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The generation interval is the interval between the time when an individual is

infected by an infector and the time when this infector was infected. Its distri-

bution underpins estimates of the reproductive number and hence informs

public health strategies. Empirical generation-interval distributions are often

derived from contact-tracing data. But linking observed generation intervals

to the underlying generation interval required for modelling purposes is sur-

prisingly not straightforward, and misspecifications can lead to incorrect

estimates of the reproductive number, with the potential to misguide interven-

tions to stop or slow an epidemic. Here, we clarify the theoretical framework

for three conceptually different generation-interval distributions: the ‘intrinsic’

one typically used in mathematical models and the ‘forward’ and ‘backward’

ones typically observed from contact-tracing data, looking, respectively, for-

ward or backward in time. We explain how the relationship between these

distributions changes as an epidemic progresses and discuss how empirical

generation-interval data can be used to correctly inform mathematical models.
1. Introduction
Much infectious disease modelling focuses on estimating the reproductive

number—the number of new cases caused on average by each case. In the

specific instance where the case is introduced in a fully susceptible population,

we talk about the basic reproductive number R0: The reproductive number pro-

vides information about the disease’s potential for spread and the difficulty of

control. It is often thought of as a single number: an average [1] or an appropri-

ate sort of weighted average [2]. But the reproductive number can also be

thought of as a distribution across the population of possible infectors: different

hosts may have different tendencies to transmit disease.

The reproductive number provides information about how a disease

spreads, on the scale of disease generations. It does not, however, contain infor-

mation about the population-level rate of spread (e.g. how disease incidence

increases through time, which can be critical for public health interventions).

Hence, another important quantity is the population-level rate of spread. In dis-

ease outbreaks, the rate of spread is often inferred from case-incidence reports

and used to estimate the reproductive number.

The reproductive number and the rate of spread are linked by the generation
interval—the interval between the time when an individual is infected by an

infector, and the time when the infector was infected [3].

Whereas the rate of spread measures the speed of the disease at the popu-

lation level, the generation interval measures speed at the individual level. It is

typically inferred from contact tracing, sometimes in combination with clinical

data. Like the reproductive number, the generation interval can be thought of as

a single number (typically its mean) or as a distribution.

Several previous studies have investigated aspects of the generation inter-

val. Svensson [3] made one of the earliest attempts to define a mathematical

framework for the generation interval. Several authors [3,4] described a
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Figure 1. Illustration of backward and forward generation intervals. (a) Illustration of the example of a primary case (solid circle), infected at time t0 then infecting
three other individuals (open circle), respectively, at times t1, t2 and t3. The generation intervals are defined as Gi ¼ ti 2 t0 for i ¼ 1, 2, 3. (b) Plot of the backward
generation intervals (black squares), that is from the infectees’ point of view. There is only one backward generation interval per infectee. (c) Plot of the forward
generation intervals (black squares) for the primary case. The x-axis represents the infection time of the infector, hence the three forward generation intervals are all
defined at time t0.
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decrease in the generation interval over the course of an epi-

demic and it was argued that this phenomenon could be

caused by competition between infectors [4]. Nishiura [5]

explained, in the context of a specific epidemiological

model (compartmental susceptible–infected–recovered),

how observed mean generation intervals are expected to

change through time and the bias this can introduce in esti-

mating the basic reproductive number.

Generation intervals and mean generation time have also

been studied in other fields, including human demography

[6], bacterial population growth [7] and population genetics

[8]. To our knowledge, the question of how observed gener-

ation intervals change with population dynamics has not

been studied outside of epidemiology, however, possibly

because other fields are more interested in relatively stable

populations, and less interested in outbreaks, where such

changes are likely to be important.

Here, we develop a new framework to discuss generation-

interval distributions and to evaluate how they change as

an epidemic develops. We define an intrinsic generation
interval whose distribution depends only on the average

infectiousness of an individual at a given time after infection,

and that we assume does not change as the epidemic

progresses. We then investigate how this and other factors

shape the distribution of realized generation distributions—

which can either be measured forward, by studying who

is infected by the cohort that acquires infection at a given

time, or backward, by studying who infected a given cohort

(figure 1).

Our work extends previous approaches by giving a gen-

eral explanation of the temporal evolution of the full

distribution of the generation interval and by confirming

our theoretical results with detailed numerical simulations.
2. Results
(a) Model formulation
We consider a simple and general model framework that

covers a wide range of epidemiological model structures [9].
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We define S(t) as the proportion of susceptible indivi-

duals in the population at time t, i(t) as the incidence

rate—the rate at which new cases occur at time t—and K(t)

as the rate of secondary infections caused by an indivi-

dual infected t time units ago. (Note that the notation I(t) is

traditionally used for disease prevalence, hence our use

of lower case i for the incidence rate.) We can conceptually

separate K into two components and write KðtÞ ¼ FðtÞlðtÞ,
where F(t) is the probability that an individual is infectious t

time units after being infected and l(t) is the mean infec-

tiousness t time units after an individual was infected, given

that the individual is infectious at that time. Most compart-

mental models effectively assume that l(t) is a constant, but

many factors could in theory affect mean infectiousness,

including disease titres, how the disease spreads through the

body and how active individuals are at various stages of

the disease.

The number of infections occurring at time t caused by

infectors who were themselves infected at time s (before t)
is modelled as

isðtÞ ¼ Kðt� sÞiðsÞSðtÞ: ð2:1Þ

The incidence at time t is then given by integrating over

infections caused by infectors infected at different times:

iðtÞ ¼
ðt

0

isðtÞds ¼ SðtÞ
ðt

0

Kðt� sÞiðsÞds: ð2:2Þ

This formulation is known as the renewal equation.

In this model, the intrinsic infectiousness of a given infec-

tor, and thus the intrinsic generation interval, is described

by K(t). As we explain below, actual generation intervals

that are observed (or estimated) as a disease spreads through

a population do not necessarily correspond to the intrinsic

generation interval.

Like several previous studies [3,5,10], we distinguish

between taking the infector’s point of view (looking forward

in time to when secondary infections occur) or taking

the infectee’s (looking backward in time to when the infec-

tor was infected)—we call these forward and backward
generation intervals, respectively (figure 1c,b). Hence, we

define fs(t) as the distribution (over t) of forward generation

intervals for infections caused by individuals infected at

time s and transmitting at time s þ t. Similarly, bt(t) is the dis-

tribution of backward generation intervals for infections of
individuals infected at time t by an infector infected t time

units ago.

Since every generation interval has an infector and infec-

tee, and thus a forward and backward interpretation, it is not

immediately obvious why these distributions should differ.

As we will see below, the distinction is owing to the way

realized generation intervals change over time.
(b) Intrinsic generation interval
From equation (2.1), we see that the intrinsic infectiousness of

a given infector is simply described by K(t). The basic repro-

ductive number, which is the expected number infected by a

single infectious individual in a totally susceptible population

[1], is thus:

R0 ¼
def
ð1

0

KðtÞdt: ð2:3Þ
The intrinsic generation-interval distribution is then obtained

by normalizing the intrinsic infectiousness kernel:

gðtÞ ¼def KðtÞ
R0

: ð2:4Þ

The distribution g is what should be estimated in order to cal-

culate R0 or to simulate disease spread. It is conceptually

equivalent to the ‘basic’ generation time introduced by

Nishiura [5].

We can thus rewrite the renewal equation (2.2) in terms of

R0 and g(t):

iðtÞ ¼ R0SðtÞ
ðt

0

gðt� sÞiðsÞds: ð2:5Þ

(c) Forward generation interval
To calculate the forward generation-interval distribution, we

start with the instantaneous incidence (2.1) and condition on

the time s when the infector became infected. Thus, we

replace t with t ¼ t 2 s:

isðsþ tÞ ¼ R0 iðsÞgðtÞSðsþ tÞ: ð2:6Þ

The expected number of secondary infections that will be

generated per infector (i(s) ¼ 1) is thus:
ð1

0

R0 gðtÞSðsþ tÞdt: ð2:7Þ

Since R0 iðsÞ is assumed to be constant through time (R0 is a

constant and we conditioned on time s), the forward

generation-interval distribution for infectors infected at

time s, fs, is proportional to gðtÞSðsþ tÞ: So, its definition is

simply obtained by normalizing:

fsðtÞ ¼
def gðtÞSðsþ tÞÐ1

0 gðxÞSðsþ xÞdx
: ð2:8Þ

(d) Backward generation interval
Again, using the instantaneous incidence (2.1) but now

conditioning on t, the time when the infectee becomes

infected, we have:

isðtÞ ¼ R0 iðt� tÞgðtÞSðtÞ: ð2:9Þ

The force of infection on each susceptible individual is thus

given by:
ð1

0

R0iðt� tÞgðtÞdt: ð2:10Þ

Similarly to the forward case, we see that backward gener-

ation interval is proportional to gðtÞ iðt� tÞ, so its

distribution is simply defined by normalizing:

btðtÞ ¼
def gðtÞiðt� tÞÐ1

0 gðxÞiðt� xÞdx
: ð2:11Þ

Finally, in the particular case where mean infectiousness l is

assumed constant over time, K(t) is proportional to the prob-

ability F(t), and we can write the three generation intervals

directly in terms of F, the probability that a person is

infectious at time t after becoming infected:

gðtÞ ¼ FðtÞÐ1

0 FðxÞdx
, ð2:12Þ
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fsðtÞ ¼

FðtÞSðsþ tÞÐ1

0 FðxÞSðsþ xÞdx
ð2:13Þ

and btðtÞ ¼
FðtÞiðt� tÞÐ1

0 FðxÞiðt� xÞdx
: ð2:14Þ
etypublishing.org
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(e) Example
In this section, we illustrate the temporal evolution of the

three generation-interval distributions (intrinsic, backward

and forward) described by equations (2.4), (2.11) and (2.8)

with a simple epidemiological model.

In figures 2 and 3, we use the well-known SEIR compart-

mental model (susceptible–exposed–infectious–recovered)

where we include nE (resp. nI) exposed (resp. infectious) com-

partments in order to model realistic duration of latency and

infectiousness with Erlang distributions (gamma distri-

butions with integer shape parameter) [11]. We will refer to

this model as an Erlang SEIR and details of this model are

given in §3. This model was run with parameters: nE ¼ nI ¼

3, R0 ¼ 4:0, mean duration of latency and infectiousness

both equal to 5 days.

Figure 2 shows how temporal variation in force of infec-

tion affects the backward generation interval bi. Left, centre

and right columns represent calendar time points 20, 48

and 70 days after the start of the epidemic, respectively.

The first row shows g, the intrinsic generation-interval

distribution. This does not change over the course of the

epidemic, so the three figures on the first row are the same.

The vertical dashed line at 8.3 days represents the mean of

the distribution.

The second row shows the incidence curve i. The dotted

curve is the incidence over the course of the whole epidemic.

The open circles shows the current calendar time. The bold

curves and the shaded areas illustrate that we look backward

to multiply the intrinsic generation distribution by the inci-

dence curve shown to obtain the backward distribution (the

width of the shaded areas matches the width of the curves

shown in (a). The grey arrows show the direction of inte-

gration, here looking backward from the current time. The

third row depicts the backward generation-interval distri-

bution (bold curve, with mean shown by a vertical bold

line) resulting from equation (2.11), which is the product

of bold curves from the first (intrinsic generation interval)

and second row (time-reversed incidence). The intrinsic

generation interval (grey curve, mean shown by a vertical

grey line) is shown for comparison. Finally, the last row illus-

trates how the mean backward generation interval changes

through time throughout the epidemic. The horizontal

dashed line represents the mean intrinsic generation interval.

The three circles represent the calendar time points (20, 48

and 70 days) chosen for the illustrations in the second and

third rows.

Similarly, figure 3 shows how temporal variation in the

susceptible population affects forward generation interval fs.
Just as changes in the backward generation interval are

explained by patterns of change in incidence, changes in

the forward generation interval are explained by patterns of

change in the proportion susceptible. Calendar time points

were chosen to be 10, 38 and 50 days in this case. Animated

versions of figures 2 and 3 are provided in the electronic

supplementary material (movie_GI.gif ).
The backward generation-interval distribution differs

significantly from the intrinsic one, its mean increasing

monotonically from 0 to values much larger than the

mean intrinsic generation interval. The backward gener-

ation time is seen from the point of view of a

susceptible: who is likely to infect them? Early in the epi-

demic, when the number of infectious individuals is

increasing, the backward generation time tends to be

short, because relatively more currently infectious individ-

uals were infected recently. Similarly, when the epidemic

is declining, there will be relatively fewer infectious indi-

viduals infected recently, tending to increase the

backward generation time.

The forward generation interval is seen from the point of

view of the infector: when are they likely to infect somebody?

Since the number of susceptibles decreases throughout a

single epidemic outbreak, there will always be relatively

more susceptibles available soon after infection than later,

so the mean forward generation time will always be less

than the intrinsic generation time. Early and late in the

epidemic, however, the number of susceptibles changes

slowly, so the forward generation time is approximately the

same as the intrinsic generation interval (figure 3). The

shorter generation interval in the middle of the epidemic

may seem counterintuitive: why do infections happen faster

when susceptibles are being depleted rapidly? The answer

is that we calculate the generation-interval distribution

conditional on an infection occurring. As the number of suscep-

tibles decreases, the number of infections per infectious

individual goes down, but the infections that do happen

tend to happen faster because the relative number of suscep-

tibles is higher in the near future than later on (middle

panel of figure 3, at calendar time 38).

Our example above is constructed with a particular value

of R0: In figure S1 in the electronic supplementary material,

we show how the mean generation intervals change through

time for a range of R0 values. All else being equal, higher R0

leads to faster epidemics, and sharper deviations of both for-

ward and backward generation intervals from the intrinsic

generation-interval distribution g. Note that this figure is

very similar to fig. 3 in [5], but with the important difference

that here, we explicitly mark the epidemic endpoints (solid

circles in figure S1) to illustrate the actual deviations that

can be experienced in practice.

( f ) Comparison with simulations
We compare the analytical formulations of both forward

(2.13) and backward (2.14) generation intervals with stochas-

tic simulations in the Erlang SEIR framework, assuming a

constant infectiousness l.

Figure 4 shows good agreement of the mean gener-

ation intervals (both forward and backward) between the

stochastic simulations (using a Gillespie algorithm [12],

see §3) and the numerical solutions of equations (2.13)

and (2.14).
3. Material and methods
(a) Compartmental model
To estimate generation-interval distributions for our examples, we

used numerical simulations with a flexible compartmental model:
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a classical SEIR model (susceptible–exposed–infectious–

recovered) with nE (resp. nI) sub-compartments for the exposed

(resp. infectious) state [13,14] (figure 5). This modelling
framework implicitly specifies Erlang-distributed (i.e. gamma dis-

tribution with integer shape parameter) duration of latency and

infectiousness that can reasonably approximate real
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epidemiological observations [11]. A deterministic formulation of

this model is given by a system of differential equations. Let S be

the proportion of susceptible individuals in the whole population;
Ek the proportion of individuals in the kth compartment of latency

(i.e. infected but not infectious yet); Ik the proportion of individ-

uals in the kth compartment of infectiousness; b the constant
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effective contact rate; s the average rate of progression from one

latency stage to the next; g the average rate of progression from

one infectious stage to the next. The model is given by the

system of equations (3.1):

S0ðtÞ ¼ �bSðtÞ
XnI

k¼1

IkðtÞ, ð3:1aÞ

E01ðtÞ ¼ bSðtÞ
XnI

k¼1

Ik � sE1ðtÞ, ð3:1bÞ
E0mðtÞ ¼ sðEm�1ðtÞ � EmðtÞÞ for m ¼ 2, . . . , nE, ð3:1cÞ

I01ðtÞ ¼ sEnE
ðtÞ � gI1ðtÞ ð3:1dÞ

and I0nðtÞ ¼ gðIn�1ðtÞ � InðtÞÞ for n ¼ 2, . . . , nI: ð3:1eÞ

Similarly, a system of differential equations defines the probability

of residency in a given latent or infectious state for individuals

infected at a fixed time s. We define Lk(t) as the probability that

an individual infected t time units ago is in the kth latent stage

Ek, and Fk(t) as the probability that an individual infected t time
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units ago is in the kth infectious stage Ik. We have:

L01ðtÞ ¼ �sL1ðtÞ, ð3:2aÞ
L0mðtÞ ¼ sðLm�1ðtÞ � LmðtÞÞ for m ¼ 2, . . . , nE, ð3:2bÞ
F01ðtÞ ¼ sLnE

ðtÞ � gF1ðtÞ ð3:2cÞ
and F0nðtÞ ¼ gðFn�1ðtÞ � FnðtÞÞ for n ¼ 2, . . . , nI, ð3:2dÞ

with the initial conditions L1ð0Þ ¼ 1, Lkð0Þ ¼ 0 for all

k ¼ 2, . . . , nE and Fkð0Þ ¼ 0 for all k ¼ 2, . . . , nI:

We solved both systems (3.1) and (3.2) numerically using the

lsoda method from the R [15] package deSolve [16] v. 1.11.

(b) Stochastic simulations
We validated the results from our deterministic model (3.1) by

implementing a discrete-state stochastic version of this model

using an exact Gillespie algorithm [12]. Briefly, this algorithm

simulates exponentially distributed event times for progression

from one state to the next one (e.g. from susceptible (S) to expo-

sed (E)). Both the intensity and event type frequency depend on

the rates defined in (3.1). We extend the classical Gillespie algor-

ithm by identifying every individual in the simulation. Hence

we can keep track of the generation intervals at pre-specified

times both from the infector (forward) and the infectee (backward)

viewpoints. The outputs of interest from a simulation are pairs of

generation interval (forward or backward) and calendar time
(time elapsed since the start of the epidemic). Simulated gener-

ation intervals are aggregated and averaged in 1-day time

buckets. A detailed description of this algorithm is given in

electronic supplementary material, algorithm 1.
4. Practical implication
During the early phase of a pathogen outbreak, generation

interval information is strongly ‘censored’, since a relatively

large proportion of infections are still ongoing. This information

cannot be used to reliably estimate forward generation inter-

vals, but can estimate backward generation intervals (or it

may simply be lumped, which has a similar effect to using

backward intervals). A naive—but common—approach is to

use the mean (and sometimes the variance) of this data to

inform the intrinsic generation interval distribution g of a math-

ematical model (e.g. used for forecasting). This method will lead

to a systematic bias: since shorter generation intervals are more

likely to have concluded (and thus be observed), the mean gen-

eration interval will be systematically underestimated [5]. An

alternative approach is to fit the backward generation interval

distribution b of the model (obtained with equation (2.11)) to

the backward contact-tracing data at each available calendar



Table 1. The three generation-interval distributions.

generation-interval
distribution type notation usage

defining
equation

intrinsic g mathematical modelling (2.4)

backward b observed when a cohort is investigated by looking backward in time to see

who infected each individual

(2.11)

forward f observed when a cohort is tracked forward in time to see whom individuals

infect

(2.8)
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time. As an approximation to fitting the whole distribution, one

can aim to fit both the mean and variance of the backward

generation interval distribution to the data.

The backward generation interval fit to the mean and

variance is illustrated in figure 6, where contact-tracing data

were simulated from an Erlang SEIR model. The potential

pitfalls of naively fitting, without recognizing the difference

between the intrinsic generation interval distribution g and

the observed backward interval b, are also shown (dashed

lines): the resulting mean and variance of observed intervals

are a notably poorer match to the data.

Note that, depending on the model complexity, the mini-

mization problem can be high dimensional and there might

be identifiability issues between parameters. Also, when the

number of data points is small (very first days of the outbreak),

fitting may be challenging because the mean of the backward

generation interval distribution b is very insensitive to model

parameters (figure S1a).

This example serves as a simple illustration for an impor-

tant point: data from contact-tracing can provide misleading

information about a pathogen’s underlying intrinsic gener-

ation interval g. The factors that underlie how the realized

forward and backward generation intervals change through

time should be taken into account when evaluating observed

intervals. Future work on constructing a more elaborate and

robust statistical framework to perform such fit is warranted.
5. Discussion
Conceptually, there are three generation-interval distri-

butions (table 1). We called the first ‘intrinsic’ generation-

interval distribution, which defines theoretically the disease

transmission process. This is the distribution typically used

in mathematical models, such as in the well-known renewal

equation (2.2), and is often assumed invariant with respect

to time. Variation in intrinsic generation interval, if it

occurs, is driven by changes in the biological or social pro-

cesses underlying disease transmission, e.g. quarantines or

social-distancing practices, but not by the spread of disease

per se. The other two generation-interval distributions are

typically obtained by observing the actual infection time

differences between the infector and its infectee. If the point

of view is from the infectee, then there is only one interval

to consider and this defines the so-called ‘backward’ gener-

ation interval. If we take the infector’s viewpoint, then there

are potentially several generation intervals (because the infec-

tor could have infected several individuals) and this defines

the ‘forward’ generation interval (figure 1c). In other
words, if we believe that generation intervals are drawn

from their respective distribution (i.e. b and f with our nota-

tions), then the backward generation interval we get in the

first place is a single draw, whereas the latter represents

several draws.

We have developed a theoretical framework that explains

the temporal variation of both backward and forward gener-

ation-interval distributions. We confirm the findings from

Nishiura [5] that were derived for mean generation intervals

in the context of exponential growth of incidence. We extend

their interpretability to the whole generation-interval

distribution (not the mean only) in a general modelling frame-

work (no exponential growth assumption). In particular, our

interpretation does not involve the concept of competition

between infectors [4].

Our theoretical results were confirmed with numerical simu-

lations, using an Erlang SEIR compartmental model. Note that

other sorts of models should work equally well, as long as it is

possible to derive analytically or numerically the proportion of

susceptible individuals S, the incidence i and the probability F
to be infectious t time units after being infected.

As noted by previous studies [3–5,10], the temporal

shape of the mean backward generation interval in figure 2

has important modelling consequences. Indeed, the mean

backward generation interval can remain significantly

below (resp. above) the mean intrinsic generation interval

early (resp. late) in the epidemic. So, estimates of the

generation intervals obtained by contact tracing can underes-

timate (when observed too early) or overestimate (when

observed too late) the mean intrinsic generation interval.

This is related to the problem of ‘length-biased sampling’

[17]. Put simply, generation intervals measured through

contact-tracing may be a biased estimate of the intrinsic gen-

eration interval. In particular, if estimates of b are used to

estimate g early in an epidemic, the length of the generation

interval is likely to be underestimated. This effect is more pro-

nounced when the reproductive number of the epidemic

considered is large (figure S1).

An important application of generation intervals is the

estimation of the basic reproductive number R0, which is

in turn used for various public health decisions. The intrinsic
generation-interval distribution g is the link between the

observed growth rate (incidence data) and R0 [18]. If g is sys-

tematically underestimated, as discussed above, R0 is likely to

be underestimated as well (see [5] for an example illustrating

this issue on Dutch influenza data).

Our work suggests a possible methodology to correct for

these potential pitfalls: if it is possible to derive (analytically

or numerically) from the mathematical model either the
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intrinsic generation-interval distribution g or the probability

F of being infectious after a given duration from the infection

time, then modellers can derive the backward (or forward)

generation-interval distribution from equations (2.11) and

(2.14), and fit this distribution (and not g) to the relevant

contact-tracing data.

There are some limitations to our work. First, while we

consider generation intervals, in practice serial intervals (the

interval between symptom onset in the infector and symptom

onset in the infectee) are easier to observe for many diseases.

Serial intervals are less tractable theoretically and in general

do not have the same distribution as generation intervals.

However, in some settings, their distribution can be strongly

correlated or even identical [3,19]. Second, our theoretical

framework relies on the assumption of homogeneous

mixing. Although this is a common assumption, heterogen-

eity is often very important in practice (see [20] for

example), and could affect the patterns found here. Third,

we do not account for the possibility that mixing rates or

the course of infection change through time, for example

owing to seasonality, awareness of the epidemic, or medical

intervention. Like earlier authors, we focus on the intrinsic

dynamics of the disease system. Fourth, a robust, statistically

based method to infer model parameters associated to gener-

ation intervals from observable data available early in an

epidemic is still needed. Statistical methods have been

proposed to estimate intrinsic generation intervals (e.g.

[21–23]), but further work is necessary to extend these

methods to our framework, for example constructing
estimation methods directly using the backward generation

interval distribution in the context of missing data. Establish-

ing a link between our framework and the serial interval (the

most likely observable quantity) is also warranted.

Informing the generation-interval distribution of a

mathematical model from contact-tracing data is not straight-

forward, and a naive approach can lead to spurious

epidemiological projections from the model. Extending previous

work, our study provides a clear and coherent theoretical

framework to understand and assess the differences between

three conceptually distinct generation-interval distributions.

Future work should consider building statistical tools leveraging

our study on real contact-tracing data.
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