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+e use of multimodal magnetic resonance imaging (MRI) to autonomously segment brain tumors and subregions is critical for
accurate and consistent tumor measurement, which can help with detection, care planning, and evaluation. +is research is a
contribution to the neuroscience research. In the present work, we provide a completely automated brain tumor segmentation
method based on a mathematical model and deep neural networks (DNNs). Each slice of the 3D picture is enhanced by the
suggested mathematical model, which is then sent through the 3D attention U-Net to provide a tumor segmented output. +e
study includes a detailed mathematical model for tumor pixel enhancement as well as a 3D attention U-Net to appropriately
separate the pixels. On the BraTS 2019 dataset, the suggested system is tested and verified. +is proposed work will definitely help
for the treatment of the brain tumor patient. +e pixel level accuracy for tumor pixel segmentation is 98.90%. +e suggested
system architecture's outcomes are compared to those of current system designs. +is study also examines the suggested system
architecture's time complexity on various processing units with neuroscience approach.

1. Introduction

Tumors are described as the development of glandular
growth in the brain, which can be benign or malignant [1, 2],
and they are amongst the deadliest diseases [3–5]. +e extra
growth of tissues at certain places increases the chances of
tumor formation. +ose with a brain tumor may encounter
the following symptoms or signs. A symptom, such as
weariness, nausea, or pain, can only be recognized and
explained by the individual experiencing it. A symptom is
anything that may be observed and quantified by others,
such as a fever, rash, or elevated pulse rate [6, 7]. When signs
and symptoms are combined, they can help characterize a

medical disease. A person with a brain tumor may not
display any of the following signs and symptoms. A medical
condition other than a brain tumor might be the source of a
symptom or sign [8, 9]. Depending on where they originate
and how rapidly they grow, astrocytomas could be fatal. As a
result, a neurosurgeon’s most important and initial goal is to
correctly segment a brain tumor so that suitable therapy may
be decided [10].+ough brain tumors can cause a number of
issues, they are not cancerous, which means they grow
slowly and seldom spread to other regions of the body. +ey
also have more well-defined borders, making surgical ex-
cision easier, and they seldom recur after removal [11, 12].
Malignant brain tumors, on the other hand, are malignant,
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grow rapidly, and can spread to other parts of your brain or
central nervous system, offering a life-threatening risk
[13, 14]. +e improved matching filter also aids in reducing
the likelihood of misclassification. Progress in the tech-
nology of diagnostic imaging and analytical modelling have
resulted in improved diagnosis and treatment [1].

To produce thorough scans of the brain, many imaging
methods are utilized. MRI scans produce pictures with
varied contrasts and brightness that highlight distinct sec-
tions of the brain, allowing tumor subregions to be dis-
tinguished. Each MRI sequence is thought to be crucial in
identifying various tumor subregions.+e ability to segment
brain tumors is crucial for statistical tumor characterization,
which leads to more accurate diagnosis and better treatment
methods and strategies [15]. An MRI of the head is a non-
invasive, painless treatment that produces detailed images of
your brain and brain stem. In an MRI machine, a magnetic
field and radio waves are used to produce the images. +is
test is also known as a cranial MRI or a brain MRI [16, 17].
CTscans employ X-rays, which emit a radiation. MRI, on the
other hand, does not use radiation. Due to this, pregnant
women cannot take CT scan. People with implants may not
take MRI scan. Deep learning advances have resulted in
more precise and reliable segmentation algorithms. CNNs
have attained state-of-the-art outcomes in a wide range of
computer vision applications [18]. By varying the 2D U-Net,
Isensee et al. performed a brain tumor segmentation in-
vestigation [19] to 3D [15]. Havaei et al. offered a feedfor-
ward CNN construction that integrates local and global data
tomake brain tumor separation [20]. To achieve brain tumor
segmentation, Pereira et al. employed short convolution
layers and gray-level technique [21]. Any of the following
signs and symptoms may not be present in a person with a
brain tumor. A symptommight be caused by a medical issue
other than a brain tumor. Astrocytomas can be deadly
depending on where they come from and how quickly they
develop. Brain tumors are not malignant, despite the fact
that they can cause a variety of problems.

To improve the validity of the model segmentation
network, Kamnitsas et al. [22] employed conditional ran-
dom field (CRF) as a preprocessing method. Despite the fact
that many deep learning algorithms have produced in-
credibly precise outcomes in diagnostic imaging processing
activities, an interpretation is required to realize. +is
clarification serves as a link between experts and the algo-
rithm, offering correct forecasts in addition to justifications
[23]. +e terms “explainability,” “interpretability,” and
“transparency” have all been used to characterize how well
the model is understood [24–26]. For statistical tumor
characterization, the capacity to segment brain tumors is
critical.

Furthermore, the added dimension of 3D structures
complicates understanding the model’s findings in order to
develop predictions. Medical specialists are hesitant to
believe CNN projections because of their lack of
explainability and black-box nature [27]. +e degree to
which a black-box model’s projections can be trusted is a
hot issue [28]. Understanding the reasons behind the
model’s forecasts is crucial to avoid bad treatment

outcomes and to have trust in the model’s forecasts [29].
Furthermore, interpretability allows users to categorize the
patterns discovered primarily by the model and check that
they are consistent with medical professionals’ domain
expertise, increasing end-user trust and reliance on the
model’s judgments [30].

Two primary types of interpretability techniques are pre-
sented in [31]. After the model has been trained using the
training sample without being significantly altered, post hoc
techniques are utilized, whereas ante hoc or trainable attention
entails building interpretability into themodel architecture from
the start. +e most common trend in understandability at the
intermediate levels of the model is to see and grasp the in-
formation gathering process [32]. To investigate the model’s
secret knowledge, saliency maps are constructed in visual in-
terpretability. Several visual interpretability methodologies have
been developed [33–35], and a thorough research of AI has been
done [36–38].

Furthermore, representativeness is critical in the health-
care field since it ensures that medical practitioners can
recognize and accept estimates of a neural network (NN) [31].
Incorporating optical explicable into deep learningmodels for
medical image interpretation is a popular method, as dem-
onstrated by LIME [36], GB [39], Grad-CAM [40], and CAM
[41]. +ese methods, despite being aesthetically appealing,
rely on gradients and image manipulation as inputs. As a
result, they are time-consuming to create and produce less
clear visual descriptions in terms of projected class. In ad-
dition, the lack of assessment criteria makes evaluating the
quality of provided explanations difficult. +e most typical
movement in understandability at the intermediate layers of
the model is to view and comprehend the evidence gathering
procedure.

According to the literature, the BT segmentation
requires extra attention in order to increase its perfor-
mance metrics. +e classification is done based on result
of segmentation. +e proposed system approach will be
incredibly useful in extracting volume of the tumor. +e
rest of the paper is organized as follows. Section 2 looks
into the planned scheme’s mathematical model in further
depth. +e suggested technique has been tested on many
types of data and has produced good results. +e sug-
gested system design is compared against a variety of
algorithms, and the findings are presented in Section 3.
According to Ladkat et al. [42], to assess the temporal
complexity of the proposed system, it is tested on various
processors. With a conclusion, Section 4 comes to an end.
+e authors in [43–50] described their trials with ma-
chine learning applications in the medical field. +e LRA
DNN approaches were developed by Shelke et al. [51].
Wankhede et al. [52,53] performed deep learning ex-
periments on the brain tumor.

2. Proposed Methodology

Image dataset is passed through equation (1). +e low and
high components from the image are extracted from the
image. +e image(x, y, z) is passed through the transform
to get Wi

ψ(j, p, q, r) as a result.
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Now, to get reduced dimensionality features, these
decomposed values of the uploaded picture are processed via
the following equations:
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Equations (5) and (6) gives the feature and to get the ith
component of the feature, we need to subtract the first.

􏽢Xi � X − 􏽘

i−1

s�1
Xw(i)w

T
(i), (7)

w(i) � arg max
||w||�1

􏽢Xkw
����

����
2

􏼚 􏼛 � argmax
w

T 􏽢X
T

i
􏽢Xi w

w
T

w

⎧⎨

⎩

⎫⎬

⎭. (8)

Covariance of the feature set is calculated as
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Now, equation (8) is supplied as input to the neural
network. Equation (9) gives the features which are then fed
to the neural network to get the classification done. +e all
xℓ

ijexpressions in which ωabcoccurs can be given as.
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where (zxℓ
ijk/zωabc) � yℓ−1

(i+a)(j+b)(k+c), which is used as for-
ward propagation equation.
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So, it is clear that the error at the current layer zE/zyℓ
ijk

can be easily computed by using deltas zE/zxℓ
ijk at the

current layer by just using the derivative of the activation
function, σ′(x). We now have everything we need to
compute the gradient with regard to the weights employed
by this convolutional layer because we know the errors at the
current layer. We need to transmit errors back to the pre-
ceding layer to compute the weights for present convolu-
tional layer.

zE

zy
ℓ−1
ijk

� 􏽘
m−1

a�0
􏽘

m−1

b�0
􏽘

m−1

c�0

zE

zx
ℓ
(i−a)(j−b)(k−c)

zx
ℓ
(i−a)(j−b)(k−c)

zy
ℓ−1
ijk

� 􏽘
m−1

a�0
􏽘

m−1

b�0
􏽘

m−1

c�0

zE

zx
ℓ
(i−a)(j−b)(k−c)

ωabc.

(12)

+e output of the improved picture is then entered
straight into the mathematical model below, which produces
enhanced tumor pixels in a three-dimensional plane. Let Rv

be the covariance matrix to retrieve all the potential values of
the tumor pixels inside the threshold limit.
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After passing images from the above equations, the
image is passed through the following neural network to get
segmented.

+e three-dimensional attention module is merged with
the decoding blocks, and the U-Net architecture is translated
to 3D. A 3D attention model with decoder blocks is also
available to improve segmentation estimation. A channel
plus spatial attention system, as well as a bypass connection,
makes up the attention module we propose. Combining
concurrently intriguing features, on the other hand, may
lead to pattern training inconsistency. When skip connec-
tions are employed, the network’s redundancy and sparsity
are lowered. Figure 1 depicts the situation of projected
structure architecture for segmentation of brain tumor.

Here the parallel and serial connection of block of en-
coder and decoder is presented. +e encoder block encodes
the result of the mathematical model (from equation (18))
and the left side of the U type structure takes it into account
so that the size of the 3D block converges. +e right side of
the U type structure is the combination of encoder, decoder,
and excitation module. After that, there is a block called
convolution which convolves the result and gives the seg-
mented result.

Spatial and channel attention improves encoding quality
across the feature hierarchy. As a consequence, we create 3D
concentration units that provide 3D spatial plus channel
attention by combining 3D trans and cross feature inter-
actions. To create the 3D attention map, we first combine all
three-dimensional attribute connections focused on the H ×

W × 1 measurement with a 1 × 1 × C convolution. We do
parallel average pooling and forward it to the neural network
to obtain the 1× 1 × C channel correlation. Rich spatial and
channel attention is stored in the 3D attention map. We also
employ skip connection to decrease the sparsity and sin-
gularity that these parallel excitations create. Furthermore,
using a skip connection broadens the learning and improves
segmentation prediction.

3. Results and Discussion

All of the tests in the paper are done with BraTS 2019. BraTS
2019 has 335 cases, including 259 instances of high-grade
glioma and 76 cases of low-grade glioma, respectively. In the
validation and test sets, there are 125 and 166 examples,
respectively. +e modality has a voxel size of 240× 240 ×

155. In the training set, there is also a segmentation an-
notation that marks three areas as 1, 3, and 4 pixel values.

We upload our estimation accuracy to the BraTS 2019
site and obtain a variety of measurement metrics to evaluate
our model prediction, including Dice, Hausdorff, sensitivity,
and specificity. Table 1 presents the statistical parameters
calculated from the BraTS 2019 validation set’s performance
parameters. A visual depiction of the validation set pre-
diction is shown in Figure 2. Necrosis is shown by red
colour, tumor enhancement is shown by yellow colour, and
edema is shown by green colour. +e presentation graphs of
the suggested three-dimensional attention U-Net vs the
original 3D U-Net are shown in Figure 3.

Figure 3 shows that the suggested model beats the 3D
attentive U-Net and the 3D digital U-Net paradigm across all
areas, including ET, WT, and TC.

Excitation Module

Final Conv

Encoder

Decoder

Figure 1: Proposed system architecture for the segmentation of
brain tumor.
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Table 1: +e Dice, Hausdorff, sensitivity, and specificity measures were used to analyze the statistical characteristics of the BraTS 2019
testing dataset for the classification job.

Dice Hausdorff Sensitivity Specificity
ET WT TC ET WT TC ET WT TC ET WT TC

Mean 0.603 0.823 0.712 6.92 6.24 8.53 0.723 0.895 0.793 0.934 0.852 0.721
StdDev 0.293 0.062 0.132 12.84 10.73 12.34 0.273 0.042 0.176 0.002 0.004 0.004
Median 0.724 0.823 0.821 2.21 3.17 4.17 0.824 0.835 0.843 0.834 0.926 0.926

Flair T1 T1ce T2 Ground-Truth Prediction

Figure 2: +e Flair, T1, T1ce, and T2 channels of the brain tumor were displayed using the ground-truth and expected segments of tumor
post using the BraTS 2019 cross validation dataset.
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Figure 3: Comparison of the suggested mathematical model with 3D attention U-Net, 3D attention U-Net model, and the original 3D U-
Net model in terms of performance.
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To develop an effective model, we chose the 14 very vital
properties and trained the models. A Bland–Altman plot in
Figure 4 depicts the circulation of reversion productivity
for entirely retrieved structures and 14 nominated attri-
butes (Figures 4(a) and 4(b)). Compared to all other
variables, the average gap between actual survival and
anticipated survival rate for the selected attributes is nearly
half (5.72 days).

Figure 5 clearly indicates that the suggested structure
architecture is performing extraordinarily superior than
other present system architectures. +e accuracy, precision,
recall, and F1 score of the recommended system architecture
for segmentation are 99.90%, 99.90%, 98.50%, and 98.50%,
respectively, which are much higher than those of existing
systems.

When the results are compared on the basis of pixel
value, then the resultant confusion matrix is presented in
Figure 6. It clearly states that the dominant diagonal is
having higher values than those of the other cells in the
confusion matrix. +e MRI images of the width 809 pixels
and height 974 pixels are considered in the present study.
+e average result of 100 images is calculated and put in the
form of confusion matrix here.

Here after taking average of 100 tumor images, the
average tumor pixels are 853 and average non-tumor pixels
are 787113.

+e time complexity is tested on several CPUs. +e
average time it takes to get a outcome on several hardware
platforms is shown in Table 2.

When using a CPU such as i5 or i7, the time complexity
is approximately identical; however, when the system is
evaluated on a GPU, the time necessary to get the results is
much different.

1000

750

500

250

0

D
iff

er
en

ce

-250

-500

-750

200 400 600 800

-SD1.96: 669.72

-SD1.96: -648.92

Mean diff: 10.32

Means
1000 1200

(a)

1000

750

500

250

0

D
iff

er
en

ce

-250

-500

-750

-SD1.96: 649.23

-SD1.96: -632.95

Mean diff: 5.72

0 200 400 600 800
Means

1000 1200

(b)

Figure 4: Bland–Altman plot generated from overall survival prediction model training cross validation results. (a) For all retrieved
characteristics, a Bland–Altman plot was obtained. As a result, the average difference is 10.32 days. (b) +e Bland–Altman plot for the 14
characteristics chosen. +is results in a 5.72-day average difference.
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Figure 5: Pixel level performance parameters for the segmentation
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Table 2: +e time required to obtain the desired outcome utilizing
the suggested system design on various hardware systems.

Platform +e time it takes to acquire a result
(s)

8 GB RAM, CPU, i3
processor 0.724

8GB RAM, CPU, i5
processor 0.532

8GB RAM, CPU, i7
processor 0.518

Nvidia K80, GPU 0.009
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4. Conclusion

BraTS 2019 was used to complete all of the experiments in the
article. BraTS 2019 has 335 cases, with 259 instances of high-
grade glioma and 76 cases of low-grade glioma. To test our
model prediction, we upload our estimation accuracy to the
BraTS 2019 site and obtain a number ofmeasurementmetrics,
such as Hausdorff, sensitivity, Dice, and specificity. +e
suggested system architecture produces accurate tumor pixel
segmentation findings from a 3D brain picture. +e system is
put to the test on a variety of levels. +e types of feature
extraction are utilized as the initial criterion. +e temporal
complexity of the systems is compared. +e suggested system
is also evaluated in comparison to current classifiers. +e
suggested system architecture for segmentation has accuracy,
precision, recall, and F1 score of 99.90%, 99.90%, 98.5%, and
98.50%, respectively, which are significantly higher than those
of existing systems. From this, we can conclude that the
proposed system architecture is reliable and we can use it in
the medical field for effective diagnosis.
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