by increasing
the out-of-plane electric field, which in traditional MOSFETs can be controlled by
changing the substrate bias1. The magnitude of this valley splitting is found also to
depend on the way in which the Si–SiO2 interface is prepared, and the use of a
buried-oxide interface using SIMOX (Separation by IMplantation of Oxygen)
technology22 allows us to enhance the valley splitting up to tens of meV (ref. 23).
The coupling responsible for the bare single-particle splitting is induced
predominantly by the large interface electric field47,48 but there remain
uncertainties as to the exact microscopic details that give rise to the particularly
large values in SIMOX buried-oxide interfaces47–49.

Experimentally, the valleys splitting is determined by fitting Shubnikov de Haas
oscillations with an empirical expression for valley splitting23:

Dv ¼ adn ð2Þ
where, dn is an empirical measure of the out-of-plane electrostatic potential
asymmetry controlled by front and back gates:

dn ¼ nB � nF ð3Þ
where nF and nB are electron densities contributed by respective gates. Both nF and
nB can take positive or negative values where negative values represent a density
reduction due to a depleting bias from the corresponding gate so that the total
electron density is given by

n ¼ nB þ nF: ð4Þ
The numerical factor a, which is of the order of 0.5 meV per 1015 m� 2, determines
how much the valley splitting changes with dn when dn is positive. That is, when
the quantum well is biased in such a way that the electrons are pulled towards the
back (SIMOX buried-oxide) interface. On the other hand, when dn is negative, the
electrons are pushed against the front interface, which is formed by standard
thermal oxidation, where we find the valley splitting to be negligibly small. Thus, by
pressing the electrons against the buried-oxide interface (positive dn), we can
increase the valley splitting continuously, and independently control the electron
density n. The out-of-plane potential necessarily affects the disorder, however, but
the effects of this can be independently examined by applying a negative dn for
which there is no valley splitting17.

For fitting the Shubnikov de Haas oscillations, we fix the perpendicular
magnetic field and compare the valley splitting Dv against the cyclotron energy ‘oc,
or more accurately, we map the number of occupied Landau levels of the two
valleys as function of (dn,n). Straightforwardly applying the single-particle model
only yields a value for amb but not a, in the same manner as coincidence
experiments under tilted field only provide values for gmb and not g. The bare
effective mass only provides a crude conversion of the valley splitting to an energy
scale23, and would represent a good measure of the valley splitting in the absence of
interactions that alter the effective density of states.

Valley polarization is then estimated at full spin polarization from the equation:

pv ¼
DvD0

n
;

ps ¼ 1;
ð5Þ

The determination of valley polarization does not, therefore, rely on separating a
and mb as in equation 5, Dv never appears on its own but always as a product with
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Figure 6 | Density dependence of Bp. Theoretical dependence of Bp in a

single-particle picture and in presence of interactions for various values of

disorder (quantum Monte Carlo simulation).
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D0. It follows that this equation remains a valid method of determining the valley
polarization even in the presence of strong interactions.

Electrical measurements. The samples were cooled in a Variable Temperature
Insert with a base temperature of 1.6 K inserted into a 30-T-resistive magnet. A
standard four-terminal lock-in technique was used to measure the resistivity rxx

and rxy of a sample with a Hall-bar geometry. The current was kept below 5 nA to
avoid electron heating. The samples were aligned parallel to the applied magnetic
field with an in-situ rotator, eliminating the Hall resistance.

Determination of the mobility. The comparison of the theory to the experimental
data requires the determination of the mobility of the sample in the Drude regime
(conductivity 44e2/h, see the next section). In practice, one should measure the
resistance at high density to obtain this quantity. However, this is not straight-
forward in our case because for densities larger than n¼ 5� 1015 m� 2, electrons
start to experience scattering from localized states in the upper spatial subband,
which become populated34. Fortunately, the mobility at high density in the absence
of the influence of the upper spatial subband can still be determined in our sample.
To do so, we exploit the fact that pressing the electron gas to the front interface at
negative dn does not increase valley splitting but narrows the effective width of the
out-of-plane electronic wavefunction. This pushes the upper spatial subband to
higher energies and suppresses its influence. This is illustrated by the solid white
line in Fig. 4, which demarcates the onset of occupation of the upper subband. As
the out-of-plane electric bias (dn) is increased, the density n at which it starts to fill
increases, reflecting the increasing confinement energy23. The suppression of
scattering by localized states in the upper spatial subband is evidenced by the
reduction of resistance with dn for densities about 1016 m� 2. For densities relevant
to the present study, scattering by localized states in the upper subband is absent as
shown by the blue constant resistance contour in Fig. 4, which is parallel to the
constant density line for all negative � 2� 1016 m� 2odno0. For even larger
electric fields dn o� 2� 1016 m� 2, the electron gas experiences the roughness of
the front interface34 and the resistance starts to increase so that the iso-resistance
lines deviate from constant density lines. We conclude that the mobility at high
density and in absence of the influence of the upper spatial subband can be
estimated in the regime � 2� 1016m� 2odno� 1� 1016 m� 2. Therefore, we
estimated m for n¼ 1016 m� 2 and dn¼ � 1.5� 1016 m� 2 marked by a star in the
Fig. 4, where r¼ 760O leading to m¼ 8,000 cm2 V� 1 s� 1.

QMC simulations. The model we consider is a generalization of the Anderson
model to the many-body problem (see refs 41,50 for details). The system is made of
N spin up/down electrons with Coulomb interaction on a disordered lattice of
Lx� Ly sites. The electrons either populate a single valley (pv¼ 1) or are equally
split up into two degenerate valleys (pv¼ 0). Their spin configuration sets the value
of the spin polarization ps. Formally, the spin and valley degrees of freedom are
treated strictly in the same way as an internal electronic degree of freedom. In the
continuum limit n�N/LxLyoo1 (where lattice effects are negligible) and in the
thermodynamics limit Nc1, the physics of a given (ps,pv) configuration is entirely
controlled by two dimensionless parameters rs ¼ mbe2= 4pE‘ 2 ffiffiffiffiffiffi

pn
p� �

(mb¼ 0.19me

effective mass, e electron charge, E ¼ 7:7E0 dielectric constant) and 1/kFl (kF Fermi
momentum, l mean free path, both taken for the spin- and valley-degenerate
system), which characterize, respectively, the interaction strength and the disorder
strength in the system. Experimentally, it is difficult to estimate kFl for low-density
systems because conductivity is no longer a good estimate of disorder. We
overcome this issue by observing that for white noise disorder of amplitude W (as
assumed in our model), kFlpn. Therefore, Z � rs

ffiffiffiffiffiffi
kF l
p

does not depend on n and
depends only on W41. One can estimate Z in the high-density regime where
electronic interactions are negligible. In that regime, the conductance g of the
system is g¼ (2e2/h)kFl, which gives Z ¼ rs

ffiffiffi
m
p

e3=2m= 4pE‘ 3=2
� �

, where m¼ g/(en)
is the mobility of the sample. Thus, the two input parameters rs and kFl of our
model can be estimated from the mobility of the sample measured at high density
and from the experimental values of electronic densities.

We use the Green’s Function Monte Carlo method51 in the fixed-node
approximation to compute the energy per particle E(ps) of the ground state of our
model at zero temperature41. The polarization energy Ep is deduced from
Ep¼ E(ps¼ 1)� E(ps¼ 0) and averaged over 50–200 samples depending on the
disorder strength. To extrapolate data at the thermodynamic and continuum limit,
finite N- and n-effects are carefully investigated. We thus observed large but
controlled lattice effects without interaction that disappear as interaction is
switched on (rs]0.5). Small finite size effects in N are also present but they rapidly
fade with the disorder amplitude. The resulting extrapolated data, as well as their
fits given below, are finally obtained with a precision of the order of � 0:02E0

F (for
k0

Fl0 � 1:5) and � 0:04E0
F (for 0:3ok0

Fl0o1:5) at pv¼ 0, and roughly twice larger at
pv¼ 1.

Without interaction (rs¼ 0), our data are in perfect agreement with the second-
order perturbative formula Ep=E0

F ¼ 1=2½1	 þ log2= pk0
Fl0

� �
for pv¼ 0 [pv¼ 1], at

least for weak disorder k0
Fl0
0:4

� �
. In the presence of (even small) interaction, first

the effect of disorder is reversed making easier the spin polarization of the system
and second, the 1=k0

Fl0-correction to Ep is no longer valid (except for tiny disorder).

We find that our Ep data are very well described by the following formula,

Ep k0
Fl0; rs

� �
¼ Ecl

p rsð Þ ¼
b rsð Þffiffiffiffiffiffiffiffi

k0
Fl0

p E0
FþA5E0

F; ð6Þ

where the polarization energy of the clean system Ecl
p and the parameter b are both

fitted with Padé approximates,

Ecl
p rsð Þ ¼

A0 þA1rs

A2 þA3rs þA4r2
s

E0
F ð7Þ

b rsð Þ ¼
B0 þB1r2

s

B2 þB3rsþB4r2
s
; ð8Þ

the fitting parameters Ai and Bi being given in Table 1. We note that equation 7 for
Ecl

p is in very good agreement with previous QMC calculations performed for the
valley-polarized system52 and the valley-degenerate system39. Equation 8—and in
particular the fact that b’s sign flips at rsE0.3 (for pv¼ 0) and rsE1.2 (for pv¼ 1)—
mainly depicts the opposite effects of disorder at very weak and stronger
interactions. The last parameter A5 adjusts the origin of the linear disorder
correction in 1=

ffiffiffiffiffiffiffiffi
k0

Fl0
p

, to roughly take into account the actual quadratic correction
in 1=

ffiffiffiffiffiffiffiffi
k0

Fl0
p

at weak disorder. At extremely weak disorder, 1= k0
Fl0

� �
t0:04, A5 shall

be taken equal to 0 and Ep evaluated by Ecl
p . We point out that equations 6–8 are no

more than one simple way to report our data, valid (at least) for 0.25[0.5]rrsr10
(at pv¼ 0 [pv¼ 1]) and k0

Fl0 � 0:03 as long as the output Ep is positive.
Deducing the polarization magnetic field Bp from Ep is straightforward, once

noticing that the energy E of the ground state is quadratic in ps,

E psð Þ ¼ Eð0Þþ Epp2
s : ð9Þ

This statement is obvious in the absence of disorder and interaction where we have
Ep ¼ E0

F=2 E0
F

� �
for pv¼ 0 [pv¼ 1]. Numerically, it turns out to remain valid with

good precision for intermediate disorder and interaction strength (0rrsr10,
k0

F l041). In particular, equation 9 is satisfied in the disorder and interaction regime
explored in the present experiment. Then, when an in-plane magnetic field B is
applied, a Zeeman term� gmBBps/2 has to be added to the right hand side of
equation 9. Minimizing the energy E with respect to ps gives the spin polarization
of the system at zero temperature, gmBB/(4Ep), from which we get Bp¼ 4Ep/(gmB).

Figure 6 presents the result of the numerical calculations of the magnetic field of
full spin polarization for various values of disorder. This figure shows that even in
the presence of weak disorder (m¼ 106 cm2 V� 1 s� 1), the magnetic field of full
spin polarization is expected to be much lower than in the non-interacting picture.

The code to perform these simulations has been parallelized and ported on CEA
Computing Center for Research and Technology (CCRT) massive parallel clusters.
About 100,000 CPU hours have been required for the present study. The code is
available upon request.

TEM images. The High-Angle Annular Dark Field scanning TEM (HAADF
STEM) images were measured using a probe-aberration corrected FEI Titan
microscope operated at 200 kV. A 100-nm-thick specimen was prepared by focused
ion beam milling at 5 kV to reduce the surface damage. The HAADF STEM images
are sensitive to Z-contrast and the vertical bright dumb-bell structures are typical
of aberration corrected images of silicon samples oriented in the o1104 direction
and show silicon atoms separated by 1.36 Å in projection.
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