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Abstract: Custom inspection using X-ray imaging is a very promising application of modern pattern
recognition technology. However, the lack of data or renewal of tariff items makes the application of
such technology difficult. In this paper, we present a data augmentation technique based on a new
image-to-image translation method to deal with these difficulties. Unlike the conventional methods that
convert a semantic label image into a realistic image, the proposed method takes a texture map with a
special modification as an additional input of a generative adversarial network to reproduce domain-
specific characteristics, such as background clutter or sensor-specific noise patterns. The proposed
method was validated by applying it to backscatter X-ray (BSX) vehicle data augmentation. The Fréchet
inception distance (FID) of the result indicates the visual quality of the translated image was significantly
improved from the baseline when the texture parameters were used. Additionally, in terms of data
augmentation, the experimental results of classification, segmentation, and detection show that the
use of the translated image data, along with the real data consistently, improved the performance of
the trained models. Our findings show that detailed depiction of the texture in translated images is
crucial for data augmentation. Considering the comparatively few studies that have examined custom
inspections of container scale goods, such as cars, we believe that this study will facilitate research on
the automation of container screening, and the security of aviation and ports.

Keywords: backscatter X-ray; data augmentation; cargo inspection; generative adversarial network;
image translation

1. Introduction

Globally, X-ray imaging has been utilized for customs inspection. This process allows
for the detection of inner components of an object nondestructively; hence, it can be used for
detecting smuggled, fraudulent, and dangerous goods, which are often hidden intention-
ally. The inspection process, however, requires considerable time and effort from human
experts, and even experts find it difficult sometimes, depending on the equipment and cargo
items. Owing to insufficient manpower and equipment, it was reported that a mere 1.6% of
containerized cargo was inspected by using X-ray scanners in major South Korean ports [1].

To solve this problem, automated cargo inspection methods using artificial intelligence
(AI) technology are being considered [2,3]. However, compared to other fields, it has
not been actively researched [4] because it is difficult to obtain cargo X-ray image data.
Compared to visible-light images, X-ray images are relatively limited, as very few people
can own and operate X-ray equipment; in fact, most of the X-ray equipment that can scan
cargo is owned by customs.

Researchers have widely used data augmentation to overcome the problem caused
by insufficient training data. In previous research, for example, data augmentation was
performed using classical image processing techniques for cargo inspection [5–11]. Objects
to be detected, such as prohibited items, were cropped from the given X-ray image, the
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background was removed, and the extracted object was synthesized into an arbitrary
container image to create a synthesized image [5–10]. This method can be useful for
detecting objects in various backgrounds in the real environment. The limitation of such
classical data augmentation lies in the diversity of objects. The network model learned
from it may have difficulties in detecting various objects of different shapes and types in
the actual test environment.

One possible approach to solving the aforementioned issue is by using image-to-image
translation for data augmentation. The goal of image-to-image translation is to alter the
characteristics or styles of an image while ensuring that the desired contents are unchanged.
When it is applied to data augmentation for image classification or object detection, the
contents related to the label information remain unchanged while other characteristics, such
as domain-specific textures, colors, noises, or backgrounds, are adapted. This type of data
augmentation is especially valid when the labeled source domain data and unlabeled target
domain data are abundant, and labeled target domain data are relatively rare, which is
the case for X-ray image processing in customs inspections. Therefore, this paper focuses
on applying image-to-image translation to data augmentation and improving the method
to make it suitable for backscatter X-ray (BSX) images acquired from ZBV (Z-backscatter
van) [12]. It is noteworthy that it is almost impossible to acquire all the BSX data of the
existing vehicle models, and worse, many new vehicle models are released every year from
various manufacturers. Conversely, the RGB image of the vehicle can be easily obtained. If
these RGB images are converted to BSX, we can use the data for network learning.

The direct application of a basic image-to-image translation method for generating BSX
images, however, results in unsatisfactory results. Compared with real BSX images, fake
images are blurred, losing the BSX-like noise patterns in both the foreground and background;
meaningful details of the structures of the cars are also lost. We attribute this failure to
the use of deterministic mapping in a largely underdetermined problem. Unlike the X-ray
images used in medical image analysis, the BSX images for customs inspection have random
background clutter, the structure and composition of objects are diverse, and different objects
are randomly posed with possible overlaps. All these factors make the image translation
from semantic mask images to X-ray images a one-to-many mapping process. As the vanilla
pix2pix [13] creates a deterministic one-to-one mapping, it averages out the small details from
overlapping objects or textures from X-ray noises into blurry or flat patches. Although the
authors in [13] attempted to add random latent variables to make the mapping many-to-many
or stochastic, the network was trained to ignore these additional variables.

In the context described above, this paper introduces a simple and effective image-
to-image translation method that takes an additional texture image as an input to the
image translation network. Unlike the random pixelwise noise variables, the actual texture
images from the target domain can provide direct clues for the reconstruction of X-ray
specific noise patterns, which correspond to the presence of actual matter or structured
sensor noise. The close relationship between the texture input and output X-ray images
helps the network learn to utilize it more easily during training. As a result, the generated
X-ray images have better visual quality than those generated by the vanilla pix2pix [13]. In
addition, we can generate diverse target images using a single image source by feeding
the network with different texture images during the test phase. The synthesized images
demonstrate different noise patterns and background clutter depending on the texture
input, which is desirable for data augmentation.

We validated the proposed method using a car inspection dataset that provides ap-
proximately 8000 pairs of semantic mask labels and BSX images for training. In addition to
qualitatively comparing the generated images, we measured the quantitative performance
of the proposed method by comparing both the Fréchet inception distance (FID) and the
accuracies of the semantic segmentation of car parts, car model type classification, and car
detection. To ensure that the comparison was fair, the networks for each task were trained
using the samples generated by the competing methods and then tested on real BSX car
images. We tested various texture inputs computed using the Sobel edge filter (SEF) [14],
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local binary patterns (LBP) [15], and local thresholding (LTH) [16]; and we confirmed that
LBP and LTH were highly effective.

The remainder of this paper is structured as follows: Section 2 briefly reviews related
works, Section 3 introduces the proposed method, Section 4 provides the experimental
results, and Section 5 describes the conclusions.

2. Related Work
2.1. Automated Container Inspection

Among cargo items, detecting vehicles in a container X-ray image is one of main
subjects that has attracted the attention of both researchers and customs. This study aimed
to develop an automated X-ray inspection system to detect vehicles quickly declared in
customs. Falsely reported vehicles are those involved in crimes such as theft and are
being smuggled overseas [17,18]. As these smuggled vehicles are used for criminal gang
and terrorist activities, it is important for customs to detect them. Early stage studies for
vehicles [11,19] were carried out by Jaccard et al. In [19], sub-windows of container X-ray
images were classified as "car" and "non-car" using a random forest classifier and feature
histogram. As a result of the experiment, there was a 100% detection rate and there were
1.23% false positives. In their follow-up study [11], CNN was applied for vehicle detection.
The number of samples was increased by oversampling the training data: 100% detection
rate and 0.22% false-positive rate were calculated. It has also been confirmed that vehicles
that are heavily obscured can be detected.

In addition to vehicles, studies have been conducted to automate X-ray inspection
of general cargo items. Tuszynski et al. [20] proposed a method to classify cargo items
by calculating the image feature distance between new cargo items and registered items.
Using this method, 31% of items were classified into the correct category, and a top-5
accuracy of 65% was obtained. Zhang et al. [21] proposed a cargo X-ray classification
method using joint shape and texture features. The best classification performance was
obtained when the SVM classifier with joint shape and texture features was used, but the
accuracy for the 22 classes was 55%.

2.2. Data Augmentation Using a Generative Adversarial Network

Early studies on X-ray cargo inspection mention the lack of data as a challenge. In these
studies, to solve the data shortage issue, objects are cropped and then data synthesized
by projecting them onto a container [5–10]; classical techniques such as oversampling [11]
are also used. However, existing methods have limitations, as they cannot increase the
diversity of objects to be detected. To overcome these limitations, the data augmentation
method based on a generative adversarial network (GAN) has been used in various fields
of research [22–25].

From this perspective, we can examine the evolution of GAN-based image-to-image
translation techniques, which map an input image to a corresponding output image.
Pix2pix [13] is a seminal method for image-to-image translation tasks with paired training
data. We propose a typical method using a “U-net”-based architecture as the generator
and “PatchGAN” classifier as the discriminator. In tasks with unpaired training data,
CycleGAN [26] showed that a cycle consistency constraint can help to learn two different
unpaired data distributions. CD-GAN [27] and C-CycleGAN [28] showed that control pa-
rameters called conditions can also be embedded into GANs for both paired and unpaired
cases, respectively. TextureGAN [29] first used the texture patch directly extracted from
the target image as a control parameter. Its generative network learns to synthesize objects
consistent with the texture patch. To the best of our knowledge, however, they authors pre-
sented only qualitative results, and the effects of generator inputs on GAN were not tested.
StyleGAN [30] introduced the intermediate latent space W, which controls the generator
and used the adaptive instance normalization to disentangle styles and semantics properly,
and thereby enhance details. However, the latent space determination is implicit and
complex. SPADE [31] proposed a method to solve the issue of losing semantic information



Sensors 2021, 21, 7294 4 of 20

of the image generation process using spatially-adaptive normalization layers. On the other
hand, there have been studies trying to reduce the structural instability of GAN training,
by introducing losses based on more sophisticated distribution similarity measures such
as WGAN [32], or by employing a different training strategy based on a game theory
framework, as proposed in [33]. Although these studies show improved performance in
image generation, these techniques are rarely employed in image translation. Training a
network using the original GAN loss is much more straightforward in image translation
due to the pixel-wise loss from ground-truth images, which prevents training from being
stuck in undesired local minima.

The study on GAN was extended to research on domain randomization and domain
adaptation (e.g., [34]). Research areas such as heterogeneous face recognition (HFR) and
computer-aided diagnosis (CAD) have also benefited from GAN. For instance, image
conversion techniques to convert thermal images into visible images were introduced
in [35,36]. Additionally, detecting abnormal objects in medical images was addressed
in [37]. In such problems, synthesizing natural fake images while maintaining identity is
an important issue. To resolve this issue, research on image composition ranging from
classical approaches, such as Poisson blending [38], to recent approaches, such as deep
image harmonization [39], has been increasing. In addition to the aforementioned studies
(e.g., [11,19]), research to detect dangerous objects in X-ray images of small luggage was
recently introduced (e.g., [23,40]). However, their findings were not applicable to problems
involving severe noises that can be seen in BSX images and the difficulty of synthesizing
images by simply using simple blending techniques.

Recently, studies such as [41,42] showed that GAN image generators easily fail to
approximate the spectral distributions of real data. In this paper, we propose a texture
parameterized generative network to mitigate these problems and apply to real cases, such
as cargo inspection using BSX images.

3. Method
3.1. Proposed Data Augmentation and Inspection Process

Figure 1 illustrates our automatic cargo inspection system (ACIS) equipped with the
proposed GAN network. In the stage of preparing images, we collected real images of
custom items, cars in this case, which are renewed every year, and then segmented them
into three classes, body, window, and wheel. Just like shipping cars in containers, the
segmentation masks of cars are plausibly packed in a container-sized mask. This process
can be fully automated. In the stage of creating synthetic images for data augmentation,
we composited the container-sized segmentation masks and the real BSX container images
using the proposed GAN network, which was trained by a few real BSX scanned images.
The resulting synthetic BSX images can be used as training data for automatic cargo
inspection system development.

Figure 1. Overall structure of the automatic cargo inspection process (ACIS) using the proposed BSX
image generation method.
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3.2. Proposed GAN Network

Conditional GAN methods, such as pix2pix, take a condition x as an input of the
generator G along with latent noise z and produce a corresponding fake image G(x, z). The
discriminator D is learned to discriminate a ground truth image y from the generated image.
Overall, The image generation process of pix2pix [13] is summarized by Equations (1)–(3).

G? = argmin
G

max
D

(LcGAN(G, D) + λL1(G)) (1)

LcGAN(G, D) = Ex,y[log D(x, y)] +Ex,z[log(1− D(x, G(x, z))] (2)

L1(G) = Ex,y,z[‖y− G(x, z)‖1] (3)

where λ is a balancing parameter to control the significance of the reconstruction loss (3)
relative to the adversarial loss (2). The value of λ was set to 100, which was empirically
chosen, throughout the paper. In the objective function (2), D tries to maximize this
objective, and G tries to generate images like the real distribution as much as possible to
reduce the loss against D. Ex,y and Ex,z are the expected values over all real data y and
generated data G(x, z) with given condition y.

The reconstruction loss (3) is calculated by averaging the color differences between
the ground-truth image and generated image. The sole use of reconstruction loss results in
oversmoothed images due to its averaging effect. Hence, it requires the adversarial loss (2),
which makes an overall look of the generated image as similar as possible to that of the
given image, so that the small details and textures can be reproduced.

Even if we use adversarial loss, however, the visual gap between the real and generated
images is still substantial; fake BSX images generated by pix2pix are blurrier than the real
BSX images. The situation worsens if we synthesize an image by placing the generated
image patches on a background container image to use for data augmentation of object
detection or semantic segmentation. In such cases, it is not straightforward to process the
boundaries of the overlaid object patches, since the unnatural borderlines between images
might cause the trained model to be overfitted in an undesirable way. An image blending
method, such as the Poisson image blending, can be used for more natural synthesis. In
our experiments, however, some visually important features, such as object outlines of the
generated images, are lost during the blending process.

To remedy the problem that adversarial loss used in pix2pix failed to reproduce the
BSX-specific noise pattern, we conjectured that an indicator that can measure and quantify
texture can help with texture creation. As indicators, we tested a Sobel edge filter (SEF) [14],
local binary patterns (LBP) [15], and local thresholding (LTH) [16]; and found they can
effectively disclose the difference of texture information between the generated images and
real BSX images. To use these texture metrics, we added a generalized texture map t as
an input to the generator. Then, the proposed process replaces Equations (2) and (3) with
Equations (4) and (5).

LcGAN(G, D) = Ex,y[log D(x, y)] +Ex,z,t[log(1− D(x, G(x, t, z))] (4)

L1(G) = Ex,y,z,t[‖y− G(x, t, z)‖1] (5)

t =
{

ExtractTexture(y) for training
ExtractTexture(b) for testing

(6)

where ExtractTexture represents the process to extract texture map t from the BSX image.
Texture map t is extracted from target y during training, as shown in (6), and after training,
a new image is created by extracting a texture from a random background b.

Improving the resolution by adding information to the input has also been attempted
with pix2pixHD [43], where boundary information is added to the input to sharpen the
boundary between objects. However, our method attempts to reproduce domain-specific
image characteristics by explicitly feeding a texture map into the generator.
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The overall architecture of the proposed method is drawn in Figure 2 and the training
and inference steps are summarized as follows:

Training:

Input: BSX-car images and their paired labels
Step1: Extract texture maps from BSX-car images using one of (7), (10) and (15).
Step2: Remove object’s boundaries from the texture maps using the labels.
Step3: Train the networks using the texture maps and the pairs of images and labels.

Inference:

Input: Arbitrary BSX-background images and labels
Step1: Extract texture maps from BSX-background images using one of (7), (10) and

(15) used for training.
Step2: Remove object’s boundaries from the texture maps using the labels.
Step3: Generate synthetic BSX images from the trained generator with the texture maps

and the labels as inputs.

Figure 2. Proposed method to train the generative adversarial network by using the BSX texture image as an input.

Texture extraction is described in detail as follows: the SEF [14] uses the second
derivative and is formulated using (7)–(9). In the second derivative, the gradient is large at
the edge where the brightness changes; the edge is detected in this way. The texture map
extracted with SEF as input was used to generate mammograms [44]. Since the second
derivative is sensitive to noise, it can be assumed that it is one of the features that can
express noise well.

G =
√

G2
w + G2

h, (7)

Gw =

+1 0 −1
+2 0 −2
+1 0 −1

~ I, (8)

Gh =

+1 +2 +1
0 0 0
−1 −2 −1

~ I, (9)

where G is the magnitude of Sobel edge, and Gw and Gh are the gradients of image I in the
w and h directions, respectively.

LBP [15] is a feature developed to classify textures. It is a value calculated for all pixels of
an image and an index value obtained by coding the change in brightness of the surrounding
area of each pixel in binary. Textures (residue, forest, land, etc.) are classified using methods
such as histogram matching for index values [45,46]. LBP is formulated as (10)–(14).

Lp,R(rc, cc) =
P−1

∑
p=0

s(gp − gc)2p, (10)
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s(q) =

{
1, q ≥ 0

0, otherwise
, (11)

gp = I(rp, cp), p = 0, . . . , P− 1, (12)

rp = rc − R sin (2πp/P), (13)

cp = cc + R cos (2πp/P), (14)

where L is the image intensity, gp represents the grayscale values of the P sample points rp
and cp among pixels located around the radius R at the center coordinates rc and cc.

LTH [16] is usually used to separate objects and backgrounds based on the difference
in contrast. However, it can also be used as a method for expressing textures. Thresholding
has been used for microstructure evaluation and quantitative analysis of texture character-
istics by applying the morphology technique to the thresholded images [47]. Therefore,
thresholding images is considered one of the methods to characterize texture well. LTH is
formulated as (15) and (16).

T(rc, cc) =

{
1, I(rc, cc) ≥ m(rc, cc)

0, otherwise
, (15)

m(rc, cc) =
1
k2

cc+d k
2 e

∑
i=cc−b k

2 c

rc+d k
2 e

∑
j=rc−b k

2 c
I(i, j), (16)

where T is the binary image, k is the kernel size, and rc and cc are the center coordinates.
In the experiments, R and k were set to 3, which is the smallest value that can be set. The
smaller the value, the denser texture can be extracted. P is the number of sample points,
and was set to 8, which is appropriate for R = 3.

The deboning process is a newly introduced important process to consider when using
texture maps. If we feed texture images extracted from real BSX images to the generator
during training, the network learns to restore a BSX image from the input texture image
without reference to the semantic label map, as shown in Figure 3. The network was given
only the texture map (Figure 3a) as input by setting all the pixel values of the label map to
zero. The generated image in Figure 3c is almost the same as the real BSX image, Figure 3b,
which implies that the generator is trained to extract shape information of the car and
texture information from the texture input, ignoring the semantic label.

However, the goal of the network is to translate the semantic label into a BSX image
with the aid of texture input reproducing BSX-specific image characteristics. To exclude
this trivial solution, we propose a deboning process. The boundary is extracted using
the difference between the dilation and erosion of the label; the texture map boundary is
removed by approximately seven pixels for the experiments.

The top images of Figure 4 show the inference results of the generator trained without
the deboning process. In the top-right image in Figure 4, the car shape does not appear
although the provided semantic label map contains the shape information. The top left
figure, generated by using the semantic label only, also confirms that the generator was
trained to ignore the mapping between car shapes and semantic labels. Conversely, the
bottom row in Figure 4 shows that a simple technique for removing the boundary plays
an important role in allowing the generator to learn the car shape from the label. The car
shape is successfully restored, even when the semantic label is solely used. As a result,
a more natural and realistic synthetic BSX image can be generated when the network is
trained with a boundary-removed texture map.
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Figure 3. Image translation results when only the texture input was fed into the generator. The
texture input (a) was extracted from a real BSX image (b), and the result was (c).

Figure 4. The effect of the deboning process is qualitatively described. The top row shows that when
the full texture input is fed during training, the generator ignores the information in the label map
completely. Application of the deboning process allows the model to use the shape information from
the label map, and the texture map is used to reproduce background information and BSX-specific
noise patterns.

3.3. Dataset Construction

BSX-car dataset: We collected real BSX scanned images with the cooperation of the
national customs service to compose a dataset to train and test the proposed method. The
number of scanned images was 1776. We sampled 1136 images for training, 284 images
for testing, and used the remainder for validation. The BSX images were annotated by
human operators to produce (1) semantic label images with three semantic classes, i.e.,
body, window, and wheel; (2) bounding boxes of car instances; and (3) car class labels for
each bounding box. Figure 5a shows a sample from the training data with ground-truth
annotations. Each scanned image contains five cars on average; hence, we could obtain
approximately 8000 BSX car images.

3D-car dataset: In a real ACIS application scenario, it is not always possible to have
BSX scanned images for a specific car model. Thus, we constructed approximately 1000 3D
car models. As there is no way to render a 3D model into a BSX image, the dataset cannot be
used for training; only the semantic label images were used during the test phase. Figure 5b
shows a 2D rendering result of a 3D model with corresponding segmentation masks.

Figure 5. Sample images of datasets: (a) Real BSX image and the corresponding segmentation label
from the BSX-car dataset. (b) Rendered image of a 3D model and the corresponding segmentation
label from the 3D-car dataset.
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4. Experiments

In the following subsections, we summarize the experimental results of the proposed
method obtained using various texture parameters, namely, SEF, LBP, and LTH. The
proposed method and pix2pix are trained by using only the training data from BSX-car
dataset. They were trained using the same experimental settings except for the presence
of additional texture parameter input. The resolution of the input semantic label, texture
parameters, and the output BSX image was 300 × 1200 pixels; the networks were trained
for 300 epochs with eight samples per batch. We first compared the visual quality of
the fake images synthesized by the proposed method and the vanilla pix2pix. Then, we
quantitatively evaluated the proposed method by measuring the performance improvement
achieved when using fake images for data augmentation on various computer vision tasks,
including segmentation, classification, and detection.

4.1. Qualitative Evaluation

For the qualitative comparison, Figures 6 and 7 show the image translation and
synthesis results obtained using vanilla pix2pix and the proposed methods with various
texture inputs. The texture map used to generate Figure 6 was extracted from a real BSX
image. In Figure 6, although the generated images depict the vehicle’s shape well, the
image generated with pix2pix is slightly blurred. Since it is difficult to distinguish such a
texture difference in the image, local thresholding of the image is shown on the right part
of the image to clearly visualize the difference in texture. It can be seen that the objects
(white area) extracted through local thresholding are coarser in Figure 6b than in Figure 6a.
In contrast, in the images (Figure 6c–e) using the texture map, the texture appears to be
fine, and the texture of the image using LBP and LTH is more similar to that of the real
BSX image.

Figure 6. Qualitative comparison of texture patterns: (a) Real BSX image. (b) Result of pix2pix.
(c–e) Results of the proposed method based on SEF, LBP, and LTH, respectively.

Figure 7. Qualitative comparison of image synthesis: semantic label and background (top row) are
inputs to generate the synthetic images of the proposed method. (a) Result of pix2pix. (b–d) Results
of the proposed method based on SEF, LBP, and LTH, respectively.
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Figure 7 shows the image generated using the texture map extracted from the arbitrary
container, the top-right of Figure 7, and the label map, top-left of Figure 7. The images
from the vanilla pix2pix appear oversmoothed except for the object boundaries, which are
overexaggerated, and there are severe artifacts around the borders of the containers. We
attribute this to the failure of GAN in reconstructing various container shapes and sample-
specific BSX noise patterns, which largely vary in the presence of background clutter, given
a clean semantic label image as the only input. In contrast, the images obtained by the
proposed method show more realistic texture patterns with fewer undesired artifacts:
especially around the borders of the containers, with the aid of background information,
which is not obtainable from semantic label images.

Another appealing advantage of using the texture input, in terms of data augmen-
tation, is that the quantity and quality of the synthesized images, can be easily increased
by adding more background images without additional manual intervention for labeling.
Figure 8 shows that the proposed method can generate various synthetic images with
one semantic label template by feeding various background texture inputs. Moreover,
the proposed method can successfully reproduce occlusions and overlaps among objects
utilizing cluttered background textures. Considering the frequent observations of these
patterns in real BSX images, the capability of reproducing these characteristics is crucial
to narrowing the differences between the distributions of the real data and the synthetic
data. Figure 9 shows more synthetic BSX images generated by the proposed method using
a texture map LTH and semantic labels segmented from 3D-cars and positioned using
packing algorithm. In this way, we can obtain high quality training data for unseen objects.

Figure 8. Synthetic BSX image generated by the proposed method with occluding objects in the
background. (a) Semantic label image. (b) Background image to compute the texture parameters for
the proposed method. (c) Results of the proposed method based on LTH. (d) A real BSX image with
severe occlusion for reference.

Figure 9. Synthetic BSX image samples. All were generated by the proposed method using texture
map LTH and semantic labels segmented from 3D cars and positioned using a packing algorithm.

4.2. Fréchet Inception Distance (FID)

The visual quality of the generated image is typically measured to evaluate the
performances of different GAN models or parameters. The FID [48] is used to quantitatively
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measure the visual quality of the generated image and indicates the similarity between two
image datasets. The FID is the Fréchet distance between feature vectors extracted using the
inception network and is calculated as

d2((µr, Cr), (µg, Cg)) = ‖µr − µg‖2
2 + Tr(Cr + Cg − 2

√
CrCg) (17)

where the subscripts r and g refer to the real and generated images; and µ and C are the
feature-wise mean and the covariance matrix. Tr refers to the trace linear algebra operation.

Another widely used measure to assess the quality of the generated images is sliced
Wasserstein distance (SWD) [49], which approximates earthmover’s distance in a computa-
tionally efficient manner. In this paper, we followed the same computational procedure to
compute SWD as in [49]. For both FID and SWD, the lower score represents good quality.

Table 1 shows the FID and SWD scores according to the texture map. The FID scores
of LBP and LTH were 27.6 and 28.1, respectively, which were lower than that of pix2pix,
which was 43.9 without a texture map. The tendency is consistent when the SWD scores
are compared. We also tested the generator containing residual blocks used in [26] and the
SPADE generator introduced in [31], but the generator using U-net of pix2pix showed the
best result. This shows that our choice of pix2pix as the base model is effective and the
tendency is similar in the test results in terms of data augmentation, which is explained
in Sections 4.3–4.5. Additionally, comparative experiments with SPADE were added to
Appendix B.

The FID and SWD results indicate that by using the appropriate texture features as
parameters, the distribution of generated images approaches that of the real BSX images,
enabling effective data.

Table 1. FID and SWD of images generated according to the texture map.

Generated Image FID SWD

Fake (pix2pix) 43.9 1393.97
Fake (SEF) 42.1 1283.53
Fake (LTH) 28.1 1133.91
Fake (LBP) 27.6 892.97

4.3. Segmentation

The target task in this experiment was to estimate a semantic label image of car parts
from a BSX image, which is a backward operation of the image-to-image translation. To
estimate the effectiveness of the fake images in terms of data augmentation, we trained the
segmentation network [50] with different training data combinations and measured the
performance on the test set of the BSX-car dataset. The performance was measured in terms
of pixelwise accuracy and the mean intersection of union (mIoU). In the following, L3D
and LBSX denote fake images generated from the labels of the 3D-car dataset and BSX-car
dataset, respectively.

Table 2 summarizes the results when the network was trained only using the fake
images and using both fake and real images. The top row shows the baseline results, for
which the real BSX image and semantic label pairs from the BSX-car dataset were used
for training. Using a texture parameter consistently improved the quality of the images
synthesized with pix2pix, as qualitatively seen in Figure 10. The gap between the baseline
and each result indicates that the images generated by the proposed method are closer to
the real BSX images than those of the baseline.
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Table 2. Effect of fake images on the segmentation performance.

Accuracy mIoU

Training Dataset L3D LBSX L3D LBSX

Real 0.909 0.715

Real + Fake (pix2pix) 0.921 0.915 0.764 0.726
Real + Fake (SEF) 0.914 0.914 0.748 0.739
Real + Fake (LTH) 0.925 0.921 0.773 0.754
Real + Fake (LBP) 0.920 0.918 0.746 0.757

Fake(pix2pix) 0.677 0.793 0.250 0.468
Fake(SEF) 0.708 0.798 0.293 0.489
Fake(LTH) 0.772 0.867 0.407 0.621
Fake(LBP) 0.748 0.839 0.395 0.563

It is noteworthy that the use of semantic label images from the BSX-car dataset resulted
in a better performance than the use of the 3D-car dataset. This result was due to a little
unnatural arrangement of the car semantic labels in the 3D-car dataset to create a larger
container semantic label image, resembling the semantic label image of a real BSX container
image. Although we exploited the packing algorithm [51] to synthesize realistic label
images by stacking the cars with a random rotation and flip in a nonoverlapping manner,
there should be inevitable differences between the real semantic label images and the
synthesized semantic label images.

Figure 10. Segmentation results when different fake images are used as the training set: (a) Ground-
truth semantic label. (b) Result obtained by using real BSX training data. (c–f) Results obtained by
using only fake images from pix2pix, SEF, LBP, and LTH, respectively.

In contrast, when the fake images were used along with the real BSX training data, the
use of L3D showed better results than LBSX , as shown from the second to fifth row in Table 2.
In this case, the differences in the synthesized label images in L3D from the real semantic
label images help to generalize the trained network. In fact, the semantic label images used
to generate fake images from LBSX are the same as those in the real training data, making
the use of the fake images from LBSX relatively redundant. Nonetheless, the use of the
fake images from LBSX made by various random textures or even the oversmoothed fake
images from pix2pix improved the baseline training data, which supports the use of GAN
for data augmentation when the quantity of the data is insufficient.

In both experiments, the use of fake images using LTH attained the overall best
performance. Figure 11 visualizes the segmentation results of a test sample with a low
mIoU value, even if the model learned from real data. We can see the effectiveness of our
method is due to the ability to depict realistic occlusion.

Figure 12 shows the distribution of mIoU according to the dataset. Looking at the
lower quartile (Q1) and minimum values, the Q1 of the real BSX data and fake data with
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the LTH textures are 0.570 and 0.677, respectively, and the difference is 0.107. An increase
in Q1 indicates that the proportion of segmentation results for the lower 25% decreased. In
other words, the segmentation performance for BSX, where mIoU was in the lower 25%,
was significantly improved. Figure 11a is an example image corresponding to the value of
0.570, which is the Q1 of real BSX data. The figure shows an image in which occlusion is
present; mIoU is greatly improved using fake data, particularly with the LTH texture. In
the case of a background container image without occlusion, the Q1 of fake data was 0.571,
which indicates that there was no improvement. Therefore, the proposed method improved
the segmentation performance because of the effect of depicting occlusion. If there is no
occlusion, then fake images generated using only the label can improve performance.

Figure 11. Segmentation results for a sample with severe occlusion: (a) Input BSX image. (b) Ground-
truth semantic label. (c) Result obtained by using real BSX training data. (d,e) Augmentation results
using fake images generated by pix2pix and LTH, respectively.

Figure 12. Distribution of mIoU of segmentation according to the texture map.

4.4. Classification

The next task was to classify a BSX-car image. We first cropped the original BSX
container images to produce smaller image patches, 224 × 512, each containing a single
car, based on the ground-truth bounding box information. After filtering out the images
without car model annotations, we obtained 732 BSX-car images with 11 car models as
shown in Appendix A. Among them, 590 images were used for training, and 142 images
were used for testing.

The number of fake images generated for data augmentation was 200 per class. Unlike
the other tasks, we randomly removed wheels in the input label images during the image
generation to reflect the fact that wheels are frequently missing in real BSX images. At each
training iteration, we randomly sampled fake images to compose a batch in which the ratio
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of real BSX samples and fake image samples was kept at 1:1. The ResNet50 architecture [52]
was used for experimentation, and the networks were trained for 1000 epochs.

The use of fake images made by the LTH texture and L3D showed the best improve-
ment, as summarized in Table 3, achieving an approximately 6.3% increase in classification
accuracy. In contrast, the fake images generated using LBSX showed less improvements,
and the accuracy even decreased in the case of pix2pix and SEF. We speculate that the
texture details of the fake images are more important for effectiveness in data augmentation,
for classification tasks.

Table 3. Classification accuracy according to the training data.

Accuracy

Training Dataset L3D LBSX

Real 0.838

Real+Fake(pix2pix) 0.866 0.810
Real+Fake(SEF) 0.873 0.775
Real+Fake(LTH) 0.901 0.859
Real+Fake(LBP) 0.866 0.838

Figure 13 shows the confusion matrices of the classification accuracy for each vehicle
class according to the BSX and BSX + Fake (LTH) training datasets. When training with
BSX + Fake (LTH), the accuracy of some vehicle models decreased slightly, but overall
accuracy improved. The large improvements in classification accuracy for class 1 and 6 are
noteworthy. We attribute this to the effect of a deliberately designed data augmentation
scheme, where the generated images are supposed to have many severely occluded cars or
cars without wheels to better imitate the real BSX images. The ratio of severely occluded
cars is relatively larger for class 6, and many car images are without wheels for class 1, as
shown in Figure 14. The capability of editing the texture map and the input label image for
data generation is one of the advantages of the proposed method.

Figure 13. Confusion matrix of classification accuracy according to training set: (a) BSX only; (b) BSX + Fake (LTH) with L3D.
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Figure 14. The classification method trained with only the real BSX images can correctly classify samples in (a), but failed
to estimate the class labels for samples in (b), which are correctly classified after data augmentation. Column (c) shows
synthetic images generated by using the proposed method with edited inputs shown in (d) during data augmentation. The
top and bottom samples belong to class 6 (the texture map is edited by drawing random white lines to simulate severely
occluded samples) and class 1 (the label image is edited to omit the wheels), respectively.

4.5. Detection

We tested the validity of data augmentation using fake images for object detection. In
this experiment, we classified cars into five broad categories: hatchback, sedan, SUV, truck,
and van. Among the 1776 images of the real BSX dataset, only 1026 images contained the
corresponding car instances; hence, we used 814 images for training and 212 images for
testing. A total of 1758 fake images were generated to augment the real data, and they were
randomly sampled at each training iteration to make the ratio of real data and fake data
1:1. For each training data configuration, we trained a RetinaNet [53] for 30 epochs.

Figure 15 shows the detection result: (a) and (b) are the results of inference according
to training with real and real+fake (LTH), respectively. As shown in Figure 15a, the vehicle
located in the middle of the image could not be detected, but in Figure 15b, it can be
confirmed that the vehicle was accurately detected. This shows that real+fake (LTH)
contributed to the detection of occluded vehicles.

Figure 15. Comparison of detection results: (a) result of training with real BSX data; (b) result
of training with Real+Fake (LTH). Green: ground truth; Red: prediction. TP: true positive; FN:
false negative.

Table 4 shows the quantitative results. The use of fake images made using the LBP
texture produce the best results, with a maximum accuracy gain of 1.7%. It is noteworthy
that the detector learned only from fake data had a small difference, 0.2%, in performance
from the detector learned from real data.
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Table 4. Detection accuracy according to the training data.

Accuracy

Training Dataset L3D LBSX

Real 0.899

Real+Fake(pix2pix) 0.907 0.911
Real+Fake(SEF) 0.897 0.913
Real+Fake(LTH) 0.912 0.910
Real+Fake(LBP) 0.913 0.916

Fake(pix2pix) 0.174 0.804
Fake(SEF) 0.247 0.825
Fake(LTH) 0.248 0.889
Fake(LBP) 0.298 0.897

5. Conclusions

In attempts to apply GAN-based image-to-image translation techniques to actual
recognition problems, it has been reported that GAN cannot approximate all spectrum
of real data distribution. In this paper, we presented a simple and effective method for
translating a semantic label into a realistic image and overcoming the limitations. We
applied it to deep learning-based automatic cargo inspection.

The proposed method uses a texture map obtained from the deboning process along
with the semantic label to generate unique textures in the BSX image. The texture maps,
such as a Sobel edge filter, local thresholding, and local binary pattern, were tested; and
the characteristics of the generated images according to each texture map were compared.
The images generated using the LBP and LTH exhibited natural background textures, in
contrast to the blurry results generated using only the semantic label, as in the previous
method. In addition, using the texture map, the occlusion phenomenon that exists in the
actual container image can be successfully reproduced.

We also performed the segmentation, classification, and detection of BSX images,
which are less researched than transmissive X-rays. The experiments showed that the use
of images generated by the proposed method to augment the real training data consis-
tently improved the performance of the baseline network for each problem. The results
of this study can be used as a reference not only in future studies using X-ray images
but also in studies using ultrasound or synthetic-aperture radar (SAR) images that have
scattering noise.
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Abbreviations
The following abbreviations are used in this manuscript:

GAN Generative adversarial network
BSX Backscatter X-ray
ZBV Z-backscatter van
FID Fréchet inception distance
SEF Sobel edge filter
LBP Local binary patterns
LTH Local thresholding

Appendix A

Figure A1 shows the 11 vehicle images used in the classification experiment, their
model names, and 3D cars and their labels.

Figure A1. Real and Fake (LTH) BSX images used for classification. Fake images were generated
from the semantic labels of the 3D cars. class 1: AVANTE, 2: BUS, 3: DAMAS, 4: LAVITA, 5: MATIZ,
6: PREGIO, 7: SORENTO, 8: SOUL, 9: SPARK, 10: STAREX, 11: TERRACAN.
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Appendix B

A comparison with SPADE [31], one of the state-of-the-art image translation methods,
has been performed. Due to the large memory requirement of SPADE, we reduced the
size of test images from 300 × 1200 to 128 × 512 for this experiment. Table A1 shows
the FID measurement results. Note that, unlike the label-to-RGB image translation, the
pix2pix showed better performance than SPADE in the label-to-BSX image translation.
Furthermore, it is shown that the proposed method improves the performance regardless
of the baseline network structure. Furthermore, comparison of the results of SPADE and
pix2pix + LBP in Table A1 indicates that using a texture map following the proposed
method is more efficient than increasing the model complexity. The parameters of the
SPADE and pix2pix generators are 92.1 M and 41.8 M, respectively.

Table A1. FID according to the GAN models. (Resolution: 128 × 512).

Generated Image FID SWD

SPADE 100.4 1122.48
SPADE + LBP 59.3 1009.34
pix2pix 75.3 554.36
pix2pix + LBP 51.2 405.76
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