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The proteasome has been validated as an anticancer drug target, while the role of a subunit of proteasome, PSMC6, in lung
adenocarcinoma (LUAD) has not been fully unveiled. In this study, we observed that both the RNA and protein of PSMC6 were
highly upregulated in LUAD compared with the adjacent normal tissues. Moreover, a high PSMC6 expression was associated
with poor prognosis. In accordance with this finding, PSMC6 was associated with poor tumor differentiation. Furthermore, the
silence of PSMC6 by small interference RNAs (siRNAs) could significantly inhibit cell growth, migration, and invasion in lung
cancer cell lines, suggesting that PSMC6 might serve as a promising therapeutic target in LUAD. To further explore the
molecular mechanism of PSMC6 in LUAD, we observed that the proteasome subunits, such as PSMD10, PSMD6, PSMD9,
PSMD13, PSMB3, PSMB1, PSMA4, PSMC1, PSMC2, PSMD7, and PSMD14, were highly correlated with PSMC6 expression.
Based on the gene set enrichment analysis, we observed that these proteasome subunits were involved in the degradation of
AXIN protein. The correlation analysis revealed that the positively correlated genes with PSMC6 were highly enriched in WNT
signaling-related pathways, demonstrating that the PSMC6 overexpression may activate WNT signaling via degrading the AXIN
protein, thereby promoting tumor progression. In summary, we systematically evaluated the differential expression levels and
prognostic values of PSMC6 and predicted its biological function in LUAD, which suggested that PSMC6 might act as a
promising therapeutic target in LUAD.

1. Introduction

Lung cancer is among the most frequent malignancies world-
wide, accounting for nearly 20% of cancer-related deaths in
2018 [1]. The major risk factors for lung cancer are smoking,
radon exposure, and exposure to other carcinogens [2, 3].
Patients with lung cancer often had unfavorable outcomes,
and the 5-year survival rate for lung cancer remains less than
20% [4]. Novel treatments and drug designs are direly sought
to improve patients’ prognoses and relieve their financial
burden [5].

Proteasome inhibition is considered a promising treat-
ment strategy for various malignancies, including lung
cancer. The 26S proteasome is an important protease in
eukaryotic cells, which is composed of a 20S core particle
(CP) and one or two 19S regulatory particles (RP) capping
one or both ends of the 20S CP [6]. The 26S proteasome
mediates degradation of numerous cellular proteins and

participates in multiple cellular processes, especially the cell
cycle [7], which makes it a potential target in cancer therapy.

26S proteasome assembly induced by PSMD5 inactiva-
tion is observed during colorectal tumor progression, and it
has been further validated that reduced 26S proteasome
levels could impair cancer cell viability and that partial deple-
tion of the 19S RP subunits could effectively result in inhibi-
tion of the 26S proteasome [8, 9]. Those subunits are essential
for the 19S RP to carry out functions such as identification,
binding, deubiquitination, unfolding, and translocation of
substrates before proteolysis [10, 11]. Receptor RPN13 in
the 19S regulatory particle is found overexpressed in ovarian
and colon cancer, and it could interact with RA190, a bis-
benzylidine piperidone active against cervical and ovarian
cancer [12–14]. Of note, PSMC6 codes for one of the six
AAA-type ATPase subunits of the 19S RP and has been iden-
tified as a protective gene in lower grade glioma [15, 16]. Its
high bortezomib sensitivity makes it the most prominent
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target in multiple myeloma [17]. A recent study has
demonstrated that PSMC6 overexpression could impair cell
cycle progression and cell proliferation via inhibiting the
PI3K/AKT signaling pathway [18]. Meanwhile, S5aC, a mul-
tiubiquitin binding component of the 19S RP, is found capa-
ble of inducing A549 lung cancer cell death [19]. Therefore, a
closer investigation of genes related to the 26S proteasome in
lung cancer shall provide detailed information on the cellular
functions of those subunits in lung cancer carcinogenesis and
reveal potential therapeutic targets. In the present study, we
investigated the clinical and functional relevance of PSMC6
in lung adenocarcinoma (LUAD) and explored its underly-
ing mechanism in the initiation and progression of LUAD.

2. Materials and Methods

2.1. Data Acquisition. The gene expression data of The
Cancer Genome Atlas (TCGA) and the protein expression
data were downloaded from the UCSC Xena database [20]
and an earlier study [21]. The Fragment Per Kilo-Million
(FPKM) and read count-based data were collected from the
TCGA cohort. Briefly, the raw fastq data were aligned to
reference genome by STAR v2 [22] and gene expression
levels were quantified by HTSeq [23]. The gene-level protein
intensities were collected, imputed by the minimal protein
intensity, and logarithm transformed.

2.2. Differential Expression. The differential expression
between two groups was conducted by Wilcoxon rank sum
test, while the multisample comparison was tested by the
Kruskal-Wallis test. Moreover, the fold change was also
employed to test the difference.

2.3. Survival Analysis. The Cox proportional hazard regres-
sion model was used to evaluate the association between
PSMC6 expression and survival time. Particularly, the
PSMC6 expression was discretized as high and low expres-
sion levels using the median as cut-off. The survival analysis
was implemented in R survival package (https://cran.r-
project.org/web/packages/survival/index.html).

2.4. Functional Inference of PSMC6. The prediction of the
biological function for PSMC6 was conducted by integrating
the correlation analysis, protein-protein interaction (PPI)
analysis, and gene set enrichment analysis (GSEA). The PPI
data was obtained from the BioGRID database [24]. Specifi-
cally, we first extracted the proteins (genes) directly interact-
ing with PSMC6 from the PPI network. Secondly, those
interacting proteins that showed a significantly positive cor-
relation with PSMC6 were retained for the next step analysis
(p value < 0.05, Spearman correlation > 0:3). Thirdly, those
genes were subjected to the gene set enrichment analysis
(GSEA) against the pathways curated from the Reactome
database, and hypergeometric test was employed to test the
statistical significance of the GSEA. The GSEA was imple-
mented in the R clusterProfiler package [25].

2.5. Cell Culture, RNA Isolation, and Quantitative Real-Time
PCR (qRT-PCR). The cells were cultured following a previous
study [26]. Total RNA was isolated from the A549 and

H1299 cell lines using TRIzol reagent (Sangon, China). The
reverse transcription of the RNAs was performed to synthe-
size the cDNAs following the instructions of PrimeScript™
RT reagent Kit (Takara Bio Inc.). The mRNA expression
was quantified by qRT-PCR using SYBR premix Ex Taq II
with LightCycler 480II (Roche) instrument. The sequences
of the primers are as follows: PSMC6 forward, 5-CGGGTG
AAAGTGCTCGTTTG-3 and reverse, 5-AGCAAAGCAGG
ATCCAGTGT-3 and GAPDH forward, 5-GTCGTGGAG
TCTACTGGTGTC-3 and reverse, 5-GAGCCCTTCCA
CAATGCCAAA-3. All these experiments were conducted
in triplicates.

2.6. RNA Interference and Transfection. We purchased the
synthetic PSMC6 siRNAs and its negative control (NC) at
the concentration of 100 nM from GenePharma (Shanghai,
China). Specific siRNAs targeting PSMC6 are as foloows:
si-PSMC6 #1: 5′-ACAAGGAGATCGACGGCCGTCTT
AA-3′ and si-PSMC6 #2: 5′-CGGCCGTCTTAAGGAGTT
AAGGGAA-3′. Following the manufacturer’s procedure,
the transfection was conducted with Lipofectamine 2000
Transfection Reagent (Life, USA), which was purchased from
Life Technologies. All these experiments were conducted in
triplicates.

2.7. Cell Counting Kit-8 (CCK-8) Analysis. The CCK-8 assay
was used to determine the cell proliferation level following
the method from a previous study [26]. All these experiments
were conducted in triplicates.

2.8. Cell Invasion and Migration Assays. The cell invasion
and migration assays were performed following the method
of a previous study [27]. Specifically, Transwell plates (8μm
pore size, 6.5mm diameter; Corning, USA) precoated with
Matrigel Basement Membrane Matrix (coating concentra-
tion: 1mg/ml; BD Biosciences, Franklin Lakes, NJ) were used
for the migration assay according to the manufacturer’s pro-
tocol. Subsequently, the media containing 1% FBS into the
upper chamber of the Transwell filter on a 24-well plate were
used for cell seeding after transfection, and those containing
10% FBS into the lower well of the plate were used as an
attractant. After 72 h of incubation, cells on the upper side
of the filters or migrated to the lower side were removed or
fixed with methanol, stained with Giemsa, and counted
under a microscope. Migration assays were performed with
the same procedure, except that the Transwell chamber
inserts were not coated with Matrigel, and the medium con-
taining 10% FBS was used for cell suspensions. All these
experiments were conducted in triplicates.

3. Results

3.1. PSMC6 Is a Poor Prognosis in Lung Adenocarcinoma. To
reveal the expression pattern of PSMC6 in lung adenocarci-
noma (LUAD), we collected two cohorts from the Cancer
Genome Atlas (TCGA) and Xu et al. and evaluated its differ-
ential expression levels between the tumor and normal
tissues. Specifically, the mRNA and protein expressions of
PSMC6 were highly upregulated in LUAD as compared with
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the adjacent normal tissues (Figure 1(a), Wilcoxon rank sum
test, p value < 0.001). Notably, the PSMC6 protein was
expressed over fourfold in LUAD than that in the normal
tissues (Figure 1(a)).

Moreover, the tumor samples were stratified into the
high- and low-expression groups. The survival analysis of
PSMC6 RNA and protein expressions revealed that patients
with high PSMC6 RNA expression had shorter overall sur-
vival (OS) than those with a low expression (Figure 1(b),
log-rank test, p value < 0.05). Consistently, the LUAD sam-
ples with high PSMC6 protein expression had both shorter
disease-free survival (DFS) and OS than those with low
PSMC6 protein expression (Figure 1(b), log-rank test, p
value < 0.05). These results indicated that PSMC6 overex-
pression might result in a worse prognosis and act as a
prognostic biomarker in LUAD.

3.2. The Association of PSMC6 with the Clinical
Characteristics. To evaluate the clinical significance of
PSMC6 in LUAD, we compared the RNA or protein expres-

sion of PSMC6 of tumor samples with different clinical
characteristics. Notably, PSMC6 was expressed higher in
LUAD with residual tumor than those without (Figure 2(a),
p value < 0.01), suggesting that PSMC6 was associated with
residual tumor, which was considered a risk factor of tumor
recurrence [28, 29]. Among the three disease types, LUAD
with adenomas and adenocarcinomas had a higher RNA
expression of PSMC6 than the other two disease types
(Figure 2(b), Kruskal-Wallis test, p value < 0.001), indicating
that LUAD with the disease type of adenomas and adenocar-
cinomas might have a higher degree of malignancy. Consis-
tently, PSMC6 RNA expression was higher in the LUAD
patients with poorly differentiated tumor than those with
well and moderately differentiated tumors (Figure 2(c)),
suggesting that PSMC6 was associated with the tumor differ-
entiation. Furthermore, among the 7 major subtypes of
LUAD, solid adenocarcinoma of the lung had the highest
protein expression of PSMC6 (Figure 2(d)), suggesting that
solid adenocarcinoma of the lung might have a relatively
worse prognosis than other subtypes. These results disclosed
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Figure 1: The upregulation of PSMC6 in lung adenocarcinoma (LUAD). (a) The RNA and protein expression levels of PSMC6 in LUAD and
adjacent normal tissues. (b) The correlation between survival time and PSMC6 RNA or protein expression levels. The red and blue lines
indicate the samples with high and low PSMC6 expression. DFS: disease-free survival; OS: overall survival.
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that PSMC6 was clinically relevant to factors including resid-
ual tumor, disease type, tumor differentiation, and LUAD
subtype.

3.3. Silence of PSMC6 Inhibits Cell Proliferation of Non-
Small-Cell Lung Cancers. To uncover the functional role of
PSMC6 in non-small-cell lung cancer (NSCLC), we per-
formed CCK-8 assay to test the impact of PSMC6 on the cell
proliferation (Materials and Methods). Specifically, we
designed two small interface RNAs (siRNA) for PSMC6
mRNA, termed as si-PSMC6 #1 and si-PSMC6 #2, and
transfected into two NSCLC cell lines, A549 and H1299. As
shown in Figures 3(a) and 3(b), the siRNA transfection could
efficiently suppress the RNA expression levels of PSMC6 in
the two cell lines (p value < 0.01) using quantitative real-

time polymerase chain reaction (qPCR). With the siRNA
transfection, the cell proliferation levels were found to be
significantly inhibited at the fifth day (Figures 3(c) and
3(d), p value < 0.05). These results demonstrated that silence
of PSMC6 could efficiently inhibit the cell proliferation of
NSCLC.

3.4. Silence of PSMC6 Inhibits Migratory and Invasive
Abilities of Non-Small-Cell Lung Cancer Cells. As PSMC6
was negatively associated with survival time of LUAD
patients, we then investigated whether silence of PSMC6
could restrict the migratory and invasive abilities of NSCLC
cells. Expectedly, the number of migratory cancer cells was
obviously decreased in the cells with si-PSMC6 transfection
than the negative controls (Figure 4(a)). The quantitative
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Figure 2: The association of PSMC6 expression with clinical factors. The association of PSMC6 expression with residual tumor, disease type,
differentiation, and subtype are displayed in (a), (b), (c), and (d), respectively. ∗, ∗∗, and ∗∗∗ represent the p values below 0.05, 0.01, and 0.001.
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analysis revealed that the number of migratory cells with si-
PSMC6 transfection was greater in the cells with si-PSMC6
treatment (Figure 4(b)). Consistently, the tumor cell invasion
was also inhibited by the PSMC6 silence (Figures 4(c) and
4(d)). These results indicated that silence of PSMC6 could
inhibit migratory and invasive abilities of cancer cells.

3.5. The Proteasome Might Activate WNT Signaling via
Degrading AXIN Protein. To gain insights into the molecular
mechanism of PSMC6 in LUAD, we conducted a correlation
analysis between PSMC6 and other genes using both RNA-
seq and proteome data. Totally, we identified 1222 genes
coexpressed with PSMC6 (Spearman correlation > 0:3), of
which, 26 genes encoded proteins interacting with PSMC6
protein. The gene set enrichment analysis revealed that deg-
radation of beta-catenin by the destruction complex and deg-
radation of AXIN was significantly enriched by these 26
genes (Figure 5(a)). Specifically, the proteasome subunits
such as PSMD10, PSMD6, PSMD9, PSMD13, PSMB3,
PSMB1, PSMA4, PSMC1, PSMC2, PSMD7, and PSMD14

were involved in those two pathways (Figure 5(b)). As the
AXIN protein acted as a tumor suppressor to inhibit WNT
signaling pathway, its degradation might result in WNT sig-
naling activation. Consistently, the positively correlated
genes with PSMC6 were highly enriched in WNT signaling-
related pathways such as beta-catenin-independent WNT
signaling, signaling by WNT, and TCF-dependent signaling
in response to WNT at both RNA (Figure 5(c), FDR < 0:05)
and protein (Figure 5(d), FDR < 0:05) levels. These results
indicated that PSMC6 might activate WNT signaling via
degrading AXIN protein.

4. Discussion

The proteasome has been validated as an anticancer drug
target [30], while the role of a subunit of proteasome,
PSMC6, in lung adenocarcinoma (LUAD) has not been fully
unveiled. In this study, we observed that both the RNA and
protein of PSMC6 were highly upregulated in LUAD com-
pared with the adjacent normal tissues. Moreover, high

A549
0.0

0.5

1.0

1.5

Re
la

tiv
e P

SM
C6

 m
RN

A
 ex

pr
es

sio
n

si-NC
si-PSMC6 #1
si-PSMC6 #2

⁎⁎ ⁎⁎

(a)

0.0

0.5

1.0

1.5

Re
la

tiv
e P

SM
C6

 m
RN

A
 ex

pr
es

sio
n

H1299

⁎⁎
⁎⁎

(b)

A549

1 2 3 4 5
0.0

0.5

1.0

1.5

O
D

 4
50

nm

si-NC
si-PSMC6 #1
si-PSMC6 #2

(Days)

⁎
⁎

(c)

1 2 3 4 5
(Days)

0.0

0.2

0.4

0.6

0.8

1.0

O
D

 4
50

nm

H1299

⁎
⁎

(d)

Figure 3: The impact of PSMC6 silence on the tumor cell proliferation. The relative mRNA expression of PSMC6 in negative controls and cell
lines with siRNA treatments (si-PSMC6 #1 or #2). The experiments for A549 and H1299 cell lines are shown in (a) and (b), respectively. The
cell proliferation levels of A549 and H1299 with and without siRNA treatments (si-PSMC6 #1 and si-PSMC6 #2) are displayed in (c) and (d).
∗, ∗∗, and ∗∗∗ represent the p values below 0.05, 0.01, and 0.001.
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PSMC6 expression was associated with poor prognosis. To
our knowledge, previous studies rarely reported this finding.
However, the other subunits of proteasome, such as PSMD3,
PSMC2, and PSMD4, were upregulated in several cancers
and associated with prognosis [31–33]. After systematic
treatments, some LUAD patients might still have residual
tumors, which had been considered a risk factor of recur-
rence [28, 29]. In accordance with this finding, PSMC6 was
associated with poor tumor differentiation, suggesting that
high expression of PSMC6 in patients with residual tumors
or poor tumor differentiation indicates that PSMC6 may be
associated with tumor recurrence. Moreover, the PSMC6
was also observed to have higher expression levels in some
histology subtypes such as adenomas/adenocarcinomas and
solid tumor subtypes. The solid predominant subtype of
LUAD has been observed to have much worse prognosis than
other subtypes [34].

Moreover, the silence of PSMC6 by siRNA could signifi-
cantly inhibit cell growth, migration, and invasion in lung
cancer cell lines. Consistently, PSMC6 was also identified as
a target for bortezomib sensitivity in multiple myeloma by
CRISPR genome-wide screening [16]. We thus speculated
that PSMC6 might serve as a promising therapeutic target
in LUAD.

To further explore the molecular mechanism of PSMC6
in LUAD, we observed that the proteasome subunits, such
as PSMD10, PSMD6, PSMD9, PSMD13, PSMB3, PSMB1,
PSMA4, PSMC1, PSMC2, PSMD7, and PSMD14, were
highly correlated with PSMC6 expression. It should be noted
that these proteins could directly interact with PSMC6 and
act as components of proteasome. Among these proteasome
subunits, PSMB3 [35] and PSMD14 [36] have been found
to promote lung adenocarcinoma progression, while PSMA4
polymorphisms are associated with lung cancer susceptibility
and response to cisplatin-based chemotherapy [37], suggest-
ing that the proteasome may be associated with the LUAD
progression and drug response due to numerous subunits.
Based on the gene set enrichment analysis, we observed that
these proteasome subunits were involved in the degradation
of the AXIN protein. The correlation analysis revealed that
the positively correlated genes with PSMC6 were highly
enriched in WNT signaling-related pathways. The activity
of WNT signaling was enhanced by the degradation of the
AXIN complex via the proteasome [38], further demonstrat-
ing that the PSMC6 overexpression may activate WNT
signaling via degrading AXIN protein, thereby promoting
tumor progression. However, this mechanism needs to be
validated by more experimental data.
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Figure 4: The impact of PSMC6 silence on cell invasion and migration. The cell invasion (a, b) and migration (c, d) of A549 and H1299 after
negative controls and siRNA transfections are counted by Transwell assay. ∗, ∗∗, and ∗∗∗ represent the p values below 0.05, 0.01, and 0.001.
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In summary, we systematically evaluated the differential
expression levels and prognostic values of PSMC6 and pre-
dicted its biological function in LUAD, which suggested that
PSMC6might act as a promising therapeutic target in LUAD.

Data Availability

All data supporting this study are collected from a public
database such as TCGA and Gene Expression Omnibus
(GEO), which have been cited as references in Materials
and Methods.
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