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Carbon dioxide enters metabolism via six known CO2 fixation pathways,

of which only one is linear, exergonic in the direction of CO2-assimilation,

and present in both bacterial and archaeal anaerobes – the Wood-Ljung-

dahl (WL) or reductive acetyl-CoA pathway. Carbon monoxide (CO) plays

a central role in the WL pathway as an energy rich intermediate. Here, we

scan the major biochemical reaction databases for reactions involving CO

and CO2. We identified 415 reactions corresponding to enzyme commission

(EC) numbers involving CO2, which are non-randomly distributed across

different biochemical pathways. Their taxonomic distribution, reversibility

under physiological conditions, cofactors and prosthetic groups are sum-

marized. In contrast to CO2, only 15 reaction classes involving CO were

detected. Closer inspection reveals that CO interfaces with metabolism and

the carbon cycle at only two enzymes: anaerobic carbon monoxide dehy-

drogenase (CODH), a Ni- and Fe-containing enzyme that generates CO

for CO2 fixation in the WL pathway, and aerobic CODH, a Mo- and Cu-

containing enzyme that oxidizes environmental CO as an electron source.

The CO-dependent reaction of the WL pathway involves carbonyl insertion

into a methyl carbon-nickel at the Ni-Fe-S A-cluster of acetyl-CoA syn-

thase (ACS). It appears that no alternative mechanisms to the CO-depen-

dent reaction of ACS have evolved in nearly 4 billion years, indicating

an ancient and mechanistically essential role for CO at the onset of

metabolism.

Introduction

In autotrophs, carbon dioxide enters metabolism mainly

via six known pathways of CO2 fixation [1–5]. In discus-

sions about novel synthetic CO2 fixation pathways [6–
10], it is often overlooked that heterotrophs also harbor

a number of metabolic reactions that incorporate CO2.

For example, carbon atoms from CO2 end up in the

purine and pyrimidine rings during de novo nucleobase

biosynthesis, from prokaryotes to humans [11], and

CO2 assimilation into membrane lipids has been mea-

sured as a proxy of metabolic activity in different het-

erotrophic bacteria [12]. Of the six natural pathways of

autotrophic CO2 fixation, only one involves CO as an

intermediate – the Wood-Ljungdahl (WL) pathway,

also called the reductive acetyl-CoA pathway.

Among CO2 assimilation pathways, the WL pathway

is unique in being the only linear pathway of carbon

fixation that can occur exergonically [3,13,14]. Phyloge-

netic evidence traces the pathway to the genome of the

Last Universal Common Ancestor (LUCA) [15]. It is

the only known pathway of core CO2 fixation present

in both bacteria and archaea [2,3]. Gene distributions

for both the enzymes of the pathway and the synthesis

of its salient pterin cofactors – tetrahydrofolate (H4F)

in bacteria and tetrahydromethanopterin (H4MPT) in
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archaea – testify to the antiquity of the WL pathway

[3,16], which is closely aligned with theories that posit

a chemolithoautotrophic origin of life [17–19]. Its basic
chemistry, the reduction in CO2 to organic one-carbon

(C1) moieties, occurs as spontaneous geochemical reac-

tions in hydrothermal systems [20,21]. The WL path-

way entails oxygen sensitive catalysts, as its enzymes

are replete with iron and nickel sulfur centers essential

for electron transfer and catalysis [14,22]. CO2-reducing

reactions of the WL pathway occur readily in the labo-

ratory in the presence of native metals [23,24]. The WL

pathway is the only pathway known that fixes CO2

while conserving energy as ATP, the mechanisms of

energy conservation entailing chemiosmotic coupling

and flavin-based electron bifurcation [3,25]. The sim-

plicity of the WL pathway [13,22], its antiquity [13–
16,26,27], favorable energetics in the CO2-reducing

direction [3,25] and chemical similarity to exergonic

geochemical reactions in hydrothermal vents [20,21]

forge chemical links between early earth geochemistry

and the biochemistry of the first cells.

The WL pathway works in a conceptually simple

but chemically demanding manner – one carbon at a

time [22]. The enzymology of the pathway has been

reviewed [3,19,22,28,29]. In comparisons of the

archaeal and bacterial pathway, the enzymes of the

methyl synthesis branch show no sequence conserva-

tion across the prokaryotic domain divide [16],

whereby the CO synthesis and thioesther synthesis are

catalyzed by an enzyme well conserved between

archaea and bacteria: bifunctional carbon monoxide

dehydrogenase/acetyl CoA synthase (CODH/ACS).

CODH catalyzes the reversible, ferredoxin-dependent

interconversion of CO and CO2 [30]. In the WL path-

way, CO is generated as an intermediate of CO2 fixa-

tion, but environmental CO can also enter the

pathway as a carbon and electron source [3,31,32].

Both CODH and CO are central to carbon and energy

metabolism in methanogens (archaea) [33], hydrogeno-

gens, acetogens [22,34], some solventogenic bacteria,

such as ethanol-producing Clostridium ljungdahlii [35]

and other anaerobes including sulfate reducers [36], as

reviewed in [32,37]. CODH contains FeS clusters, the

active site contains an FeNiS cluster [38–40]. An

anaerobic CODH preparation containing copper in the

active site was reported [41], but the enzyme was inac-

tive. The CODH enzyme of the WL pathway is oxygen

sensitive. ACS catalyzes the cleavage and synthesis of

acetyl-CoA, releasing or consuming CO, respectively.

In Moorella thermoacetica, CO is carried inside the

enzyme through a hydrophobic tunnel as proposed by

scavenging experiments using hemoglobin [42] and

subsequently supported by isotope exchange data [43]

and structural data [44]. Some facultative aerobes, as

Rhodospirillum rubrum, have the anaerobic CODH but

no ACS, and use it to conserve energy in the reverse

direction through CO oxidation [32].

In other aerobic and facultative aerobic bacteria,

CO oxidation can also be catalyzed by an oxygen tol-

erant enzyme that shares no sequence similarity with

CODH of the WL pathway. The oxygen tolerant CO

oxidizing enzyme is encoded by the cox operon [45]. It

is typically called aerobic CODH [45], but for clarity

we will refer to it here by the name of its catalytic sub-

unit, coxL. Importantly, coxL enzymes are not related

to the CODH of the WL pathway, rather they are

related to molybdenum hydroxylases [45,46]. The met-

als involved in coxL catalysis are molybdenum and

copper [38,46–48]. Cox gene products only perform

the oxidation of CO to CO2, which in some species of

Proteobacteria, Firmicutes and Actinobacteria can

then be fixed via the Calvin cycle [45,47]. In aerobes

that use coxL enzymes, CO is typically a source of

electrons for respiratory processes coupled with exoge-

nous electron acceptors such as oxygen [45,49], sulfate

[50], anthraquinone disulfonate and fumarate [51].

Various lines of evidence point to the importance of

CO in primordial metabolism [52–56]. Here, we quer-

ied large and well curated biochemical databases –
KEGG and BRENDA – to investigate the number

and nature of entry points of CO and CO2 into

metabolism.

Results and Discussion

CO2 is everywhere in metabolism, CO is rare

The KEGG and BRENDA have different reaction

nomenclatures, therefore to compare their content it is

convenient to use Enzyme Commission (EC) numbers,

which also link metabolic data with taxonomy and

other catalysis metadata. Figure 1 shows the content

of both databases regarding enzyme classes that use

CO2 and CO. Both databases reveal that CO is very

rare in metabolism, whereas CO2 is very common.

KEGG contained 390 EC numbers involving CO2,

BRENDA Natural (a subset of BRENDA including

only reactions tested in vivo) contained 323 EC num-

bers and both databases returned 13 EC numbers

involving CO (Fig. 1).

The results obtained from both databases are not

completely overlapping (Fig. 1). In KEGG, there are

91 EC numbers involving CO2 that are not found in

BRENDA. Conversely, 25 EC numbers involving CO2

are found in BRENDA but not in KEGG. Regarding

CO, each database has two unique EC numbers: in
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BRENDA an additional dioxygenase, 1.13.11.54, and

an additional heme oxygenase, 1.14.99.48, are listed as

producing CO. In KEGG one of these non-overlap-

ping EC numbers is a misannotation: 2.1.1.258, a 5-

methyltetrahydrofolate: corrinoid/iron-sulfur protein

Co-methyltransferase, represents a reaction of the

Wood-Ljungdahl pathway that does not involve CO as

substrate or product [29]. The second CO involving

reaction unique to KEGG is EC 4.1.99.5, an O2-

dependent aldehyde oxygenase. O2-dependent reactions

cannot be primordial, because O2 is the product of

cyanobacterial metabolism (see Conclusion).
Eleven EC numbers that involve CO occur in both

databases. Of those 11, seven entail CO only as a

by-product of an O2-dependent enzyme: two heme

oxygenases, 1.14.14.18 and 1.14.15.20; four dioxyge-

nases: 1.13.11.24, 1.13.11.47, 1.13.11.48 and 1.13.11.

53 and one synthase 4.1.99.17. The remaining four

EC numbers involving CO all trace directly to

CODH. The first is 1.2.2.4, aerobic CODH with

cytochrome b-561 as an electron acceptor. This reac-

tion is disputed, however, as some authors argue

that no cytochromes are involved in the aerobic

CODH reaction [57], contrary to the original pro-

posal [49]. The second is 1.2.5.3, aerobic CODH

with quinones as an electron acceptor. The third is

EC. 1.2.7.4, anaerobic CODH with ferredoxin. The

fourth is 2.3.1.169, the CODH/ACS combined reac-

tion, which in BRENDA is considered as including

only the second step of acetyl-CoA synthesis and

not the CO2 fixation step.

CO2 for all trades, CO only for CODH

CO2 is involved throughout all major functional path-

ways in KEGG, while CO is assigned to only 7

(Fig. 2A). Each EC number had from 0 to a maximum

of 11 KEGG pathways assigned. Multifunctionality is

a known and important characteristic of enzymes, so

the functional analysis done here preserved all classifi-

cations assigned to all enzymes, except for the large

generalist categories (‘Biosynthesis of antibiotics’,

‘Biosynthesis of secondary metabolites’, ‘Microbial

metabolism in diverse environments’ and ‘Metabolic

pathways’), which were discarded. A large number of

enzymes do not have any pathways assigned (not

shown in the plot) - 113 involving CO2 and 5 involving

CO. The functions of these 5 EC numbers involving

CO were searched manually in the literature (see

legend of Fig. 2; Table 1). All EC numbers involving

CO as a substrate are assigned (or, if assigned

Unknown, could be manually assigned) to ‘carbon
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Fig. 1. Enzyme Commission (EC) numbers

involving CO2 and CO in KEGG and

BRENDA (only in vivo reactions) and their

overlaps. The horizontal bars display the

total of EC numbers for each molecule in

each database. The vertical bars display the

size of the overlaps (intersections) between

the databases.
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fixation pathways in prokaryotes’ and ‘energy metabo-

lism’ through the CODH reaction. Other pathways

involve CO always as a byproduct, with the exception

of the additional assignments of anaerobic CODH 1.2.

7.4 to ‘methane metabolism’ (in the methanogen path-

way) and (through a reaction that does not involve

CO) to ‘nitrotoluene degradation’.

Each reaction in our set was annotated in a range

from 1 to a maximum of 4320 taxa (species) in KEGG

as per its occurrence, either through the corresponding

gene in KEGG genomes or manually assigned upon

examination of the literature (see Materials and meth-

ods). Out of the total 399 EC numbers gathered for

CO2 and CO, 99 reactions were found to be annotated

only in eukaryotes, only one of which involves CO (a

mammalian heme oxygenase that produces CO, 1.14.

14.18, annotated in 110 KEGG genomes). In

prokaryotes, 292 ECs involved with CO2 were anno-

tated, versus only 12 with CO.

To investigate the distribution of reactions across

pathways where CO2 was involved, a higher-level cate-

gorization was performed, using the KEGG pathway

hierarchy, for prokaryotic EC numbers (Fig. 2B). A

Fisher’s exact test for enrichment of each pathway indi-

cates amino-acid metabolism as highly enriched for

CO2–involving reactions, as well as a significant enrich-

ment for xenobiotics biodegradation and metabolism,

carbohydrate metabolism, metabolism of cofactors and

vitamins and energy metabolism (adjusted p-values of

2.49 9 10�14, 6.01 9 10�6, 4.44 9 10�5, 3.21 9 10�4

and 7.10 9 10�4, respectively).

The ubiquity of CO2 in metabolism is more clearly

seen by highlighting CO2-dependent reactions on the

KEGG map ‘Metabolic Pathways’ (Fig. S1; portion

Table 1. Enzyme commission numbers associated with carbon monoxide.

EC number Functional classifications in KEGG Name and description

Proposed functional

classification

1.2.2.4 Unknown CO dehydrogenase (cytochrome b561);

although present in strict aerobes,

O2 is not required for the reaction.

CO is oxidized to CO2 with water as

the oxidant [49]

Energy Metabolism;

Carbon fixation pathways

in prokaryotes

1.2.5.3 Unknown Aerobic Carbon Monoxide

dehydrogenase (quinone)

Energy Metabolism;

Carbon fixation pathways

in prokaryotes

1.2.7.4 Carbon fixation pathways in prokaryotes;

Methane metabolism; Nitrotoluene degradation

Anaerobic carbon-monoxide

dehydrogenase (ferredoxin)

2.3.1.169 Carbon fixation pathways in prokaryotes CO-methylating acetyl-CoA synthase

2.1.1.258 Carbon fixation pathways in prokaryotes 5-methyltetrahydrofolate:corrinoid/iron-sulfur

protein Co-methyltransferase; two step

reaction: Tetrahydrofolate +

acetyl-CoA ↔ 5-methyltetrahydrofolate +

CoA + CO

1.13.11.24 Unknown Quercetin 2,3-dioxygenase. CO is a

byproduct in this reaction.

Xenobiotics biodegradation

and metabolism

1.13.11.47 Unknown 3-hydroxy-4-oxoquinoline 2,4-dioxygenase.

CO is a byproduct in this reaction.

Xenobiotics biodegradation

and metabolism

1.13.11.48 Unknown 3-hydroxy-2-methylquinolin-4-one

2,4-dioxygenase. CO is a

byproduct in this reaction.

Xenobiotics biodegradation

and metabolism

1.13.11.53 Cysteine and methionine metabolism Acireductone dioxygenase (Ni2+-requiring).

CO is a byproduct in this reaction. Unknown

function; the same enzyme, when binding

iron, is the one leading to the salvage of

methionine (EC 1.13.11.54) [97,98].

1.14.14.18 Porphyrin and chlorophyll metabolism Heme oxygenase (biliverdin-producing).

CO is a byproduct in this reaction.

1.14.15.20 Porphyrin and chlorophyll metabolism Heme oxygenase (biliverdin-producing,

ferredoxin). CO is a byproduct in this reaction.

4.1.99.5 Cutin, suberine and wax biosynthesis Aldehyde oxygenase (deformylating)

4.1.99.17 Thiamine metabolism Phosphomethylpyrimidine synthase.

CO is a byproduct in this reaction.
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shown in Fig. 3). The KEGG metabolic map used is the

largest available for depiction, however it can still only

plot 40% of the 292 prokaryotic EC numbers for CO2.

The chemical reactions in the map are all theoretically

reversible, however not all can be reversibly catalyzed

by the same enzyme under the same physiological condi-

tions. We cross-checked all KEGG EC numbers

involving CO2 against the information regarding

reversibility in BRENDA. KEGG reactions have no

direct information regarding reversibility – all are

assigned as reversible. Reversibility information in

BRENDA is two-fold: (a) there is a direct assignment of

compounds involved in the reaction as substrates or

products and (b) each reaction assigned to an EC has an
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with reactions involving CO2 highlighted, portraying different directionality and reversibility assignments in BRENDA. In black, reactions not

in BRENDA or where CO2 is a product in BRENDA but reversibility is unknown; in blue, reactions where CO2 is a substrate or it is a

product and the reaction is classified as reversible in at least one study; in red, reactions classified as irreversible where CO2 is a product.
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independent reversibility classification, which is assigned

manually by the database curators as ‘reversible’, ‘irre-

versible’ or ‘unknown’. In Figs S1 and 3, EC numbers

involving CO2 are highlighted according to the

reversibility of the reactions they encode in BRENDA.

When looking at all reactions, including those not in the

map, 65% were classified as producing CO2 with

reversibility unknown; 24% as utilizing CO2 or reversi-

bly producing it; 11% as irreversibly producing CO2.

Metals and cofactors

The cofactors and metals involved in CO and CO2

metabolism are different. We analyzed the number of

studies reporting metal and cofactor utilization in

BRENDA in vivo, only for EC numbers where CO

and CO2 are assigned as substrates, and only for

anaerobic, prokaryotic reactions (Fig. 4).

For CO, 63 entries for metal utilization were

retrieved linked with the only EC number where CO

is an in vivo substrate in BRENDA (anaerobic

CODH reaction, 1.2.7.4). Nickel and iron are by far

the most commonly reported metals, occurring in 46

and 34.9% of all 63 entries, respectively. For CO2, of

the total 499 entries retrieved, magnesium and man-

ganese are by far the preferred metals – 33.9 and

14.2%, respectively). Regarding organic cofactors,

ATP, biotin and NADs are the most common for

CO2 utilization – 33.2, 26 and 20%, respectively from

a total of 235 entries – whereas for CO nickel-iron-

sulfur clusters are the only reported cofactors. Differ-

ent types of Ni-Fe-S clusters have been synthesized

in the laboratory [58,59], although none have yet

been shown to catalyze the interconversion of CO2

and CO.

CODH/ACS: Archaea and bacteria, but not

aerobes

An earlier paper plotted the evolutionary distribution

of the archaeal type and bacterial type CODH and

ACS enzymes across genomes [16] demonstrating the

antiquity of the enzyme. Single gene phylogenies also

trace CODH and ACS to the universal common

ancestor [15,26,27]. A fundamental limitation to gene

phylogenies as a proxy of prokaryotic gene evolution

is however that phylogenies only show in which lin-

eages the gene is present, not the lineages in which it

is missing. Plots of gene distributions reveal where

genes are lacking. Figure 5A shows the current gene

distribution at the prokaryotic phylum level for

CODH and ACS as proxies for capacity to harness

CO in metabolism and to fix it as acetyl-CoA. As the

query sequences, homologues from eight prokaryotes

were used to obtain insights into the distribution of

the catalytic domains.
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Fig. 4. Metals and organic cofactors in reactions that consume CO or CO2. Percentage of entries of experimental evidence in BRENDA

demonstrating the participation of different (A) metals and (B) cofactors in the catalytic activity of enzymes that use CO (red) or CO2 (blue)

as substrates.

4187The FEBS Journal 285 (2018) 4181–4195 ª 2018 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies

J. C. Xavier et al. Something special about CO-dependent CO2 fixation

http://www.chem.qmul.ac.uk/iubmb/enzyme/EC1/2/7/4.html


Total hits/
total species per
tax group (%):

12.5

0

Acidobacteria
Aquificae

Deferribacteres
Dictyoglomi

Chlorobi

Elusimicrobia

Bacteroidetes

Ignavibacteriae
Fibrobacteres

Fusobacteria
Nitrospirae

Acidithiobacillia
Alphaproteobacteria
Betaproteobacteria

Gammaproteobacteria
Deltaproteobacteria

Epsilonproteobacteria

Planctomycetes
Verrumicrobia
Spirochaetes
Synergistetes

Cyanobacteria
Deinococcus-Thermus

Actinobacteria
Chloroflexi

Erysipelotrichia
Bacilli

Clostridia
Negativicutes

Tissierellia

Chlamydiae

Tenericutes
Thermodesulfobacteria

Thermotogae
Other Bacteria

Archaeoglobales
Natrialbales

Halobacteriales
Haloferacales

Thermococcales
Methanomassiliicoccales

Thermoplasmatales
Methanosarcinales

Methanococcales
Methanobacteriales

Methanocellales
Methanomicrobiales

Other Archaea
Nitrosopumilales

Acidilobales
Desulfurococcales

Sulfolobales
Thermoproteales

Bacteria Archaea

B
A

C
T

E
R

IA
A

R
C

H
A

E
A

CODH
(CO ↔ CO2)

ACS
(CO ↔ Acetyl-CoA)

Bacteria Archaea

25

37.5

50

62.5

75

87.5

100

M
. t

he
rm

oa
ce

tic
a

C.
 h

yd
ro

ge
no

fo
rm

an
s

R.
 ru

br
um

A.
 fu

lg
id

us
 C

dh
A1

Ba
th

ya
rc

ha
eo

ta
 A

Ba
th

ya
rc

ha
eo

ta
 A

2

M
. t

he
rm

au
to

tr
op

hi
cu

s

A.
 fu

lg
id

us
 C

oo
S

M
. a

ce
tiv

or
an

s

M
. t

he
rm

oa
ce

tic
a

C.
 h

yd
ro

ge
no

fo
rm

an
s

A.
 fu

lg
id

us
 C

dh
A1

Ba
th

ya
rc

ha
eo

ta
 A

2

M
. t

he
rm

au
to

tr
op

hi
cu

s

M
. a

ce
tiv

or
an

s

A

B
CODH ACS

Archaeoglobus_fulgidus_acsB

Methanosarcina_acetivorans_cdhC1

Methanothermobacter_thermautotrophicus_cdhC

Carboxydothermus_hydrogenoformans_acsB

Bathyarchaeota_cdhC2

Methanosarcina_acetivorans_cdhC2

Moorella_thermoacetica_ACS

100

100

6 8

100

Photosynthetic facultative anaerobe

Acetogen

Thermophylic hydrogenogen

Non-methanogenic sulfate reducer

Hydrogenotrophic methanogen

Acetoclastic, methylotrophic and hydrogenotrophic
methanogen

Fermentative, methylotrophic methanogen

Bathyarchaeota_cdhA2

Carboxydothermus_hydrogenoformans_CODHV

Archaeoglobus_fulgidus_cdhA_1

Moorella_thermoacetica_CODH

Rhodospirillum_rubrum_CODH

Archaeoglobus_fulgidus_cooS

Carboxydothermus_hydrogenoformans_CODH_I

Carboxydothermus_hydrogenoformans_CODHIV

Methanosarcina_acetivorans_cdhA1

Bathyarchaeota_cdhA

Methanothermobacter_thermautotrophicus_cdhA

Methanosarcina_acetivorans_cdhA2

Moorella_thermoacetica_CODH_copy

Carboxydothermus_hydrogenoformans_CODHII

Methanosarcina_acetivorans_cdhA3

Archaeoglobus_fulgidus_cdhA_2

1 5

100

6 2

9 8

100
6 2

2 9

2 1

100

6 3

2 3

3

1 1

O
. c

ar
bo

xi
do

vo
ra

ns
 co

xL
ae

ro
bi

c
CO

D
H

4188 The FEBS Journal 285 (2018) 4181–4195 ª 2018 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies

Something special about CO-dependent CO2 fixation J. C. Xavier et al.



The main observation from Fig. 5 is that CODH

and ACS are typically distributed among anaerobic

autotrophs. Some diversity is seen in the bacterial

copy of the enzyme – the presence/absence patterns

obtained with the different queries are not fully iden-

tical – indicating divergence after duplication. This

contrasts with the archaeal forms, with one interest-

ing exception. In both A. fulgidus and Bath-

yarchaeota, there is one copy of CODH with the

same distribution as the bacterial CODH. This sug-

gests interdomain lateral gene transfer for this CODH

subunit (Fig. 5B). Gene transfers from bacteria to

archaea are very common in evolution [60,61]. The

distribution of ACS is clearer, and uniform within

both domains, showing some homology in-between

domains for the clostridial enzymes and Methanomi-

crobiales (Fig. 5).

CO forms stronger bonds to metals than CO2

The large difference in the numbers of metabolic reac-

tions that involve either the utilization or production

of CO and CO2 is striking. A closer look at the chem-

istry regarding the interaction of both compounds with

metals provides further detail (Fig. 6). The orbitals in

carbon atoms of both carbon monoxide and carbon

dioxide are sp-hybridized, such that both molecules

are linear. At the level of electron configurations, how-

ever, CO and CO2 differ quite noticeably. In particu-

lar, the free electron pair of CO enables two

complementing mechanisms (r and p) that lead to

very strong and short bonds with metals (Fig. 6A).

The empty p-orbitals of CO support backbonding with

metals, which results in a very high affinity to nickel

and iron in particular [62]. The high affinity of CO for

nickel leads to the facile formation of nickel carbonyl,

Ni(CO)4 (a volatile liquid), which formed the basis of

the Mond process, an early method for industrial

nickel preparation [63]. The strong affinity of CO to

transition metals is the basis of its extreme toxicity to

humans, it bonds with the iron in hemoglobin more

strongly than does O2.

By contrast, there are various bonding modes of

CO2 to transition metals (Fig. 6B) which depend

mostly on whether the metal is rich or poor in elec-

trons. In general, the bonds that CO2 forms with met-

als are not as strong as those formed by CO. This can

be a virtue in metabolism, as the rather weak bonds of

CO2 to metals permit faster and more versatile cat-

alytic reactions than those of CO. Nevertheless, the

special bond between CO and transition metals also

enables carbonyl insertion, both in industrial chemistry

(heterogenic catalysis) [64], and in one very ancient

and important biological reaction – CODH/acetyl-

CoA synthase [65], which requires the essential Ni-Fe-

S cluster for achieving the slow reduction of CO2 to

CO. Recent studies showing that CO2 is efficiently

reduced by native metals to acetyl and pyruvoyl moi-

eties entail metal bound carbonyl groups and carbonyl

insertions in the proposed reaction mechanisms [23].

This parallels the Fischer-Tropsch type reaction mech-

anisms suggested for geochemical CO2 reduction pro-

cesses giving rise to abiotic organic molecules in

hydrothermal vents [66,67].

Conclusion

For soil environments, it has been estimated that 0.2

gigatonnes (Gt) of CO is consumed each year globally

[68] mainly through CO aerobic oxidation [69]. During

methanogenesis in anoxic environments [70], about 0.6

Gt of CH4 is produced annually from acetate [71,72], a

process that generates one mol of CO as a pathway

intermediate per mol of acetate cleaved [71,72], corre-

sponding to roughly 1 Gt methanogenesis-dependent

CO synthesis per year. Based on reviews of CO metabo-

lism [22,37], and on our metabolic database search, it

appears that CO interfaces with metabolism (the biotic

segment of the carbon cycle) at only two enzymes: the

anaerobic CODH, a Ni- and Fe-containing enzyme, and

Fig. 5. Phylogenomic analysis of CO-interconverting enzymes. (A) Distribution of genes encoding the CODH and ACS reactions. The left

part of the figure lists the taxonomic groups from 5655 completed sequenced genomes (212 archaeal and 5443 bacterial). The presence-

absence patterns (PAPs) represent the proportion of genomes within a taxonomic group where each gene is present according to the

discrete grey scale-bar of binned intervals (top right, value indicates upper value of each bin). Each column represents a different gene

selected from a different query species capable of performing the aerobic CODH (oxidative) reaction, the anaerobic CODH or both the

(anaerobic) CODH and the ACS reactions (Oligotropha carboxidovorans, Moorella thermoacetica, Carboxydothermus hydrogenoformans,

Rhodospirillum rubrum, Archaeoglobus fulgidus, Candidatus Bathyarchaeota archaeon BA1, Methanothermobacter thermautotrophicus and

Methanosarcina acetivorans). Homologous proteins were predicted by BLAST with an E-value threshold of 10�5 and filtering for global

amino acid identities of at least 20% with Powerneedle (see Materials and methods). (B) Phylogenetic trees of the query sequences of

CODH (left) and ACS (right) used to BLAST the RefSeq Database to build the PAPs in (A), numbers at branches are bootstrap values.

Metabolic modes of the different species are marked in front of the respective sequences with colored circles according to the legend

(bottom right).
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the aerobic CODH, a Mo- and Cu-containing enzyme.

Although they catalyze the same reversible reaction

(Eq. 1),

COþH2O ! CO2 þ 2e� þ 2Hþ

DG0
0 ¼ �20kJ �mol�1

ð1Þ

the aerobic and anaerobic CODH enzymes have differ-

ent subunit structures, different cofactors and are not

related at the amino acid sequence or structural level

[37,39–41,45]. Prokaryotes that use aerobic CODH use

CO as a source of electrons in energy metabolism, are

typically aerobes or facultative aerobes and tend to

transfer the electrons from CO to high potential accep-

tors such as O2 or acceptors derived from it such as

nitrate (NO3
�) [45,73]. Because O2 is a product of

cyanobacterial metabolism [74], such high potential

acceptors are latecomers in evolution, as current geo-

chemical data have it that cyanobacterial O2 first

appeared about 2.5 billion years ago [74–76].
From the standpoint of thermodynamics, it is well-

known that the WL pathway is the most favorable of

the six known CO2 fixation pathways [3,77]:

2CO2 þ 4H2 þ CoASH ! CH3COSCoAþ 3H2O

DG0
0 ¼ �59kJ �mol�1

ð2Þ

The reaction is exergonic when H2 is the electron

donor, which allows some acetogens and some metha-

nogens to generate ion gradients and ATP at the

expense of CO2 fixation. All other pathways of CO2

fixation require ATP hydrolysis to go forward. Recent

findings show that the reverse citric acid (rTCA) cycle

in some thermophiles requires hydrolysis of only one
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bond. Concurrently, a p bond is formed between an occupied d orbital and the antibonding empty p* orbital of CO (darker grey = positive

phase, lighter grey = negative phase), so called ‘p backbonding’. (B) Different bonding modes between CO2 and transition metals include

g1-C coordination, which mostly happens with electron-rich metals (i.e. lower oxidation states), as they can transfer charge from the dz2
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ATP to go forward [78,79], but that ATP must still be

generated by an independent energy metabolism. The

reductive acetyl-CoA pathway is simultaneously a

source of carbon and energy, a strong argument in

favor of its ancestral status among carbon assimilation

pathways [2,3]. CO2-fixation via the rTCA cycle could

have arisen via closure of the incomplete (horseshoe)

version of the rTCA cycle [80] (starting from acetyl-

CoA supplied by the WL-pathway) as it occurs in

some acetogens and methanogens [18,81,82].

Its linear nature, chemical simplicity, favorable ener-

getics, and occurrence among both Bacteria and

Archaea set it apart from other pathways of CO2 fixa-

tion and suggest that the WL is the most ancient of

CO2 fixation pathways [3,4]. Strong evidence support-

ing the antiquity of the WL pathway comes from new

findings showing that its main reactions are facile, with

its central intermediates including pyruvate arising

spontaneous in laboratory reactions overnight from

CO2 and water at temperatures of 30–100 °C in the

absence of enzymes, with native metals such as Fe0

and Ni0 functioning as catalysts and reductants [23].

From the standpoint of energetics, there is something

very special about the reductive acetyl-CoA pathway

among metabolic pathways. The involvement of CO as

a reaction intermediate able to undergo carbonyl inser-

tion might be the essential property that renders Ni-

dependent C—C bond formation in the CODH/ACS

reaction mechanism apparently immune to substitution

by organic cofactors or alternative enzymes over the

last 4 billion years. In physiological evolution, it

appears that there is something very special about CO.

Materials and methods

Data retrieval and integration

Both KEGG and BRENDA databases were scanned for

classes of reactions involving CO and/or CO2 by parsing

Enzyme Commission (EC) numbers. From BRENDA, we

took only the subset of reactions tested in vivo. EC num-

bers involving bicarbonate (HCO�
3 ) were also retrieved.

Because of the chemical equilibrium between CO2 and

HCO�
3 and their rapid interconversion by carbonic anhy-

drases [83], which are widely distributed enzymes, through-

out this work CO2 and HCO�
3 were considered to be

identical in database parsing procedures. EC numbers and

the current list of KEGG organisms with the corresponding

taxonomic classification were downloaded using the KEGG

Rest API (http://www.kegg.jp/kegg/rest/keggapi.html), July

2017. The EC numbers from BRENDA were retrieved with

the SOAP API Python interface. All integration was per-

formed with Python scripts.

Taxonomy annotation

The taxonomic assignment of EC numbers was retrieved

from the annotated genomes in the KEGG database.

Among all 399 KEGG EC numbers used, 114 had no gene

associated, and these were manually checked: for each EC

number we checked the original literature linked in the

KEGG entry to find the corresponding taxon where the EC

number was identified. For 53 out of these 114 EC num-

bers, the taxon retrieved from the literature was not present

in KEGG genomes. In these cases, a close phylogenetic cou-

sin was assigned to the EC number so that it could be auto-

matically assigned to the Prokaryotic or Eukaryotic

domains.

Statistical analysis and metabolic maps

All the statistical analyses, including the Fisher’s exact test

for significance and Bonferroni correction, were performed

with the package RPy2, that provides an interface between

Python and the R statistical software. Overlapping sets of

EC numbers were analyzed and plotted with UpSetR [84].

The metabolic map with highlighted reactions was pro-

duced with iPath v2.0 [85].

Analysis of distributions of CO enzymes

The query sequences for the catalytic domain of CODH and

the catalytic domain of ACS were manually selected from

nine different species (four archaea and five bacteria) that

have been studied with respect to CO utilization. All anno-

tated copies for both genes were taken for each genome. This

exercise resulted in the collection of a total of 25 queries

from: (bacterial) an acetogen, Moorella thermoacetica, with

two copies of CODH and one copy of ACS [86]; a ther-

mophilic hydrogenogen, Carboxydothermus hydrogenofor-

mans with four CODH copies and one ACS [87]; a

photosynthetic facultative anaerobe, Rhodospirillum rubrum

with a single copy of CODH, capable of growth on carbon

monoxide as sole energy source [88]; two aerobes with one

CODH each, Oligotropha carboxidovorans (coxL I) and

Bradyrhizobium sp. CPP (coxL II) [89] – the latter with a sim-

ilar pattern to the former (data not shown); (archaeal) a non-

methanogenic sulfate reducer, Archaeoglobus fulgidus, with 3

copies of CODH and one ACS [90]; a recently identified, fer-

mentative and possibly methylotrophic methanogen, Candi-

datus Bathyarchaeota archaeon BA1 with two copies of

CODH and one of ACS [91,92]; one hydrogenotrophic

methanogen, Methanothermobacter thermautotrophicus with

one copy of each enzyme [93] and finally an acetoclastic

methylotrophic, hydrogenotrophic methanogen, Methano-

sarcina acetivorans with three copies of CODH and two of

ACS [94]. Representative queries were taken from each gen-

ome when they were significantly similar. The queries were
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aligned with ClustalW [95] and phylogenetic inferences were

made with RAxML [96].

To characterize CODH and ACS gene distribution, a

BLAST search was performed against all prokaryotic gen-

omes in RefSeq (NCBI, version September 2016), of which

the primary hits (e-value ≤ 1 9 10�5) were selected. A

pairwise global ‘Needleman & Wunsch’ – alignment was

then performed with these sequences against the whole

database of prokaryotes again to filter for hits with global

identity >20%.
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Fig. S1. CO2 in a global metabolic map. KEGG map

‘01100 – metabolic pathways’ with reactions involving

CO2 highlighted, portraying different directionality

and reversibility assignments in BRENDA.
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