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Background: Detection of lymphovascular space invasion (LVSI) in early cervical cancer
(CC) ischallenging.Todate, nostandardclinicalmarkersorscreening testshavebeenused to
detectLVSIpreoperatively. Therefore,non-invasive riskstratification toolsarehighlydesirable.

Objective: To train and validate a multi-parametric magnetic resonance imaging
(mpMRI)-based radiomics model to detect LVSI in patients with CC and investigate its
potential as a complementary tool to enhance the efficiency of risk assessment strategies.

Materials and Methods: The model was developed from the tumor volume of interest
(VOI) of 125 patients with CC. A total of 1037 radiomics features obtained from
conventional magnetic resonance imaging (MRI), including a small field-of-view (sFOV)
high-resolution (HR)-T2-weighted MRI (T2WI), apparent diffusion coefficient (ADC), T2WI,
fat-suppressed (FS)-T2WI, as well as axial and sagittal contrast-enhanced T1-weighted
MRI (T1c). We conducted a radiomics-based characterization of each tumor region using
pretreatment image data. Feature selection was performed using the least absolute
shrinkage and selection operator method on the training set. The predictive performance
was compared with single variates (clinical data and single-layer radiomics signatures)
analyzed using a receiver operating characteristic (ROC) curve. Three-fold cross-
validation performed 20 times was used to evaluate the accuracy of the trained
classifiers and the stability of the selected features. The models were validated by using
a validation set.

Results: Feature selection extracted the six most important features (3 from sFOV HR-
T2WI, 1 T2WI, 1 FS-T2WI, and 1 T1c) for model construction. The mpMRI-combined
radiomics model (area under the curve [AUC]: 0.940) reached a significantly higher
performance (better than the clinical parameters [AUC: 0.730]), including any single-
layer model using sFOV HR-T2WI (AUC: 0.840), T2WI (AUC: 0.770), FS-T2WI (AUC:
0.710), ADC maps (AUC: 0.650), sagittal, and axial T1c values (AUC: 0.710, 0.680) in the
validation set.
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Conclusion: Biomarkers using multi-parametric radiomics features derived from
preoperative MR images could predict LVSI in patients with CC.
Keywords: uterine cervical neoplasms, radiomics, lymphovascular space invasion, magnetic resonance imaging,
predictive value of tests
INTRODUCTION

Cervical cancer (CC) is the fourth most frequently diagnosed
cancer worldwide, with an increasing incidence rate, high
mortality rate, and a younger age of onset (1). Lymphovascular
space invasion (LVSI) refers to the presence of cancer cell
clusters in the vascular and/or lymphatic lumen (2). LVSI
increases the risk of lymph node metastases (LNM), which is
an independent high-risk factor for tumor recurrence and
influences treatment methods (3–5). Studies have shown that
LVSI is associated with decreased survival rates in women with
stage IA2 (5), IB, and II CC [defined according to the Federation
International of Gynecology and Obstetrics (FIGO)] (3, 6).
Satellite LVSIs also significantly increase the risk of death and
recurrence (7). A definite preoperative distinction is of great
clinical importance in the management of patients with CC. The
LVSI status should be considered for a more accurate risk
stratification (3). However, it is challenging to determine the
decisive characteristics of LVSI in clinically relevant biomarkers
due to intralesional heterogeneity, extra time delays, and high
testing costs. A definitive diagnosis can only be made through a
histopathological examination of the surgical specimens.
However, pathological analysis is not universally applicable,
and there is wide interobserver variability in determining LVSI
(5). A reformative, non-invasive, real-time, and cost-efficient
preoperative test method for risk identification will have a
considerable clinical impact on women with CC.
Lymphovascular space invasion; LNM,
on International of Gynecology and
magnetic resonance imaging; VOI,
lution T2-weighted MRI; T2WI, T2-
imaging; DCE, Dynamic Contrast

FOV, Small field of view; TSE, turbo
pparent diffusion coefficient; T1c,
I; PACS, picture achieving and
vel Co-occurrence Matrix; GLRLM,
ray-level Size Zone Matrix; GLDM,
, Neighbouring Gray Tone Difference
ient; LASSO, Least absolute shrinkage
information criterion; HE stained,
, Squamous cell carcinoma antigen;
, False Positive; TP, positive patients;
operating characteristic curve; AUC,
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value; DCA, Decision curve analysis;
-Computed Tomography; 3D, Three-
iation therapy.
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As an emerging field of medical imaging, radiomics refers to
the process of extracting and analyzing massive quantitative
features from medical images to achieve the ultimate goal of
prediction or prognosis (8). Based on sufficient spatial resolution,
multi-parametric magnetic resonance imaging (mpMRI),
including high-resolution T2-weighted MRI (HR-T2WI),
diffusion-weighted imaging (DWI), and dynamic contrast
enhancement (DCE)-MRI, extensively improves the sensitivity
and specificity of the examination (9) and has attracted
increasing attention from scholars as a developing tool for
image characterization, treatment planning, and response
assessment (10, 11). In recent years, mpMRI has created an
exclusive opportunity to analyze complicated spatial image
patterns through radiomics methods. Radiomics analysis can
completely extract magnetic resonance (MR) image data, which
contain information about the biological behavior of tumors.
Advanced texture analysis of mpMRI provides more perceivable
information than current clinical visual evaluations (10). It has
been proven that radiomics have great potential for enhancing
the clinical management of CC (12, 13).

However, to our knowledge, radiomics research on the
predictive performance of LVSI by investigating patients with
CC is relatively limited. Previous studies have mainly focused on
conventional MRI (4, 14) or DCE-MRI quantitative parameter
maps (15) and peritumoral information (16); small field-of-view
(sFOV) HR-T2WI has not been considered. Since the
conspicuity of a feature in an image largely depends on spatial
resolution, better spatial resolution may lead to better diagnostic
performance. Moreover, for some imaging tasks that involve
high-frequency and high-contrast features in particular, the
performance is predominantly determined by spatial resolution
(17). We assume that sFOV HR-T2WI may provide further
information to assess the disease status and enable more
comprehensive CC phenotyping in strong radiomics
signatures. A high-throughput screening feature vector
acquired from sFOV HR-T2WI may enhance its diagnostic
performance for identifying LVSI over other imaging
modalities by reflecting bio-information, including lesion
aggressiveness and vascularity. Therefore, in this study, we
aimed to train and test a mpMRI-derived radiomics model,
mainly based on sFOV HR-T2WI, to distinguish between CC
with and without LVSI.

In this study, we proposed a novel radiomics-determined
mathematical characterization of the CC risk phenotype. The
model is primarily based on sFOV HR-T2WI and has a
convincing predictive value. This suggests that the radiographic
characteristics of mpMRI obtained via the standard-of-care
represented by sFOV HR-T2WI might serve as a non-invasive
LVSI identification method. The model may be useful for
January 2022 | Volume 11 | Article 663370

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Huang et al. LVSI Prediction in Cervical Cancers
facilitating the risk stratification of patients in surgical
procedures and neoadjuvant settings.
MATERIALS AND METHODS

Patients
This retrospective study was approved by the Institutional Ethics
Review Board, which waived the requirement for written informed
patient consent. The study was conducted in accordance with the
Declaration ofHelsinki (18). Themain cohort included 203women
with CC, confirmed by histopathological analysis after reviewing
the institutional database of medical records from June 2012 to
December 2018. Patients with distant metastases, history of prior
radiotherapy or chemotherapy for CC, preceding or simultaneous
malignant tumors, incomplete MRI sequences, and insufficient
image quality were excluded (19). The final study population
comprised 125 patients, and stratified sampling was adopted to
assign them to the training and validation cohorts in an 8:2 ratio.

MRI Protocol
All patients underwent MRI using a 3.0-T MRI scanner
(Magnetom Skyra; Siemens Medical Solutions, Erlangen,
Germany) with an 18-channel pelvic phased-array coil in the
supine position. MRI was performed 10 days after a biopsy to
avoid post-biopsy inflammation and 2 weeks before
chemoradiation and surgery. Images were obtained from the
pelvis to the renal hilum to detect the lymph node status. The
set image protocol included sagittal turbo spin-echo (TSE)-T2WI
and axial fat-suppressed (FS)-T2WI, axial DWI (9) (b values of 50
and 1000) with apparent diffusion coefficient (ADC) maps and
sFOV high-resolution turbo T2-weighted sequences on the axial
planes. Each patient was administered an injection of gadodiamide
0.2 mmol/kg (Ge Healthcare Shanghai Co., Ltd.). After 3 minutes,
an FS-T1-weighted sequence (T1c) was acquired in the sagittal
and axial planes (12). MRI datasets were retrieved from the picture
achieving and communication system (PACS) for further image
processing (20) (The MRI acquisition details are listed in
Supplementary Material, Table 1).

Image Preprocessing and Segmentation
To obtain robust features, linear interpolation was first adopted
to resample the voxel size of the image to an isovolumetric voxel
(1 × 1 × 1 mm3) before feature extraction (21). The Z-score
method was used to standardize the image, and image intensity
discretization was applied with a fixed bin width of 5 (22).
Wavelet decomposition (wavelet transform, LLL, LLH, LHL,
HLL, LHH, HLH, HHL, HHH) and Laplacian of Gaussian
filters were applied to the image with sigma values of 3.0 and
5.0, respectively (23). An open-source software was subsequently
used for medical image segmentation (ITK-SNAP, version 3.8.0;
https://www.itksnap.org). The entire tumor area was assessed to
avoid the presence of fluid in the cervical canal. The regions of
interest were manually outlined by a single abdominal radiologist
and confirmed by another abdominal radiologist (Y.C. and L.W.,
with 10 and 14 years of experience in pelvic radiological
diagnosis, respectively) to reach a consensus regarding the CC
Frontiers in Oncology | www.frontiersin.org 3
tumor region (Supplementary Material, Figures 1, 2). All
patients were blinded to their clinical and histopathological
characteristics. If the tumor region was not ascertained, the
area was not included in the segmentation. After standardized
pre-processing, 1037 radiomics features were extracted from the
original and filtered images using PyRadiomics packages,
including the shape features (14), first-order statistics (18), and
texture features (including 24 gray-level co-occurrence matrix
[GLCM] features, 16 gray-level run-length matrix [GLRLM]
features, 16 gray-level size zone matrix [GLSZM] features, 14
gray level dependence matrix [GLDM] features, and 5
neighboring gray-tone difference matrix [NGTDM] features)
(24). One month later, 30 patients were randomly selected for
lesion definition and radiomics feature extraction by another
radiologist (Y. J., with 14 years of experience in pelvic
radiological diagnosis), who was blinded to the clinical and
pathological findings. Robustness was assessed using the intra-
class correlation coefficient (ICC).

Radiomics Feature Extraction
It is imperative to select a useful and unique feature subset to
avoid overfitting. The procedure for feature reduction was as
follows: (a) Important features were obtained through a
univariate analysis using the Mann-Whitney U test, in which
p-values <0.01 were reserved. (b) The Spearman correlation
coefficients for each pair of features were calculated, and
features with a correlation coefficient > 0.9 were removed (25).
(c) The least absolute shrinkage and selection operator (LASSO)
was used on the remaining features, and the significant features
with non-zero coefficients in the training cohort were selected to
identify the LVSI status (11). (d) Stepwise regression of multiple
factors was performed, retaining the feature set with the smallest
Akaike’s information criterion (AIC) and then weighing a linear
combination of selected features according to their respective
coefficients (20, 26).

Model Construction and Validation
The final hematoxylin and eosin (HE) stained pathological results
were evaluated to determine the following factors: histology type,
FIGO stage, presence of LVSI, and LNM. Multivariable logistic
regression analysis was used for parameters including age,
squamous cell carcinoma (SCC) antigen level, menopause, white
blood cell count, neutrophil count, lymphocyte count, monocyte
count, hemoglobin (HGB) level, bloodplatelet count, albumin level,
neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio, and
lymphocyte-to-monocyte ratio.

A clinical model for quantitative prediction of LVSI was
established using the selected variates of HGB and SCC
antigen to aid clinical practice (20). Logistic regression was
used to establish the predictive models. Six independent
models based on single MR sequences were constructed to
estimate the validity of LVSI prediction, including ADC maps,
sFOV HR-T2WI, axial FS-T2WI, sagittal T2WI, and axial and
sagittal T1C models. The radiomics signature was used as an
independent feature representing radiomics, along with clinical
data. A radiomics model was then generated via a linear
combination of the foremost features weighted by the
January 2022 | Volume 11 | Article 663370
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corresponding coefficients of the aforementioned six sequences
in the training set. Then, the Rad-score was computed for
each and used in the validation set from the radiomics model.
Clinical and radiomics models were constructed using logistic
regression and followed AIC for backward feature selection (27).

In addition, we established a combined (COMB) model
integrating the Rad-score with clinical predictors to test the
added value of the LVSI differentiation model (23). To ensure
a robust generalized performance of the models that best fit the
observed data, 3-fold cross-validations were repeated 20 times in
the training set. The performances of all models were then
calculated for both the training and validation sets (20). All
multivariable logistic regression formulas developed from the
training sets were validated using the validation sets.

The calibration curves were computed to identify the
consistency between the estimated probability of LVSI and the
actual outcomes in both datasets (20).

Clinical Practice/Decision Curve Analysis
To evaluate the incremental utility of the constructed classifiers,
the decision curve of the radiomics model was plotted for both
datasets (28). The net benefit was computed by subtracting the
proportion of false-positive (FP) patients from the proportion of
true-positive patients (TP), weighted by the relative harm of
false-negative (FN) and false-positive results. For reference, the
decision curves for treating all patients and treating no patients
are shown. If the net benefit values of the model are greater than
those of the two reference schemes, the model will show a clinical
benefit (23). Through a threshold probability, the decision curve
indicates which of the given models is the best for a patient or
clinician (28).

Statistical Analysis
Patient demographic data are presented as numbers (percentages)
ormedians (25th to75thpercentiles) for categorical and continuous
variables (unless specified otherwise). Pearson’s c2 or Fisher’s exact
test was used to compare the categorical variables between groups,
while the Mann-Whitney U test was used to compare the
continuous variables (29). To select the features that allow for the
identification of LVSI in patients with CC, multiple logistic
regression models were fitted and compared using AIC (30). The
diagnostic accuracy of optimal predictive parameters was
determined using receiver operating characteristic (ROC)
analysis, and the area under the ROC curve (AUC) was obtained
(24). The model cutoff point was obtained using the Youden index,
and the accuracy, sensitivity, and specificity were calculated (3). All
statistical analyses were performed using R software (version 3.6.3,
https://www.rproject.org), and a two-tailed p-value of <0.05, was
considered statistically significant.
RESULTS

Baseline Characteristics of Patients
A total of 125 patients were included in the study based on the
inclusion and exclusion criteria. The training set included 100
patients with CC and a positive LVSI rate of 29.0%, while the
Frontiers in Oncology | www.frontiersin.org 4
validation set included 25 patients with CC and a positive LVSI
rate of 20.0%. The median age of the patients in both groups was
48 years. The clinicopathological characteristics of the study
population are shown in Table 1.

Radiomics Feature Extraction and Selection
A total of 1037 extracted features were further selected by
univariate analysis, LASSO, and stepwise logistic regression
analysis (Supplementary Material Text 1). Thirteen image
features were reduced to only six potential independent
predictors for the radiomics signature using the combination
of all six single sequences. The most significant features were
from the first-order and texture feature groups, including sFOV
HR-T2WI (T2P2) _wavelet .LLL_firstorder_Kurtosis ,
T2P2_wavelet.HHL_glcm_Autocorrelation, T2P2_wavelet.
HHL_glszm_ZoneEntropy, T1C transverse (TRA)_wavelet.
HLH_glszm_GrayLevelNonUniformityNormalized, T2 sagittal
(SAG)_wave le t .HLH_firs torder_Skewness , T2TRA_
wavelet.HHH_glcm_JointAverage. They were all significantly
different between the CC cases with and without LVSI (all p <
0.05; Figure 1). The results showed that the inter-observer ICC
values of the radiomic features we used for the model were all >
0.8 (indicating good stability).

All these features were included in the calculation formula for
the Rad-score. The Rad-score distributions of each patient in the
two cohorts are shown in Figures 2A, B.

Regarding clinical indicators, only SCC antigen and HGB
independently represented the predictive variables for LVSI in
patients with CC after the univariate and multivariate logistic
regression analyses.

Performance Comparison of Model
Training and Validation
For comparison, the differentiation performance of the
established models was quantified using the AUCs of the two
groups. The proposed radiomics signatures distinguish LVSI
status with AUCs ranging from 0.681 to 0.878. The AUC
values for sFOV HR-T2WI, ADC map, axial FS-T2WI, sagittal
T2WI, axial T1c, and sagittal T1c were 0.878, 0.681, 0.763, 0.762,
0.748, and 0.763 in the training cohort (Figure 2C). Regarding
the LVSI classification method, the AUC of the sFOVHR-T2WI-
based model was significantly higher than that of the other
single-layer models (Figures 2C, D).

The calculated Rad-score was used to construct the
corresponding radiomics model. Compared with a single
sequence model, the radiomics model provided an even better
predictive model for LVSI, yielding an AUC of 0.922 and 0.940, a
sensitivity of 0.897, 1.000, and specificity of 0.817, 0.700,
respectively (Table 2).

The clinical model was developed using the selected variates,
showing the degree of predictive performance for LVSI and
achieving an AUC of 0.709 (95% CI, 0.596-0.823) and 0.730
(95% CI, 0.483-0.977) in the training and validation sets,
respectively (Table 2 and Figures 2E, F). To ensure the
accuracy of the COMB model, the clinical factors were not
included. Thus, the proposed model was constructed based on
only the radiomic model, and both had the same performance.
January 2022 | Volume 11 | Article 663370
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TABLE 1 | Demographic and clinicopathological characteristics of patients.

Characteristic Non-LVSI (n=91) LVSI (n=34) Total (n=125) P value

Age (years) 0.8031

Mean (SD) 48.209 (9.317) 47.235 (8.235) 47.944 (9.014)
Median (Q1, Q3) 47.000 (42.000, 55.000) 48.000 (42.250, 51.000) 47.000 (42.000, 54.000)
Range 27.000 - 68.000 32.000 - 68.000 27.000 - 68.000
SCC (ng/ml) <0.0011

Mean (SD) 3.060 (7.394) 9.344 (14.503) 4.770 (10.176)
Median (Q1, Q3) 1.200 (0.700, 2.950) 3.650 (1.050, 8.275) 1.400 (0.800, 3.500)
Range 0.200 - 65.700 0.500 - 71.000 0.200 - 71.000
Menopause 0.1182

Menopausal 32 (35.2%) 7 (20.6%) 39 (31.2%)
Not menopausal 59 (64.8%) 27 (79.4%) 86 (68.8%)
FIGO stage (%) 0.0171

I 49 (53.8%) 12 (35.3%) 61 (48.8%)
II 38 (41.8%) 18 (52.9%) 56 (44.8%)
III 4 (4.4%) 2 (5.9%) 6 (4.8%)
IV 0 (0.0%) 2 (5.9%) 2 (1.6%)
HistologyType 0.2362

non-squamous cell carcinoma 7 (7.7%) 5 (14.7%) 12 (9.6%)
Squamous cell carcinoma 84 (92.3%) 29 (85.3%) 113 (90.4%)
LNM (%) 0.0112

Non-metastasis 86 (94.5%) 27 (79.4%) 113 (90.4%)
Metastasis 5 (5.5%) 7 (20.6%) 12 (9.6%)
WBC (10-9/L) 0.3431

Mean (SD) 5.655 (1.746) 5.912 (1.623) 5.725 (1.711)
Median (Q1, Q3) 5.300 (4.500, 6.500) 5.650 (4.700, 6.850) 5.300 (4.500, 6.700)
Range 2.500 - 11.400 3.500 - 10.200 2.500 - 11.400
NEUT (10-9/L) 0.7201

Mean (SD) 3.566 (1.422) 3.633 (1.331) 3.585 (1.393)
Median (Q1, Q3) 3.300 (2.590, 4.215) 3.430 (2.700, 4.362) 3.380 (2.620, 4.340)
Range 1.090 - 9.030 1.590 - 6.630 1.090 - 9.030
LY (10-9/L) 0.0881

Mean (SD) 1.517 (0.497) 1.676 (0.538) 1.560 (0.511)
Median (Q1, Q3) 1.470 (1.145, 1.860) 1.620 (1.373, 1.890) 1.510 (1.170, 1.870)
Range 0.840 - 3.400 0.760 - 3.530 0.760 - 3.530
MO (10-9/L) 0.3341

Mean (SD) 0.384 (0.121) 0.419 (0.155) 0.394 (0.132)
Median (Q1, Q3) 0.360 (0.300, 0.480) 0.390 (0.300, 0.502) 0.380 (0.300, 0.480)
Range 0.180 - 0.830 0.100 - 0.840 0.100 - 0.840
HGB (g/L) 0.0131

Mean (SD) 125.121 (20.577) 114.471 (23.870) 122.224 (21.945)
Median (Q1, Q3) 131.000 (113.000, 139.500) 120.500 (102.000, 131.750) 128.000 (108.000, 137.000)
Range 56.000 - 163.000 58.000 - 152.000 56.000 - 163.000
PLT (10-9/L) 0.4021

Mean (SD) 196.527 (71.603) 214.324 (87.256) 201.368 (76.227)
Median (Q1, Q3) 202.000 (152.500, 243.500) 224.000 (154.250, 268.500) 202.000 (153.000, 250.000)
Range 62.000 - 406.000 70.000 - 395.000 62.000 - 406.000
ALB(g/L) 0.2931

Mean (SD) 43.043 (4.073) 42.024 (3.556) 42.766 (3.951)
Median (Q1, Q3) 42.900 (41.000, 45.050) 42.450 (40.250, 44.325) 42.800 (40.700, 45.000)
Range 33.600 - 62.000 34.800 - 47.700 33.600 - 62.000
NLR 0.2671

Mean (SD) 2.515 (1.090) 2.386 (1.255) 2.480 (1.133)
Median (Q1, Q3) 2.309 (1.691, 3.114) 2.005 (1.341, 2.919) 2.275 (1.619, 3.084)
Range 0.846 - 6.076 0.958 - 6.196 0.846 - 6.196
PLR 0.5901

Mean (SD) 138.569 (60.850) 142.783 (94.315) 139.715 (71.122)
Median (Q1, Q3) 121.395 (98.924, 170.491) 119.531 (89.634, 161.903) 121.379 (98.755, 169.565)
Range 22.615 - 315.116 44.759 - 519.737 22.615 - 519.737
LMR 0.5091

(Continued)
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The derived Rad-score was significantly higher in patients
with LVSI than in those without LVSI in both groups (p <0.05)
(Figures 3A, B). The multiple regression analysis integrating all
variables demonstrated a statistically significant difference
between CC with and without LVSI. All models performed
well in LVSI identification. Comparative analysis of the
randomly drawn 3-fold cross-validation sets showed low
variability of results, indicating a stable prediction performance
(Supplementary Material, Figure 3). Similar results were also
observed between the training and validation sets. No statistically
significant differences were observed in most of the constructed
models, showing the strong robustness of the models, including
the clinical, single, radiomics, and COMB models of the two
groups (Figures 2C–F). The radiomics characterization
developed the LVSI identification to a significantly higher
performance standard. The predictive capacity (sensitivity,
specificity, accuracy, FP, and FN) of all models used to identify
LVSI in the training cohort are listed in Table 2.
Frontiers in Oncology | www.frontiersin.org 6
Clinical Usefulness
The decision curve analysis (DCA) of the radiomics, clinical, and
COMB models is presented in Figure 3C. The decision curves
showed that the COMB model added more benefits than the
other models and simple strategies, such as clinical data. The
calibration curve of the radiomics model showed good
agreement between prediction and observation in the training
set (Figure 3D).
DISCUSSION

In this study,we trained andvalidated a unitedmodel incorporating
thempMRI radiomics signature for individualized LVSI prediction
in patients with CC before surgery. The proposed radiomics
signature, especially the model based on sFOV HR-T2WI,
showed good differentiation ability between the two groups,
outperforming the clinical data and other single models.
TABLE 1 | Continued

Characteristic Non-LVSI (n=91) LVSI (n=34) Total (n=125) P value

Mean (SD) 0.267 (0.091) 0.266 (0.112) 0.267 (0.096)
Median (Q1, Q3) 0.259 (0.203, 0.307) 0.234 (0.212, 0.298) 0.254 (0.205, 0.306)
Range 0.114 - 0.697 0.049 - 0.607 0.049 - 0.697
January 2022 | Volume 11 | Article
1. Mann-Whitney U test.
2. Pearson’s Chi-squared test.
LVSI, lymphovascular space invasion; SD, standard deviation; SCC, Squamous cell carcinoma antigen; FIGO, Federation International of Gynecology and Obstetrics stage; LNM, Lymph
node metastasis; WBC, white blood cell; NEUT, neutrophil count; LY, lymphocyte count; MO, Monocyte count; HGB, Hemoglobin; PLT, blood platelet count; ALB, albumin; NLR,
Neutrophil/lymphocyte ratio; PLR, Platelet/lymphocyte ratio; LMR, lymphocyte/monocyte ratio.
A B

D E F

C

FIGURE 1 | Plots (A–F) show the boxplots of the six radiomics features with a significant difference between the LVSI and non-LVSI subgroups in the training cohort.
The symbol **, ***, **** means P-value < 0.01, 0.001, 0.0001, respectively.
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Additionally, multiple radiomics signatures were integrated into a
combined model, significantly enhancing the accuracy and model-
fittingdegrees.The classifier also achievedbetter performance in the
non-LVSI subgroup than in the LVSI subgroup.Hence, we suppose
that mpMRIs coupled with radiomics methods may be an effective
tool in clinical decision-making regarding image-based
differentiation between the presence and absence of LVSI.

The 5-year overall survival rate of patients without LVSI is
higher than that of patients with LVSI (3). Therefore, accurate
Frontiers in Oncology | www.frontiersin.org 7
preoperative prediction of LVSI status is of great importance in
guiding individualized treatment strategies for patients with CC
(6). However, visual evaluation cannot ensure that the
characteristic differences are identified in the clinical setting.
It is essential to develop a non-invasive, and highly efficient
predictive approach for LVSI identification. Radiomics supposes
that intralesional heterogeneity is difficult to observe with the
naked eye, but it can be detected using the spatial distribution of
voxel intensities (23). Imperceptible tumor information can be
A B

D

E F

C

FIGURE 2 | Plots (A, B) present the Rad-score in the training cohort (A) and the validation cohort (B) the red bars represent the scores for patients without LVSI,
while the blue bars represent the scores for those with LVSI; plots (C, D) show the receiver operating characteristic (ROC) curves of the radiomics signature derived
from single sequences in both sets; plots (E, F) present the ROC curves of the clinical model, radiomics model, and combined model.
January 2022 | Volume 11 | Article 663370
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revealed by radiomics analysis, which will gradually help
overcome the limitations of pure visual image interpretation.
Radiomics has shown the potential to predict LVSI in
endometrial carcinoma (31), breast cancer (32), and gastric
cancer (33). Image features may also provide insight into the
nature of CCs beyond the scope of visual assessment (34). In this
Frontiers in Oncology | www.frontiersin.org 8
study, we used an automatic high-throughput screening feature
extraction method to obtain 1037 radiomics features using
mpMRI, which comprehensively reflects the imaging
phenotype of CC.

The radiomics model constructed in this study exhibited
favorable discrimination in both the training and validation
TABLE 2 | Discriminative value of each parameter in differentiating LVSI.

Method AUC (95%CI) accuracy sensitivity specificity PPV NPV FP FN

DWI 0.681 (0.572-0.791) 0.510 0.966 0.324 0.368 0.958 0.676 0.034
T1C SAG 0.763 (0.656-0.871) 0.730 0.655 0.761 0.528 0.844 0.239 0.345
T1C TRA 0.748 (0.638-0.858) 0.700 0.759 0.676 0.489 0.873 0.324 0.241
T2P2 0.878 (0.808-0.948) 0.810 0.828 0.803 0.632 0.919 0.197 0.172
T2 SAG 0.762 (0.653-0.870) 0.630 0.897 0.521 0.433 0.925 0.479 0.103
T2 TRA 0.763 (0.672-0.855) 0.670 0.966 0.549 0.467 0.975 0.451 0.034
Radiomics 0.922 (0.872-0.972) 0.840 0.897 0.817 0.667 0.951 0.183 0.103
Clinical 0.709 (0.596-0.823) 0.660 0.655 0.662 0.442 0.825 0.338 0.345
COMB 0.922 (0.872-0.972) 0.840 0.897 0.817 0.667 0.951 0.183 0.103
Janua
ry 2022 | Volum
e 11 | Article 6
AUC, area under ROC curve; CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value; DWI, ADCmapmodel; TIC SAG, sagittal T1Cmodel; TIC TRA, axial T1c
model; T2P2, sFOV HR-T2WI model; T2 SAG, sagittal T2WI model; T2 TRA, axial T2WI model; COMB, combined model; FP, False Positive; FN, False Negative.
A B

DC

FIGURE 3 | Plots (A, B) show the boxplots of the Rad-score in both cohorts, respectively. (C) Decision curve analysis for the radiomics signature in the training set. The
Y-axis shows the net benefit; the X-axis shows the threshold probability. The decision curves showed that if the threshold probability falls in the range of 5%-95%, the
radiomics model achieves the best clinical benefit than other models. (D) The calibration curve showed that the predicted LVSI was very close to the actual value.
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sets, with an AUC of 0.922, 0.940, respectively. Several studies
have evaluated the feasibility of using MRI for visual or
computerized analyses of LVSI identification. The predictive
capacity of our model was comparable to that of models
reported in previous studies. The Rad-score obtained from
Positron Emission Tomography-Computed Tomography
(PET/CT) images with molecular proteins is closely related to
that in cases of early CC with LVSI (35). In previous studies, the
AUC of the support vector machine constructed using only
conventional T2WI reached 0.7356 (14), while the radiomics
nomogram developed on T1c images relevant to LVSI had an
AUC of 0.754 (4). Our study confirmed that the Rad-scores of
T2WI, T1c, and ADC maps of patients with LVSI were
significantly higher than those of patients without LVSI. The
heterogeneity or textual pattern complexity of the features
observed in cases with LVSI was higher than in those without
LVSI. A further study has investigated the potential of radiomics
and deep learning fusion strategy, showing that the features
derived from the region with a radial dilation distance of 8 mm
and 4 mm outside the tumor achieved the best classification
ability for T1c and T2WI, respectively (16). In a small pilot study
of 56 patients, multi-sequence-based radiomics signatures
showed great differentiation value for LVSI, especially the
functional maps obtained from DCE-MRI, with AUCs ranging
from 0.659 to 0.814 (15). Although the patient sample size was
small and there were no external test sets, the study indicated the
prime potential of quantitative image feature correlation with
LVSI. The use of DCE sequences may reflect the cell structure
and microangiogenesis of tumor tissue. The derived quantitative
parametric maps may also contain more tumor hemodynamic
information, adding useful diagnostic information to the
radiomics methods. However, the generalizability of existing
results dependent on visual evaluation is limited by the
complicated quantitative image acquisition process and
markers, even for experienced observers. In addition, technical
differences between the quantitative sequences or the absence of
external validation limit their clinical application value. Our
findings accord with and support the current trend of reducing
research time and costs by omitting DCE quantitative maps from
the conventional MRI protocol and then using routine scanning
sequences. The routinely obtained sFOV HR-T2WI sequence is
also less expensive and time-saving than contrast-enhanced MRI
and DWI. Through further validation, this approach may serve
as a complementary imaging method for pelvic MRI in patients
with CC.

Although the image data were pre-processed before feature
extraction, such as isotropic resampling of the voxel size post-
acquisition, it might not eliminate the initial resolution
differences completely. We observed some distinctions between
images obtained with different spatial resolutions. The sFOV
HR-T2WI acquired more robust features than normal images.
Previously, Mayerhoefer systematically studied the influence of
image interpolation and matrix size of imaging features,
indicating that image data acquisition at higher resolution
achieves better diagnostic efficiency (36). A phantom study
also demonstrated that image spatial resolution is of great
Frontiers in Oncology | www.frontiersin.org 9
significance for the robustness and reproducibility of MRI
radiomics (37). Among the features from MRI sequences,
those from sFOV HR T2WI accounted for the highest
proportion, suggesting the importance of sFOV HR-T2WI-
derived radiomics signatures in this classification model. A
reasonable interpretation could be summarized as follows: HR-
MRI based on sFOV sequences allow for artifact reduction and
smooth fusion with morphologic T2WI; combining an HR-MRI
and sFOV readout may contribute to increasing the accuracy of
diagnosis (38). sFOV HR-MRI is characterized by excellent
spatial resolution, high image complexity, and large intra-class
differences, and provides high-contrast structural and functional
information, including a large amount of spatial information
about the tumor, rich shape, texture, structure, and
neighborhood relationship features. In addition, sFOV HR-
MRI could explicitly detect the tumor microenvironment,
capture the quantifiable differences occurring in the tissue
vasculature, and enrich existing imaging features. For these
reasons, sFOV HR-T2WI can provide abundant visual
information for LVSI detection. The results further reveal the
importance of spatial resolution in radiomics measures.
Frequency-selective axial FS-T2WI differs from sFOV HR
T2WI. It is unclear whether there is a difference in highlighting
the histopathological features of CC in T2WI with or without fat
suppression. Other tissue components, such as blood and protein,
that have the same T1 time as the fat in the lesion may be inhibited
when fat signaling is suppressed. Some image features that
characterize subtle changes in the vasculature of CC may also be
weakened, in which some microscopic changes may be closely
related to LVSI. A similar result was observed in a previous study,
wherein T2 was slightly higher than FS-T2WI for LVSI prediction
in patients with CC (AUC= 0.710, 0.697) (15). The ADC models
show the worst performance probably due to poor spatial
resolution and limited signal-to-noise ratio. Some imaging
features may be weakened owing to partial volume effects,
resulting in relatively minor differences in the feature value (15,
39, 40). This, in turn, reduces the machine’s ability to reveal subtle,
imperceptible, local structural differences in tumor components.
This may be a key reference for the machines to identify lesions.
These findings are consistent with those of several previous studies
(15, 39), and those associated with endometrial carcinoma (40).
We hypothesized that functional and anatomical images have
unique advantages in characterizing lesion heterogeneity. LVSI is a
pathological finding, that may be more inclined to be an
anatomical, and morphological characteristic. Therefore,
anatomical images may be more helpful for LVSI observation,
while ADC maps may not have significant advantages in
characterizing the vascular tumor cells in CC.

To perform a multi-resolution analysis of the imaging data
and display the image details at different levels, we decomposed
the original image through a discrete, first-order, wavelet
transformation, Gaussian filter (41). To further train the
radiomics signature, the candidate imaging features were
reduced to only six important and robust parameters. The
absolute values of the coefficients were calculated using the
LASSO algorithm, and the selected non-zero coefficient
January 2022 | Volume 11 | Article 663370
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features were analyzed to reflect the contributions of relevant
features to tumor risk stratification (42). Wavelet features (6/6)
account for all those used in our optimal radiomics signature,
implying a closer relationship with the LVSI status. Wavelet
transformation can split image data into different frequency
components using a three-dimensional (3D) analytical
approach (42). The wavelet features may reflect multi-
frequency information indistinguishable to the naked eye on
multiple scales to lucubrate the spatial heterogeneity of tumors
(23), which may also explain why radiologists cannot predict
LVSI by visually examining MR images. In this study, all high-
dimensional features in the LVSI subgroup were remarkably
higher than those in the non-LVSI subgroup. Several MRI-based
radiomics studies have confirmed that wavelet transformation is
a significant component of radiomics signature construction
(23, 41). Thus, using texture features and higher-order statistics
may considerably characterize the tumor heterogeneity in CCs.

False-positive results could lead to surgery and needless
concurrent chemoradiation therapy (CCRT) as the first
treatment choice, accompanied by adjuvant chemoradiotherapy
and more serious complications. However, false-negative LVSI
status may cause undertreatment of aggressive squamous cell
carcinomas. Both results should be avoided as much as possible.
Profiting by the relatively high sensitivity of our radiomics
signature, 31 of 34 patients with histopathological LVSI were
correctly identified. The model can reduce the misdiagnosis rate
(FP=0.183) and missed diagnosis rate (FN=0.103). We examined
the images that were not picked up. Three tumors grew to a large
size and showed significantly larger necrotic foci. They were
invasive CC that had invaded the uterus and stroma of the
endometrium. We assume that some textural features of these
tumor tissues might not have been objectively captured by
radiomic measurements because they were affected by the
mixing of the mucous membrane, mucus, and extensive necrosis.

This study also indicated that the radiomics model established
by incorporating six independent variates was superior to all
single imaging techniques, which showed strong calibration and
differentiation ability in data groups, perhaps the complementary
value of these data. Images obtained from multiple scanning
sequences usually reflect different aspects of a lesion, including
tumor intensity, cellularity, and vascularization (23). This
implies that it may have some “significant” additional value
compared to the single-slice analysis. The features observed from
different scanning directions showed no differences in diagnostic
performance. Combining these sequences, such as the
combination of sagittal and axial plane images, could maximize
their respective values and reflect more comprehensive tumor
information. We suppose that volumetric analysis may
comprehensively reflect heterogeneity within the tumor and is
not affected by the scan plane. In contrast, 3D images contain
higher dimensions of detailed information and describe the outer
superficial information of the tumor tissue, which is theoretically
more aggressive (41). The radiomics model greatly improved the
application of clinical characteristics, while the COMB model
integrating clinical variates showed no significant improvement
in accuracy. This may be attributed to the weak correlation
Frontiers in Oncology | www.frontiersin.org 10
between the LVSI and clinical factors. Although the relationship
between chronic blood loss parameters, such as erythrocyte
count, has also been investigated (4). According to our results,
the contribution of clinical data to the prediction model was
insufficient to improve the predictive accuracy. The combined
model realized visualization, and individualized prediction of
LVSI also showed higher diagnosability and more net benefits.
The threshold probability of the DCA almost precedes that of the
single-layer models (42), suggesting that integrating mpMRI
radiomics data enables the best models. The radiomics model
had the highest net benefit within a reasonable threshold
probability range, indicating its incremental value in terms of
clinical application. The results exhibited an impressive
predictive capacity for the radiomics signature. Because the
composition ratio (i.e., the ratio of CC without LVSI to CC
with LVSI) was comparable in both cohorts, the combined
clinical-radiomics model proposed here is reliable and shows
the potential to guide clinical practice. The classifiers were
trained using the 3-fold cross-validation method, suggesting
that the proposed model achieved a higher and stable
diagnostic performance. Radiomics is likely to provide
sufficient information to promote risk stratification, prognostic
prediction, and treatment.

This study has some limitations. First, this retrospective study
did not review external validation datasets. The validity of our
findings must be interpreted with caution because the results
were established in a single center with limited sample size.
Selection bias was inevitable. The databases of cohorts for
external validation are being developed in an ongoing study,
including one dataset from our institution sampled during a later
period (2019–2021) and the two datasets from additional
external institutions. Second, manual segmentation of the VOI
is a labor-intensive and time-consuming process. Developing a
reliable tool for the automatic segmentation and computation of
radiomic signatures is crucial for promoting the feasibility of
radiometric measures. Third, because of limited positive cases
and classification of subtypes that cannot be provided by HE
staining results, we did not compare the LVSI subgroups and did
not explore the imaging differences between blood vascular
invasion and 1ymph vascular invasion in-depth. Fourth, the
genomic characteristics were not incorporated into the model.
However, this subject requires further investigation. To better
generalize our results, it is necessary to overcome these
limitations and validate the published data.

Despite several limitations, our study is a proof of the concept
that standardly acquired sFOV HR-T2WI can reliably
characterize risk stratification and guide further studies to
explore individual therapies using MRI radiomics for patients
with CC. External validation and prospective studies are required
to verify our findings.

On current study suggests that sFOV HR-T2WI-based
radiomics provides a precise estimation of CC aggressiveness.
Combining the mpMRI-based radiomics signature could support
clinical decision-making. Further investigations are warranted to
evaluate the actual potential of radiomics to help discriminate the
LVSI status in CC.
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