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Abstract

Many complex systems present an intrinsic bipartite structure where elements of one set link to elements of the second set.
In these complex systems, such as the system of actors and movies, elements of one set are qualitatively different than
elements of the other set. The properties of these complex systems are typically investigated by constructing and analyzing
a projected network on one of the two sets (for example the actor network or the movie network). Complex systems are
often very heterogeneous in the number of relationships that the elements of one set establish with the elements of the
other set, and this heterogeneity makes it very difficult to discriminate links of the projected network that are just reflecting
system’s heterogeneity from links relevant to unveil the properties of the system. Here we introduce an unsupervised
method to statistically validate each link of a projected network against a null hypothesis that takes into account system
heterogeneity. We apply the method to a biological, an economic and a social complex system. The method we propose is
able to detect network structures which are very informative about the organization and specialization of the investigated
systems, and identifies those relationships between elements of the projected network that cannot be explained simply by
system heterogeneity. We also show that our method applies to bipartite systems in which different relationships might
have different qualitative nature, generating statistically validated networks in which such difference is preserved.
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Introduction

In recent years, many complex systems have been described and

modeled in terms of bipartite networks [1–5]. Examples include

movies and actors [1,2,4], authors and scientific papers [6–9],

email accounts and emails [10], mobile phones and phone calls

[11], plants and animals that pollinate them [12,13]. One

ubiquitous property of bipartite complex systems is their

heterogeneity. For example, in a given period of time, some

actors play in many movies, whereas others play in a few, some

authors write a few papers, whereas others write many. Movies are

also heterogeneous because of the size of cast, as well as papers

because of the number of authors. Heterogeneity is also a common

feature of biological complex systems. The genome of some

organisms might contain a small set of proteins performing a given

class of biological functions whereas the corresponding set of

proteins is large for other organisms. Bipartite networks are

composed by two different sets of nodes such that every link

connects a node of the first set with a node of the second set. The

properties of bipartite complex systems are often investigated by

considering the one-mode projection of the bipartite network. One

creates a network of nodes belonging to one of the two sets and

two nodes are connected when they have at least one common

neighboring node of the other set. In this paper we deal with the

problem of identifying preferential links in the projected network.

Specifically we use the term preferential link to indicate a link whose

presence in the projected network cannot be explained in terms of

random co-occurrence of neighbors in the bipartite system. We

argue that these preferential links carry relevant information about

the structure and organization of the system. When one constructs

a projected network with nodes from only one set, the system

heterogeneity makes it very difficult to discriminate preferential

links from links which are consistent with a random null hypothesis

taking into account the heterogeneity of the system. It is therefore

of great importance to devise a method allowing to statistically

validate whether a given link in the projected network is consistent

or not with a null hypothesis of random connectivity between

elements of the bipartite network.

The paper is organized as follows. In the Section Methods, we

introduce our method to obtain a statistically validated network. In

the Section Results and Discussion we first consider a network of

organisms. Specifically, we obtain and discuss the statistically

validated network of organisms used to define the clusters of

orthologous genes database. We then study the network of stocks of the

system of 500 stocks traded in the US equity markets and we point

out that the statistically validated network of this section presents

links describing a set of different relationships among the elements of

the considered complex system. The last set of results concerns the

network of movies where we consider the social bipartite system of

movies and actors and we obtain statistically validated networks of
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movies. These networks are investigated with respect to their

community structure and community characterization in the Text

S1, where a few illustrative case studies of the informativeness of

movies communities detected in statistically validated networks are

provided. Finally, we draw some conclusions.

Methods

Here we introduce an unsupervised method to statistically

validate each link of the projected network. A schematic summary

of our method is provided in Fig. 1. The key ingredients of our

method are (i) the selection of a null hypothesis of random

connectivity between elements in the bipartite network consistent

with the degree of heterogeneity of both sets of elements, (ii) the

identification of an analytical or computationally feasible proce-

dure to associate a p-value with each link of the projected network,

in order to test the presence of the link against the selected null

hypothesis, and (iii) the appropriate correction of the statistical

significance level in the presence of multiple hypothesis testing

[14,15] of links across the network.

Statistically validated networks
The method works as follows. Let us consider a bipartite system S

in which links connect the NA elements of set A to the NB elements

of set B. In the present discussion, we focus on the projected network

on set A but the same approach is also valid when considering the

projected network on set B. The adjacency projected network is

obtained by linking together those vertices of A which share at least

a common first neighbor element of B in the bipartite system. We

aim to statistically validate each link of the projected network

against a null hypothesis of random co-occurrence of common

Figure 1. Illustrative example of the method. Illustrative example describing the method introduced to construct statistically validated
networks in bipartite complex system.
doi:10.1371/journal.pone.0017994.g001
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neighbors that takes into account the degree heterogeneity of

elements of both set A and set B. In order to accomplish this goal we

first decompose the bipartite system in subsystems. Fig. 2 shows an

illustration of the link validation procedure in a specific subsystem.

Each subsystem Sk consists of all the Nk
B elements of set B with a

given degree k and of all the elements from set A linked to them. By

construction, a subsystem Sk is homogeneous with respect to the

degree of elements belonging to set B, because they all have the

same degree k. We indicate the set of elements of B with a certain

degree k as set Bk. In the bipartite subsystem Sk we are therefore left

just with heterogeneity of elements of set A. Let us consider now two

elements i and j of set A, and assume they have Nk
i,j common

neighbors in set Bk. We denote the degree of elements i and j in the

subsystem Sk as Nk
i and Nk

j , respectively. Under the hypothesis that

elements i and j randomly connect to the elements of set Bk, the

probability that elements i and j share X neighbors in set Bk is given

by the hypergeometric distribution [16], i.e.

H X jNk
B,Nk

i ,Nk
j
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It is worth to mention that this distribution is symmetric with

respect to exchange of elements i and j, i.e. H(X jNk
B,Nk

i ,Nk
j )

~H(X jNk
B,Nk

j ,Nk
i ). The distribution given in Eq. (1) allows one

to associate a p-value p(Nk
i,j) with the actual number Nk

i,j of

neighbors that elements i and j share:

p(Nk
i,j)~1{

XNk
i,j

{1

X~0

H(X jNk
B,Nk

i ,Nk
j ): ð2Þ

This way we have shown how to associate a p-value with the

link between each pair of elements i and j of the projected network

for each subsystem Sk. The next step of the method is to set a level

of statistical significance s, which takes into account the fact that

we are performing multiple hypothesis testing - specifically a test

for each pair of elements of A for each subsystem Sk. If we

consider that the degree of elements of set B in the bipartite system

ranges between kB
min and kB

max then the total number of tests that

we perform will be Ntƒ(kB
max{kB

minz1)|NA|(NA{1)=2. In

the following examples, we will use a statistical level of significance

of 0:01 corrected for the Nt multiple comparisons in two different

ways. Specifically we will use the very conservative Bonferroni

correction [14], i.e. s~0:01=Nt for multiple hypothesis testing and

the less restrictive False Discovery Rate (FDR) [15]. For the

moment, let us just assume that a value of statistical significance s
has been set, and proceed in the construction of the statistically

validated network. We compare each p-value p(Nk
i,j) with s. If

p(Nk
i,j)vs then we validate the link between elements i and j for

the specific subsystem Sk. We then summarize all validations

obtained in the projected adjacency network and associate with

the link between i and j a weight equal to the total number of

subsystems Sks in which the relationship between i and j has been

statistically validated. If the weight of a link turns out to be zero

then the link is removed. The resulting weighted network is the

aimed statistically validated network. Of course the obtained

statistically validated network depends on the way we set the

statistical threshold s. We name the statistically validated network

obtained by setting s according to the Bonferroni correction as

Bonferroni network. A less stringent correction for multiple hypothesis

testing is the False Discovery Rate (FDR) [15]. The FDR

correction for multiple hypothesis testing is defined as follows.

Specifically, p-values of different tests are first arranged in

increasing order (p1vp2v . . . vpNt
), and the FDR threshold is

obtained by finding the largest tmax such that ptmax
vtmax0:01=Nt.

It is worth noting that by construction, the Bonferroni network is

always a subnetwork of the FDR network. The advantage of using

the FDR network is the fact that it allows one to include more

interactions in the network, because the FDR correction is less

restrictive than the Bonferroni correction. On the other hand,

interactions included in the Bonferroni network are on average

statistically more robust than interactions included in the FDR

network. In this paper, we also consider the FDR correction and

we refer to the network obtained by using it as the FDR network.

We apply our method to three different systems, namely the set

of clusters of orthologous genes (COG) detected in completely

sequenced genomes [17,18], a set of daily returns of 500 US

financial stocks, and the set of world movies of the IMDb database

(http://www.imdb.com/). In the first set of COGs we can fully

take into account both sources of heterogeneity of COGs and

organisms. In the second set of excess returns of 500 US financial

stocks the second source of heterogeneity is quite limited and

therefore it is neglected. The last example presents a very large

system with a high degree of heterogeneity of set B (actors) that

cannot be efficiently taken into account with our method.

However the second source of heterogeneity, although very large

in absolute terms it is quite limited in relative terms with respect to

the full size of the system. For this reason, although the statistically

validated networks we obtain by neglecting the second source of

heterogeneity are approximated, we show that they are fully

informative about this large heterogeneous complex system.

Moreover, we also show that the role of actors heterogeneity

can be heuristically taken into account in the analysis of movies

communities detected in the statistically validated networks. We

choose to analyze these three systems because they are of interest

in three different areas of science and they are different in size and

level of heterogeneity, giving us the opportunity to show the power

of our method under quite different conditions.

Results and Discussion

Network of organisms
The COG database [17,18] provides the relationship between

organisms and clusters of orthologous proteins present in their

genome. Orthologous proteins have evolved from an ancestral

protein and are likely to perform similar biological tasks in

different genomes. By monitoring COGs across organisms one can

therefore track the presence of different proteins involved in

similar biological processes in different organisms. A projected

network of organisms based on the co-occurrence of specific

COGs might therefore highlight the degree of similarity of two

organisms based on the functional characteristics of proteins

present in their genome. Set A of the database is composed by 66

organisms (13 Archaea, 50 Bacteria and 3 unicellular Eukaryota)

and set B by 4,873 COGs present in their genomes. The number

of COGs in a genome is heterogeneous, ranging from 362 to

2,243. Similarly, COGs can be present in a different number of

genomes. We call any COG that is present in k different genomes

a k-COG. In the present system, k ranges between 3 and 66. We

consider the projected network of organisms, in which we set a link

between two organisms if at least one COG is present in the

genome of both organisms. In the following we will refer to this

Statistically Validated Networks
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Figure 2. Illustrative example of the link validation procedure. Illustrative example describing the procedure introduced to validate the link
between node 4 and 5 in the projected network of set A associated with the subsystem S2 of a bipartite complex system. From the bipartite
subsystem we note that the degree of elements 4 and 5 is N2

4 ~6 and N2
5 ~5 respectively. The number of elements of set B common to this pair of

elements is N2
4,5~5. The computation of the p-value and his comparison with the chosen multiple hypothesis testing correction (s = 0.0005 in the

example) is given in the box of the figure. For the illustrated subsystem and for the chosen multiple hypothesis testing correction the link 6–7 is also
statistically validated.
doi:10.1371/journal.pone.0017994.g002
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network as the adjacency network of organisms, which turns out to

be a complete network. The statistically validated networks are

obtained by performing the procedure described in the previous

Section. First we divide the bipartite system into COGk

subsystems. Each COGk (k~3, . . . ,66) bipartite subsystem is

characterized by the fact that all the COGs involved in it are k-

COGs. In each COGk subsystem we are therefore left only with

the heterogeneity of organisms. We test the existence of a

preferential relationship between each pair of organisms separately

for each COGk subsystem. Specifically, given two organisms i and

j, let Nk
i be the number of k-COGs in organism i, Nk

j the number

of k-COGs in organism j and Nk
i,j the number of k-COGs

belonging to both i and j. Under the null hypothesis of random co-

occurrence, the probability of observing X co-occurrences is given

by H(X jNk,Nk
i ,Nk

j ) where Nk is the total number of k-COGs in

the system. We can therefore associate a p-value to the observed

Nk
i,j as described in Eq. 2. The described link validation procedure

involves multiple hypothesis testing and therefore the statistical

threshold must be corrected for multiple hypothesis testing. In our

case the number of organisms is No~66 and we test

Nt~64No(No{1)=2 hypotheses, equal to the number of pairs

of organisms times the number of COGk subsystems. Thus our

Bonferroni threshold is pb~0:01:2=(64No(No{1))%7:3|10{8.

Each validated link has a weight equal to the total number of

subsystems COGks in which the relationship between i and j has

been statistically validated.

Let us now analyze the statistically validated networks obtained

for this biological system. The Bonferroni network of organisms

includes 58 non isolated nodes connected by 216 weighted links

(Fig. 3A) and it shows seven connected components, each one

having a clear biological interpretation in terms of organisms’

lineage. The FDR network of organisms includes all the 66

organisms and the number of weighted links in this network is

369 (Fig. 3B). Thus the entire set is covered and the additional

preferential links provide relations among the groups already

observed in the Bonferroni network. The Bonferroni network

(Fig. 3A) presents 7 connected components and 8 isolated nodes

(isolated nodes are not shown in the figure). The largest

connected component of the network, which is on the left in

Fig. 3A, is composed by bacteria belonging to the phylum of

Proteobacteria. Subgroups belonging to different classes can also

be recognized. In fact, Eco, Ecz, Ecs, Ype, Hin, Pmu, Vch, Pae

and Sty belong to the class of Gammaproteobacteria, whereas

Atu, Sme, Bme, Ccr, Rpr, Rco and Mlo are Alphaproteobacteria

and NmA, Nme and Rso are Betaproteobacteria. The second

connected component is composed by Archaea genomes

belonging to the two phyla of Euryarchaeota (Mth, Mja, Hbs,

Tac, Tvo, Pho, Pab, Afu, Mka, and Mac) and Crenarchaeota

(Pya, Sso and Ape). Archaea are also linked to the three

unicellular eukaryotes present in the set, namely Ecu, Sce and

Spo, although the weight of links between eukariotes and

Archaea is markedly smaller than the weight of links among

Archaea genomes [19]. The FDR network (Fig. 3B) is connected.

However the group including Archaea and Eukaryota is clearly

distinct from the network region of Bacteria. It is worth noting

that both the Bonferroni and the FDR network display a clear

clustered structure. Indeed the application of community

detection algorithms [20,21], such as Infomap [22], to the

statistically validated networks reveal clusters of organisms with a

direct biological interpretation in terms of lineage (see Fig. 3).

This is not true for the adjacency network, and shows that the

statistically validated networks are able to identify the many

preferential links inside communities and the few preferential

links bridging different communities of organisms.

Network of financial stocks
As a second example we consider the collective dynamics of the

daily returns of Ns~500 highly capitalized US financial stocks in

the period 2001–2003 (T = 748 trading days). Many studies

investigating correlation based networks have shown that the

information about the different economic sectors of the quoted

companies is incorporated into their price dynamics [23]. In this

case, the two sets of the bipartite system are the stocks (with

categorical information on their returns) and the trading days.

Here we focus on the projected network of stocks. The interest in

this example is that we (i) generalize our procedure to complex

systems where the elements are monitored by continuous

variables, (ii) show how to simplify the above procedure when

the second source of heterogeneity (in the previous example the

COG frequency in different organisms) is small, and (iii) show how

to classify links according to the type of relation between the two

nodes.

Since we want to identify similarities and differences among

stock returns not due to the global market behavior, we investigate

the excess return of each stock i with respect to the average daily

return of all the stocks in our set. The excess return of each stock i
at day t is then converted into a categorical variable with 3 states:

up, down, and null. For each stock we introduce a daily varying

threshold si(t) as the average of the absolute excess return (a proxy

of volatility) of stock i over the previous 20 days. State up (down) is

assigned when the excess return of stock i at day t is larger

(smaller) than si(t) (-si(t)). The state null is assigned to the

remaining days. We study the co-occurrence of states up and

down for each pair of stocks. In this case we can neglect the

heterogeneity of state occurrence in different trading days because

the number of up (down) states is only moderately fluctuating across

different days and it has a bell shaped distribution with a range of

fluctuations smaller than one decade for each stock. With this

approximation we can statistically validate the co-occurrence of

state P (either up or down) of stock i and state Q (either up or down)

of stock j with the following procedure (illustrated in Fig. 4). Let us

call NP (NQ) the number of days in which stock i (j) is in the state P
(Q). Let us call NP,Q the number of days when we observe the co-

occurrence of state P for stock i and state Q for stock j. Under the

null hypothesis of random co-occurrence of state P for stock i and

state Q for stock j, the probability of observing X co-occurrences

of the investigated states of the two stocks in T observations is again

described by the hypergeometric distribution, H(X jT ,NP,NQ). As

before we can associate a p-value with each pair of stocks for each

combination of the investigated states. We indicate the state up

(down) of stock i as iu (id ). The possible combinations are (iu, ju), (iu,

jd ), (id , ju), and (id , jd ). As before the statistical test is a mul-

tiple hypothesis test and therefore either the Bonferroni or

FDR correction is necessary. The Bonferroni threshold is

pb~pt=(2Ns(Ns{1)) where the denominator of the threshold is

the number of considered stock pairs (Ns(Ns{1)=2) times 4,

which is the number of different co-occurrences investigated. Each

pair of stocks is characterized by the set of the above four

combinations which are statistically validated. There are

24{1~15 possible cases with at least one co-occurrence

validation, but we observe only 5 kinds of preferential links: L1

in which the co-occurrences (iu, ju) and (id , jd ) are both validated;

L2 in which only the co-occurrence (id , jd ) is validated, L3 in

which only the co-occurrence (iu, ju) is validated, L4 in which

either only (iu, jd ) or only (id , ju) is validated; and L5 when both the

co-occurrence (iu, jd ) and (id , ju) are validated. Note that we put in

the same relationship L4 two cases which are different only for the

order in which the two nodes are considered. The set of

relationships L1, L2, and L3 and the associated links describe a

Statistically Validated Networks
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coherent movement of the price of the two stocks, while the set of

relationships L4 and L5 describes opposite deviation from the

average market behavior. We can therefore construct networks

where the statistically validated links are associated with a label

that specifies the type of relationship between the two connected

nodes. This structure is richer than a simple unweighted network,

but it is also different from a weighted network because it

describes relationships which cannot be described by a numerical

value only. We address the set of different relationships present

between two nodes of the statistically validated network with the

term multi-link.

The Bonferroni network of the system is composed by 349

stocks connected by 2,230 multi-links. The multi-links are of

different nature. Specifically, we observe 1,158 L1-links, 494 L2-

links, 354 L3-links, 196 L4-links, and 28 L5-links. The largest

connected component of the network includes 273 stocks. There

are also 19 smaller connected components of size ranging from 2

to 15. In Fig. 5A we show the largest connected component of the

Bonferroni network. It presents several regions in which stocks are

strongly connected by L1, L2, and L3 multi-links. These regions

are very homogeneous with respect to the economic sector of the

stocks. The connection between different regions is in some cases

Figure 3. Statistically validated networks of organisms. Bonferroni (Panel A) and FDR (Panel B) networks of the organisms investigated in the
COG database. The shape of the node indicates the super kingdom of the organism: Archaea (squares), Bacteria (circles), and Eukaryota (triangles).
The color of the node indicates the phylum of the organism. The thickness of the link is related to its weight and it is proportional to the logarithm of
the number of COGk validations between the two connected nodes. Red links bridge different communities of organisms, as revealed by applying
Infomap [22] to the statistically validated networks.
doi:10.1371/journal.pone.0017994.g003
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provided by a large number of L4 and L5 multi-links. This is

especially evident for the group of technology stocks (red circles).

All except one of the multi-links outgoing from the group are L4
and L5 multi-links, indicating moderate or strong anti-correlation

of technology stocks with the other groups. The strongest anti-

correlation is detected between technology and services stocks

(cyan circles).

The multi-link statistically validated network of 500 stocks is a

new kind of network presenting qualitatively and quantitatively

different classes of links. For this reason, there are no established

methods specifically devised to detect communities of nodes in this

kind of network. Here we propose a minimalist approach in which

we just distinguish between co-occurrences of correlated evolution

from co-occurrences of anti-correlated evolutions. Our procedure

works as follows: first we remove all the links describing anti-

correlated evolutions (L4 and L5) from the multi-link statistically

validated network (see Fig. 5B). Then we weight the remaining

links by taking into account whether the statistical validation of the

link is single or twofold. With this choice, the twofold link L1 has a

weight equal to 2, whereas single links L2 and L3 have a weight

Figure 4. Illustrative example of the link validation procedure. Illustrative example describing the procedure introduced to validate a link in
the projected network when the degree heterogeneity of Set B is negligible or cannot properly be taken into account. The example explicitly worked
out in the box of the figure considers the validation of the link 4–5 of the projected network of set A. For these nodes the degree of elements 4 and 5
is N2

4 ~6 and N2
5 ~5 respectively. The number of elements of set B common to this pair of elements is N2

4,5~5. The computation of the p-value and
his comparison with the Bonferroni multiple hypothesis testing correction (s = 0.0005 in the example) is given in the box of the figure.
doi:10.1371/journal.pone.0017994.g004
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equal to 1. We then perform community detection on the resulting

‘‘standard’’ weighted network of Fig. 5B, by using the Infomap

method [22]. While our approach is pragmatic and heuristic, we

are aware that a more theoretically grounded approach to

partitioning multi-link networks would certainly be useful in the

study of networks where links of different nature can be naturally

defined, as in the present case.

We analyze the clusters of stocks detected in the weighted

Bonferroni network by using the information about the economic

sectors and subsectors of stocks in each cluster. Economic sectors

according to Yahoo Finance classification of stocks are Basic

Materials, Capital Good, Conglomerates, Consumer Cyclical,

Consumer Non Cyclical, Energy, Financial, Healthcare, Services,

Technology, Transportation, Utilities. A statistical method to

perform this analysis is given in Ref. [24]. The total number of

economic sectors is 12, and they are detailed in Fig. 5. Economic

subsectors represent a more detailed classification of stocks. There

are 81 different subsectors characterizing the N~349 non isolated

stocks in the Bonferroni network. The Infomap method detects 37

clusters of stocks with size ranging from 2 to 48 in the Bonferroni

network. In Fig. 5C, we show the clusters of stocks obtained for the

largest connected component of the Bonferroni network. It is

evident from Fig. 5C that most of the clusters are very

homogeneous in terms of the economic sector of stocks. However

some clusters are better characterized in terms of subsectors. Let us

for instance focus on the 3 clusters of financial stocks (green

vertices in Fig. 5) at the top left corner in Fig. 5C. From top to

bottom, these three clusters are composed by stocks belonging to

the sub-sectors of insurance (life, and property and casualty), of

investment services, and of regional banks. Another example is the

cluster at the center of Fig. 5C, which is mostly composed by

stocks of the services sector (cyan in the figure). These stocks

belong to the sub-sector of services – real estate. It is to notice that

this cluster is strongly anti-correlated (links L4 and L5 in Fig. 5A)

with a large cluster of stocks belonging to the sector of technology

(red vertices in Fig. 5).

We have also computed the FDR network of the system. As

expected, it includes more stocks (494) and more multi-links

(11,281) than the Bonferroni network, since the requirement on

the statistical validation is less restrictive. The FDR network has a

single connected component and the fraction of L4 and L5 multi-

links is higher (35.9%) than in the case of the Bonferroni network

(10.0%).

As before the adjacency network of stocks is a complete graph.

On the contrary both the Bonferroni and the FDR networks

display a highly clustered structure with clusters having a clear

economic meaning. The use of Infomap on these statistically

validated networks gives a partition in communities, which are

extremely homogeneous in terms of economic sector. Therefore

our method allows to construct networks where (i) links are

statistically validated, (ii) multi-links describe qualitatively

different relationships between pairs of stocks, e.g. both co-

movements and opposite movements occurring between pairs of

stocks, and (iii) a very accurate identification of communities of

stocks is possible. To the best of our knowledge the presence of

all these features is pretty unique and it is not shared by other

similarity networks [23] based on topological constraints [25–

27], correlation threshold [28,29], or validated with bootstrap

[30].

Network of movies
The last system we investigate is the bipartite system of movies

and actors of the Internet Movie Database (IMDb), which is the

largest web repository of world movies. We consider here the

bipartite relationship between movies and actors produced in the

period 1990–2008 all over the world. The set includes movies

realized in 169 countries. We choose this system because (i) it is a

large system (89,605 movies and 412,143 actors), (ii) it has a large

heterogeneity both in movies and in actors, and (iii) it allows a

sophisticated cluster characterization analysis based on the

characteristics of the movie, namely genre, language, country,

and filming locations.

The actors degree heterogeneity ranges between 1 and 247 and

it is so pronounced that we did not find a practical solution to take

it into account when constructing statistically validated networks of

movies. The approach of the k-subsets is not feasible in this case

due to lack of sufficient statistics. Therefore, we perform a

statistical validation of links against a null hypothesis fully taking

into account the movies heterogeneity but not describing the

heterogeneity of actors. In spite of this limitation, the results

obtained for the statistically validated networks are very informa-

tive about several aspects of the movie industry as it will be shown

in the following. We conjecture that this is due to the fact that

although the degree heterogeneity of actors is remarkable in

absolute terms, making it unfeasible to use the k-subset approach,

it is small as compared with the total number of movies. Indeed

the fraction between the maximum number of movies performed

by a single actor in the database and the total number of movies is

247=89,605~0:003. This fact indicates that no actors contribute

systematically to increase the co-occurrence between all movies

pairs, or even a relevant fraction of them. This situation is

significantly different than the one observed for the system of

organisms and COGs, where the maximum degree of COGs was

66, i.e. the same as the total number of organisms in the database.

We construct the statistically validated networks of movies by

testing the co-occurrence of actors in the cast of each movie pair. A

schematic representation of the procedure used to validate links is

provided in Fig. 4. The null hypothesis of random co-coccurecence

is again described by the hypergeometric distribution, which

naturally takes into account the heterogeneity of the system due

Figure 5. Bonferroni network of stocks. The largest connected component of the Bonferroni network associated with the system of 500 stocks.
The nodes represent stocks and links connecting different stocks correspond to the statistically validated relationships. The node color identifies the
economic sector of the corresponding stock. The economic sector classification is done according to Yahoo Finance. The color of a multi-link identifies
the corresponding validated relationship. In panel A we report the largest connected component of the Bonferroni network. In panel B we remove
links corresponding to anti-correlated evolution of stock returns, i.e. links L4 and L5. In panel C we also remove links bridging different clusters
detected by the Infomap method.
doi:10.1371/journal.pone.0017994.g005

Table 1. Basic properties of movie networks.

Movies Links Number of Largest

conn. comp.s conn. comp.

Adjacency 78,686 2,902,060 647 77,193

FDR 37,429 205,553 2,443 30,934

Bonferroni 12,850 29,281 2,456 1,627

doi:10.1371/journal.pone.0017994.t001
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to the different size of the cast of movies. Table 1 shows the severe

filtering of nodes and links that is obtained in the validated networks

of movies with respect to the adjacency network. Only 16% (47%) of

the nodes and 1% (7%) of the links of the adjacency network are

statistically validated in the Bonferroni (FDR) network. Also the size

of the largest connected component varies significantly across the

three networks. Specifically the largest connected component (i) is

covering almost completely the adjacency network, (ii) comprises

the largest fraction of movies in the FDR network (83%), but (iii)

contains only 13% of the movies of the Bonferroni network. This

shows that the Bonferroni network already provides a natural

partition of the movies included in it.

A comparison of the degree of movies in the adjacency and

FDR networks allows to clearly distinguish the Asian movie

industry from the rest of the world movie industry, and different

languages within single countries like India (see Fig. 6). The

North American movie industry shows typically a high degree of

movies in the adjacency network and a relatively low degree in

the FDR network (see Fig. 6A), probably indicating a tendency to

avoid a similar cast in different movies. A different behavior is

observed in Asia, while Europe is an intermediate case. The

analysis of indian movies (see Fig. 6B) shows the existence of

groups of movies characterized by a common language.

According to the present state of the IMDb database, the

comparison between the degree of adjacency network and the

degree of FDR network suggests that the Asian movie industry,

and the Indian movie industry in particular, presents a level of

variety in the cast formation that is lower than the variety

observed in the western movie industry. In the Text S1, we

analyze the movie communities detected when the Infomap

method is applied to different movie networks. Specifically we

investigate and compare the community structure of adjacency,

FDR and Bonferroni networks. Different aspects of the

comparison are summarized in Figure S1, and Tables S1, S2,

and S3. In the community detection of adjacency and statistically

validated networks we weight links according to Ref. [31] to

heuristically take into account actors’ heterogeneity in the

number of performed movies. In the Text S1, we show that the

clusters of movies obtained from the Bonferroni and FDR

networks have a higher homogeneity in terms of production

country, language, genre, and filming location than the clusters of

movies detected from the adjacency network.

Conclusions
In summary, our method allows to validate links describing

preferential relationships among the heterogeneous elements of

bipartite complex systems. Our method is very robust with respect

to the presence of false positive links, i.e. links that might be just

due to statistical fluctuations. In fact, we verified for all the

investigated systems that the Bonferroni network associated with a

random rewiring of the bipartite network turns out to be empty.

By applying the method to three different systems, we showed that

it is extremely flexible, since it can be applied to systems with

different degree of heterogeneity and described by binary

relationships and categorical variables.

Supporting Information

Figure S1 Rank plot of the size of clusters in the
adjacency, Bonferroni and FDR networks. Rank plot of

the size of clusters obtained with the Infomap algorithm for the

adjacency movie network, the FDR network and the Bonferroni

network both for the unweighted and weighted links. The

difference between the partitions decreases for the statistically

validated networks (see text for a measure of the mutual

Figure 6. Comparison between adjacency and FDR networks of movies. Scatter plots of the degree of movies in the adjacency and FDR
networks. Each circle represents a movie. We do not report movies with vanishing degree in at least one of the two networks. The panel A shows
movies produced all over the world. The color of each symbol identifies the continent of the production country. Only movies with a single
production country are shown. The panel B shows the data for the Indian movies and the color indicates the movie language. Only movies with a
single language are shown.
doi:10.1371/journal.pone.0017994.g006
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information between unweighted and weighted partitions). In the

legend, the number in parenthesis is the number of detected

clusters in the corresponding network.

(TIFF)

Table S1 Cluster over-expression analysis of produc-
tion country, language, genre and filming location.
Clusters are obtained by performing the Infomap partitioning of

the adjacency weighted movie network (ADJ-W), FDR weighted

movie network (FDR-W) and the Bonferroni weighted movie

network (BONF-W). For each of the four considered classifica-

tions, we report the total number of observed over-expressions for

each network. The number in parenthesis is the number of distinct

clusters where at least one over-expression has been observed.

(PDF)

Table S2 Over-expression of production country (C),
language (L), genre (G) and filming locations (F) for
seven large clusters of the FDR weighted network. Here

we consider only those movies that are also present in cluster 1 of

the adjacency weighted network (ADJ-W). In fact, the number in

parenthesis indicates the number of movies in a specific FDR-W

cluster that are also present in cluster 1 of the adjacency weighted

movie network.

(PDF)

Table S3 Over-expression of production country (C),
language (L), genre (G) and filming locations (F) for two
large clusters of FDR weighted network and five large
clusters of Bonferroni weighted networks. Here we

consider the movies that are also present in cluster 24 of the

adjacency weighted movie network. In fact, the number in

parenthesis indicate the number of movies in a specific FDR-W or

BONF-W cluster that are also present in cluster 24 of the

adjacency weighted movie network.

(PDF)

Text S1 Community detection and characterization.

(PDF)
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