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Abstract: Vagus nerve stimulation (VNS) is considered a potential method for anti-inflammation
due to the involvement of the VN in the cholinergic anti-inflammatory pathway (CAP) formation
of a connection between the central nervous system and peripheral immune cells that help relieve
inflammation. However, whether a non-invasive transcutaneous auricular VNS (taVNS) modulates
the inflammation levels via altering the parameter of taVNS is poorly understood. This study aimed
to determine the differential inhibitory effects of taVNS on lipopolysaccharide (LPS)-induced sys-
temic inflammation using electrical stimulation parameters such as pulse frequency and time. The
taVNS-promoted CAP activity significantly recovered LPS-induced tissue injuries (lung, spleen, and
intestine) and decreased inflammatory cytokine levels and tissue-infiltrated immune cells. Interest-
ingly, the anti-inflammatory capacity of taVNS with 15 Hz was much higher than that of taVNS with
25 Hz. When a cytokine array was used to investigate the changes of inflammation and immune
response-related cytokines/chemokines expression in taVNS with 15 Hz or 25 Hz treatment in
LPS-induced endotoxemia in mice, most of the expression of cytokines/chemokines associated with
pro-inflammation was severely decreased in taVNS with 15 Hz compared to 25 Hz. This study
demonstrated that the taVNS parameter could differentially modulate the inflammation levels of
animals, suggesting the importance of taVNS parameter selection for use in feasible interventions for
acute inflammation treatment.

Keywords: transcutaneous auricular vagus nerve stimulation (taVNS); anti-inflammation; cytokines;
electrical stimulation parameters; coronavirus disease 2019 (COVID-19)

1. Introduction

The vagus nerve (VN) controls the parasympathetic nervous system as one of the
cranial nerves [1]. Over 80% of afferent nerves in the VN mostly convey the body’s sensory
information to the central nervous system [2]. For example, once the VN detects any
inflammatory process in the body, the efferent fibers of the VN activate postsynaptic
excitatory potentials to modulate immune response via the α-7 nicotinic acetylcholine
receptors (α7nAChR)-mediated pathway [3,4]. Acetylcholine from vagal efferent fibers
interacts with α7nAChR in the immune cells like macrophages and dendritic cells of tissues,
blocking the release of pro-inflammatory cytokines, including tumor necrosis factor-alpha
(TNF-α), interleukin-6 (IL-6), IL-1β, and IL-8 [5,6]. These inflammatory reflex reactions
reduce cytokine production and inhibit the body’s systemic inflammatory response [5].
Considering the anti-inflammatory modulation of the VN, VN stimulation (VNS) is a
medical tool for treating inflammatory-related diseases. Many researchers have evaluated

Biomedicines 2022, 10, 247. https://doi.org/10.3390/biomedicines10020247 https://www.mdpi.com/journal/biomedicines

https://doi.org/10.3390/biomedicines10020247
https://doi.org/10.3390/biomedicines10020247
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com
https://doi.org/10.3390/biomedicines10020247
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com/article/10.3390/biomedicines10020247?type=check_update&version=1


Biomedicines 2022, 10, 247 2 of 14

the effect of electrical stimulation of the VN on inflammatory disorders such as lung injury,
sepsis, and rheumatoid arthritis [5,7–9].

An electrical stimulator of the VN was approved by the United States Food and
Drug Administration to treat epilepsy in 1997 [10]. Early devices of VNS delivered the
electrical impulses to the VN invasively. An electrode was surgically implanted into the left
chest under the collarbone and then connected to the left VN of the patient [11,12]. More
recent VNS devices are non-invasive and easily modulate VNS via the transcutaneous
region such as the auricular region [13,14]. VNS devices were classically generated to treat
drug-resistant diseases such as epilepsy or depressive disorder [10,13,15]. VNS provides a
therapeutic intervention to avoid the side effects of chemical agents as a non-drug therapy.

Currently, the world is witnessing the coronavirus disease 2019 (COVID-19) pan-
demic [16,17]. COVID-19 often causes extreme immune reactions in the human body,
which may lead to severe organ damage via an inflammatory cytokine storm [18,19]. Thus,
preventing or modulating cytokine release is an important strategy to impede multi-tissue
damage-related mortality in COVID-19. To reduce the excessive inflammatory cytokine
levels in COVID-19, targeting α7nAChR activity via VNS can effectively control the further
aggravation induced by the activation of the immune system. Several researchers also
suggested that VNS could be a potential adjunct therapy for inflammatory disorders origi-
nating from COVID-19 [20–22]. In this study, we used a lipopolysaccharide (LPS)-induced
endotoxin mice model to upregulate the expression levels of inflammatory factors. The
anti-inflammatory effects of transcutaneous auricular VNS (taVNS) were observed in the
lung, spleen, and intestines, which are innervated by the α7nAChR-mediated cholinergic
anti-inflammatory pathway (CAP) of the VN [5,6,23]. We also determined that different
combinations of electrical parameters such as the frequency and time of taVNS affected
the expression levels of pro- and/or anti-inflammatory cytokines in the lung, spleen, intes-
tine, and serum. We found that specific stimulation parameters of taVNS can be used to
modulate the rate of inflammation in vivo.

The present study reveals the effectiveness of taVNS in reducing systemic inflam-
mation and demonstrates the therapeutic potential of taVNS in the treatment of acute
inflammation, to be considered for application in clinical trials for COVID-19 as an adju-
vant therapy.

2. Materials and Methods
2.1. LPS-Induced Endotoxemia Mice Model

This study used 6–8-week-old male C57BL/6 mice that weighed 25~27 g (purchased
from Orientbio Inc., Seongnam, Korea). All animal experiments were approved by the
Institutional Animal Care and Use Committee (IACUC) of Korea University and followed
the animal ethics and welfare standards according to the IACUC guidelines. To prepare
the LPS-induced endotoxemia model, mice were anesthetized by isoflurane. A single
intraperitoneal injection of LPS (2 mg/kg, Escherichia coli 0111: B4; Sigma Aldrich, St.
Louis, MO, USA) was conducted between stimulation with taVNS. Animals were sacrificed
2 h after LPS administration, based on previous studies [24,25] and our own preliminary
analysis, and then serum and tissue samples were collected. All samples were stored at
−80 ◦C until use.

2.2. Transcutaneous Auricular VNS

Two electrodes coated with a gold-plated platinum hook were placed on the auricular
concha of the left ear (Figure 1A). Electrodes were connected to a stimulator (Neurive
Inc., Seoul, Korea). Both the cymba and cavum conchae of the auricular were biphasically
stimulated with the same parameter. The LPS was applied between two taVNS treatments
with the indicated stimulation parameter in each group (Figure 1B,C). The charged-balanced
biphasic waveforms during stimulation were shown in Figure 1D.
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Figure 1. Experimental design and procedure of taVNS in the LPS-induced endotoxemia in mice. 
(A) Mice were bilaterally treated with taVNS, followed by the cymba and cavum concha of the vagus 
innervation area in the ear. (B) Under anesthesia, mice were stimulated with taVNS treatments for 
5 or 10 min before and after LPS injection. The animals were euthanized after 2 h of LPS 
administration, and the whole blood and tissues were collected. (C) Four different taVNS 
parameters were used during stimulation in this study. (D) Schematic image showing the charge-
balanced stimulation waveform of taVNS with low pulse frequency (top) and high pulse frequency 
(bottom). 

2.3. Administration of α7nAChR Antagonist 
Methyllycaconitine citrate (MLA) (Tocris Bioscience, Bristol, Avon, UK) was used for 

the α7nAChR intervention as a specific α7nAChR antagonist according to a previous 
method [26]. MLA was dissolved in phosphate-buffered saline (PBS) and then 
administered to mice intraperitoneally at a dose of 5 mg/kg before LPS injection (Figure 
1B). 

2.4. Enzyme-Linked Immunosorbent Assay (ELISA) 
Serum and intestine tissues from mice were used to determine the levels of pro-

inflammatory cytokines. The concentrations of TNF-α, IL-6, and IL-1β were analyzed by 
mouse-specific ELISA kits (R&D Systems, Minneapolis, MN, USA), according to the 
manufacturer’s instructions. 

2.5. Western Blotting 
Total proteins of spleen tissues were lysed. An equal amount of protein was subjected 

to immunoblotting using antibodies against myeloperoxidase (MPO) (1:1000; Invitrogen, 
Carlsbad, CA, USA) and β-actin (1:2000; Santa Cruz Biotechnology, Dallas, TX, USA) for 
primary antibodies. The same amounts of proteins were electrophoresed on SDS-PAGE 
and then transferred onto PVDF membranes (Millipore, Darmstadt, Germany). Blocked 
membranes with 5% skim milk were incubated with primary antibodies overnight at 4 °C. 
The next day, the membranes were incubated with a secondary antibody (HRP-goat anti-
rabbit IgG antibody, 1:3000, Invitrogen) for 1 h at room temperature. Images were 
subsequently captured using a Fusion Solo Imaging System (Vilber Lourmat, Marne-la-
Vallée, France). Immunoreactive protein bands were quantified using ImageJ software. 

Figure 1. Experimental design and procedure of taVNS in the LPS-induced endotoxemia in mice.
(A) Mice were bilaterally treated with taVNS, followed by the cymba and cavum concha of the vagus
innervation area in the ear. (B) Under anesthesia, mice were stimulated with taVNS treatments for 5
or 10 min before and after LPS injection. The animals were euthanized after 2 h of LPS administration,
and the whole blood and tissues were collected. (C) Four different taVNS parameters were used
during stimulation in this study. (D) Schematic image showing the charge-balanced stimulation
waveform of taVNS with low pulse frequency (top) and high pulse frequency (bottom).

2.3. Administration of α7nAChR Antagonist

Methyllycaconitine citrate (MLA) (Tocris Bioscience, Bristol, Avon, UK) was used
for the α7nAChR intervention as a specific α7nAChR antagonist according to a previous
method [26]. MLA was dissolved in phosphate-buffered saline (PBS) and then administered
to mice intraperitoneally at a dose of 5 mg/kg before LPS injection (Figure 1B).

2.4. Enzyme-Linked Immunosorbent Assay (ELISA)

Serum and intestine tissues from mice were used to determine the levels of pro-
inflammatory cytokines. The concentrations of TNF-α, IL-6, and IL-1β were analyzed
by mouse-specific ELISA kits (R&D Systems, Minneapolis, MN, USA), according to the
manufacturer’s instructions.

2.5. Western Blotting

Total proteins of spleen tissues were lysed. An equal amount of protein was subjected
to immunoblotting using antibodies against myeloperoxidase (MPO) (1:1000; Invitrogen,
Carlsbad, CA, USA) and β-actin (1:2000; Santa Cruz Biotechnology, Dallas, TX, USA) for
primary antibodies. The same amounts of proteins were electrophoresed on SDS-PAGE
and then transferred onto PVDF membranes (Millipore, Darmstadt, Germany). Blocked
membranes with 5% skim milk were incubated with primary antibodies overnight at
4 ◦C. The next day, the membranes were incubated with a secondary antibody (HRP-goat
anti-rabbit IgG antibody, 1:3000, Invitrogen) for 1 h at room temperature. Images were
subsequently captured using a Fusion Solo Imaging System (Vilber Lourmat, Marne-la-
Vallée, France). Immunoreactive protein bands were quantified using ImageJ software.
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2.6. Hematoxylin and Eosin Staining

At sacrifice, lung and intestine tissues were removed from the mice, fixed in 4%
paraformaldehyde, embedded in paraffin, and sliced into 5-µm sections using a rotary
microtome (Leica RM2255, Weztlar, Germany). For hematoxylin and eosin (H&E) staining,
the deparaffinized tissue section was incubated in hematoxylin solution (Sigma) for 5 min
and Eosin-Y solution (Sigma) for 1 min with tap water washing. Images were taken using
Olympus BX43 microscope (Olympus Co., Tokyo, Japan). Inflammatory cell accumulation
in the alveolar space, interalveolar septum thickening, alveolar congestion, alveolar hem-
orrhage, and cellular hyperplasia were considered for lung injury scoring: nil, 0; mild, 1;
moderate, 2; severe, 3 [27]. Morphological examination with these five pathological features
was performed in blind analysis by two examiners. The villus height was determined by
the vertical distance from the crypt opening to the tip of the villus. The crypt depth was
defined from the base of the level of the crypt opening.

2.7. Myeloperoxidase Staining

The deparaffinized 5-µm sections were incubated in MPO antibody (1:1000, Invitrogen)
for 30 min at room temperature and washed with PBS. They were then incubated with a
secondary antibody (1:1000, peroxidase-labeled goat anti-rabbit IgG) for 30 min. After the
final wash with PBS, diaminobenzidine (DAB; DAKO, Santa Clara, CA, USA) was applied
on the slide to detect the bound antibody. Hematoxylin was then used to evaluate the
presence of neutrophils, as described previously [28].

2.8. RNA Extraction and Quantitative Real-Time Polymerase Chain Reaction

Total RNA was extracted from lung and spleen tissues using TRIzol™ reagent (In-
vitrogen) to analyze the relative gene expression. Then, PrimeSript™ first strand cDNA
Synthesis Kit (Takara Bio, Tokyo, Japan) was used for the reverse transcription of 1 µg of
RNA to 20 µL of cDNA, according to the manufacturer’s instructions. Polymerase chain
reaction (PCR) was performed using the obtained cDNA as a template with the Power®

SYBR Green PCR Master Mix kit (Life Technologies Co. Ltd., Woolston, UK). The relative ex-
pression levels of TNF-α, IL-6, IL-1β, IL-8, TGF-β, and IL-10, were calculated by the 2(−∆∆Ct)

method with normalization to β-actin. The specific primer sequences used in this study
were: TNF-α, 5′-CCC CAA AGG GAT GAG AAG TT-3′ (forward) and 5′-CAC TTG GTG
GTT TGC TAC GA-3′ (reverse); IL-6, 5′-CCG GAG AGG AGA CTT CAC AG-3′ (forward)
and 5′-CAG AAT TGC CAT TGC ACA AC-3′ (reverse); IL-1β, 5′-TCG CAG CAG CAC ATC
AAC AAG-3′ (forward) and 5′-CAT GTC CTC ATC CTG GAA G-3′ (reverse); IL-8, 5′-CCC
GCG TTA GTC TGG TGT AT-3′ (forward) and 5′-AAC AGC CCA TAG TGG AGT GG-3′

(reverse); TGF-β, 5′-TTG CTT CAG CTC CAC AGA GA-3′ (forward) and 5′-TGG TTG TAG
AGG GCA AGG AC-3′ (reverse); IL-10, 5′-ATG CAG GAC TTT AAG GGT TAC TTG-3′

(forward) and 5′-AGA CAC CTT GGT CTT GGA GCT TA-3′ (reverse); β-actin, 5′-AGC CAT
GTA CGT AGC CAT CC (forward) and 5′-CTC TCA GCT GTG GTG GTG AA-3′ (reverse).

2.9. Cytokine Array

To analyze the inflammatory-related cytokines, chemokines, growth factors, and
angiogenic markers in serum samples, the concentration and purity of the isolated proteins
were determined using the BCA protein assay kit (Pierce, Rockford, IL, USA) and UV
spectrum. The antibody array slide (RayBiotech, Norcross, GA, USA, #L308) consisted
of 308 nitrocellulose membrane kits to detect 308 mouse proteins in duplicated capture
antibodies with positive and negative control antibodies. Briefly, the array slide was
blocked with 400 µL of blocking solution for 30 min and incubated with samples for
2 h at room temperature. After being washed with the manufacturer-supplied buffers,
the membranes were immersed in biotin-conjugated anti-cytokine antibodies and then
incubated for 2 h with gentle shaking. Subsequently, Cy3-conjugated streptavidin solution
was added to generate the chemiluminescent signals at each spot in the membrane. The
fluorescence signal intensity was measured using GenePix 4100A microarray scanner (Axon



Biomedicines 2022, 10, 247 5 of 14

Instrument, San Jose, CA, USA) within 24–48 h at 10-µm resolution, optimal laser power,
and photomultiplier (PMT). The quantified scan images with GenePix software (Axon
Instrument, San Jose, CA, USA) calculated the average signal of the duplicate spots and
then normalized it to the control spot signals. The protein information for data mining
was annotated using UniProt DB. Graphic visualization was used in ExDEGA software
(Ebiogen Inc., Seoul, Korea).

2.10. Statistical Analysis

All data were obtained from triplicate experiments and have been expressed as the
mean ± standard deviation. A student’s two-tailed t-test and one-way analysis of variance
with Prism 5 software (GraphPad, San Diego, CA, USA) were used. The p-values are shown
in the figures, and the differences were considered statistically significant at * p < 0.05,
** p < 0.01, and *** p < 0.001.

3. Results
3.1. taVNS Reduced the Expression Levels of Pro-Inflammatory Cytokines in the Serum of the
LPS-Induced Inflammation

The pro-inflammatory cytokines were rapidly evoked in the LPS-induced endotox-
emia group. After systemic inflammation via LPS administration, TNF-α and IL-1β highly
increased in serum. Electrical stimulation with taVNS significantly inhibited the expres-
sion levels of TNF-α and IL-1β, indicating excellent anti-inflammatory efficacy of taVNS
(Figure 2A). We also analyzed the CAP-mediated inhibitory effect of taVNS on systemic
inflammation using LPS application pre-treatment with the α7nAChR antagonist, MLA.
A reverse increase in TNF-α and IL-1β was detected in MLA-treated group with taVNS
on LPS-induced inflammation compared to the MLA-untreated group (LPS + taVNS)
(Figure 2A). These results indicate that the decrease in pro-inflammatory cytokines levels
by taVNS was weakened by inhibiting α7nAChR using MLA. MLA treatment slightly
promoted the levels of pro-inflammatory cytokines compared with LPS injection alone, but
not significantly. These ELISA results demonstrated that taVNS reduced the expression
levels of pro-inflammatory cytokines in LPS-induced systemic inflammation via activation
of α7nAChR.

We found two studies that have reported that specific VNS parameters can affect the
cytokine levels in serum [24,29]. It is unclear whether the parameters of taVNS, specifically
pulse frequency and time, differentially affect the inflammatory cytokine expression in
the serum of the endotoxin model. To address this, we delivered taVNS with 15 and
25 Hz for 5 and 10 min to LPS-induced endotoxemia individually (n = 5–10). Other
parameters, including the pulse width and amplitude, were not changed. The electrical
stimulation videos of taVNS with 15 Hz and 25 Hz were represented in Supplementary
video, respectively. All experimental groups with taVNS in LPS-induced inflammation
significantly decreased the serum TNF-α and IL-1β levels compared to the non-taVNS
group in LPS induction (Figure 2B). In particular, taVNS stimulation with low pulse
frequency (15 Hz) produced a significant inhibitory effect on serum TNF-α and IL-1β
compared to the high pulse frequency (25 Hz) regardless of the time parameter. These
results demonstrate that taVNS had anti-inflammatory effects via activation of α7nAChR
on LPS endotoxemia, and pulse frequency of taVNS can be an important parameter for the
regulation of pro-inflammatory cytokines levels in serum.
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expression levels of serum TNF-α and IL-1β were measured by ELISA. The decrease and recovery 
percentages of each cytokine were represented as a number. (B) The expression levels of serum TNF-
α and IL-1β were determined using ELISA pre- and post-treatment of taVNS with different pulse 
frequency and time parameters. Data have been presented as the means and SD; * p < 0.05, ** p < 
0.01, and *** p < 0.001, compared to the corresponding control. 

3.2. Anti-Inflammatory Effect of taVNS on Spleen Tissue of LPS-Induced Inflammation 
Since the concept of CAP from the Tracey group in 2000, this theory has been 

confirmed in multilevel organs such as the spleen, lung, and gut [5]. These organs are 
regulated by efferent fibers of the VN when inflammation is evoked, following which the 
vago-parasympathetic reflex activates and then targets these multi-organs of α7nAChRs 
for anti-inflammation [6,23,30]. Therefore, we investigated whether taVNS stimulated the 
vagal anti-inflammatory effect of the spleen, lung, and intestine. The swelling of LPS-
induced spleens was relieved by treatment of taVNS as the LPS-untreated groups (Sham) 
(Figure 3A). The rate of MPO expression of the spleen in LPS-induced endotoxemia 
increased (four to five-fold) compared to the sham groups. Intensive expression with 
MPO on the spleens of the LPS-induced inflammation indicated an increase in leukocyte 
extravasation to the spleen during the inflammatory condition. However, it significantly 
reduced the expression levels of MPO on the spleen of LPS + taVNS treated mice in a pulse 
frequency-dependent manner (Figure 3B). The qRT-PCR analysis showed that taVNS 

Figure 2. A decrease in pro-inflammatory cytokine releases by taVNS in LPS-induced endotoxemia.
(A) Mice were treated with taVNS and/or MLA treatment for acute inflammation from LPS. The
expression levels of serum TNF-α and IL-1β were measured by ELISA. The decrease and recovery
percentages of each cytokine were represented as a number. (B) The expression levels of serum
TNF-α and IL-1β were determined using ELISA pre- and post-treatment of taVNS with different
pulse frequency and time parameters. Data have been presented as the means and SD; * p < 0.05,
** p < 0.01, and *** p < 0.001, compared to the corresponding control.

3.2. Anti-Inflammatory Effect of taVNS on Spleen Tissue of LPS-Induced Inflammation

Since the concept of CAP from the Tracey group in 2000, this theory has been confirmed
in multilevel organs such as the spleen, lung, and gut [5]. These organs are regulated
by efferent fibers of the VN when inflammation is evoked, following which the vago-
parasympathetic reflex activates and then targets these multi-organs of α7nAChRs for anti-
inflammation [6,23,30]. Therefore, we investigated whether taVNS stimulated the vagal
anti-inflammatory effect of the spleen, lung, and intestine. The swelling of LPS-induced
spleens was relieved by treatment of taVNS as the LPS-untreated groups (Sham) (Figure 3A).
The rate of MPO expression of the spleen in LPS-induced endotoxemia increased (four to
five-fold) compared to the sham groups. Intensive expression with MPO on the spleens
of the LPS-induced inflammation indicated an increase in leukocyte extravasation to the
spleen during the inflammatory condition. However, it significantly reduced the expression
levels of MPO on the spleen of LPS + taVNS treated mice in a pulse frequency-dependent
manner (Figure 3B). The qRT-PCR analysis showed that taVNS decreased the relative
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expression of genes such as TNF-a, IL-1β, IL-6, and IL-8, which have a stimulatory role
in inflammation (Figure 3C), compared to the only LPS-treated group. The expression
levels of these pro-inflammatory cytokine genes were significantly decreased when taVNS
treatment was applied to LPS-induced endotoxemia regardless of the taVNS parameter.
Compared to the taVNS-treated groups with different parameters, taVNS treatment with
15 Hz displayed a more significant decrease in the mRNA levels of TNF-a, IL-1β, IL-6, and
IL-8 than taVNS treatment with 25 Hz. The taVNS with 15 Hz_5 min treatment group
showed lower expression levels of TNF-a and IL-6 than the taVNS with 15 Hz_10 min
treatment group, but not the taVNS with 25 Hz treatment group. The relative expression
of anti-inflammatory cytokine mRNA, including IL-10 and TGF-β encoding genes, was
also determined using different pulse frequencies of taVNS. The significantly decreased
IL-10 and TGF-β gene expressions were evaluated in the taVNS-treated groups, except
for taVNS with 25 Hz_10 min in TGF-β gene expression. These results demonstrated
that taVNS significantly reduced the inflammatory reaction of the spleen in LPS-induced
endotoxemia, and the pulse frequency of taVNS is capable of regulating the expression
levels of inflammatory cytokine genes in the spleen.
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3.3. Anti-Inflammatory Effect of taVNS on Lung Injury of LPS-Induced Endotoxemia 
Next, we validated whether taVNS reversed the inflammatory response of the lung 

in LPS-induced endotoxemia. The representative images of the lung after taVNS 
treatment on the LPS endotoxemia model show the morphological difference between the 
LPS and LPS with taVNS groups (upper panel of Figure 4A). H&E staining also 
determined a significant anti-inflammatory effect of taVNS on LPS-induced damage in 
mice lungs, compared to only LPS-exposed mice (lower panel of Figure 4A, 

Figure 3. taVNS reduced inflammation of the spleen in LPS-induced endotoxemia. (A) Representative
images of the spleen after treatment of taVNS with different pulse frequencies and time parameters.
Scale bar: 5 mm. (B) Western blot analysis using an antibody against MPO was used to analyze
the relative expression levels of neutrophils in the indicated stimulation conditions of taVNS on
LPS-induced inflammation. The intensity ratios for MPO were presented as a graph using ImageJ.
(C) The mRNA levels of pro- and anti-inflammatory cytokines were determined by qPCR. All results
have been presented as the means and SD; * p < 0.05, ** p < 0.01, and *** p < 0.001, compared to
the control.

3.3. Anti-Inflammatory Effect of taVNS on Lung Injury of LPS-Induced Endotoxemia

Next, we validated whether taVNS reversed the inflammatory response of the lung in
LPS-induced endotoxemia. The representative images of the lung after taVNS treatment on
the LPS endotoxemia model show the morphological difference between the LPS and LPS
with taVNS groups (upper panel of Figure 4A). H&E staining also determined a significant
anti-inflammatory effect of taVNS on LPS-induced damage in mice lungs, compared to
only LPS-exposed mice (lower panel of Figure 4A, Supplementary Figures S1 and S2).
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The congested alveolar wall was distinguishable, and the edema phenomenon of the
interalveolar septum was decreased in the LPS + taVNS group, compared to the Sham and
LPS-treated group. Next, MPO stain was used in this experiment to evaluate inflammatory
cell infiltration. As shown in Figure 4B, positive staining of MPO was highly observed in the
lung of LPS-induced endotoxemia, but upon treatment with taVNS, there was a remarkable
reduction in the strong expression of MPO of lung injury by LPS. The proportion of MPO-
positive stained area significantly decreased and disappeared in taVNS-treated groups
compared to only LPS-induced group (Figure 3B). The lung injury score and coverage rate
of MPO stain in the lung are presented in Figure 4C. The relative expression levels of pro-
and anti-inflammatory cytokines were also analyzed in treatment with or without taVNS
on LPS-induced lung injury. Consistent with the qRT-PCR spleen results, all groups with
taVNS showed significant alleviation of pro-inflammatory cytokine expression in lungs
after taVNS treatment. Above all, treatment of taVNS with 15 Hz caused a significant
decrease in the expression of IL-1β and IL-6 encoding genes compared with 25 Hz, but the
fold change increase or decrease in the taVNS-treated group with different time parameters
(5 min and 10 min) was not observed in the same parameter of taVNS (Figure 4D). These
results showed the protection and recovery effects of taVNS on LPS-induced lung injury.
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Figure 4. Anti-inflammatory effect of taVNS on the lung of LPS-induced endotoxemia. (A) The
representative images of the lung after treatment of taVNS with 15 Hz and 25 Hz. Scale bar: 5 mm.
The results of H&E staining were determined using the lung injury score upon observation under a
light microscope. Scale bar: 10 µm. (B) MPO staining was determined by the infiltrated immune cells
on the lung. Scale bar: 20 µm. (C) The relative scoring of lung injuries was compared as a graph in
three independent images. Positively stained area was measured in three different images in each
group and then represented on a graph. (D) The expression levels of pro- and anti-inflammatory
cytokines genes were determined by qPCR, and significance was compared among groups. Data
have been presented as the means and standard deviation (n = 5–10); * p < 0.05, ** p < 0.01, and
*** p < 0.001, as compared to the corresponding control.

3.4. Anti-Inflammatory Effect of taVNS on Intestinal Inflammation Induced by LPS

Regarding the anti-inflammatory effect of taVNS on the intestine, the pro-inflammatory
cytokine levels of intestines were determined by ELISA and indicated a significant down-
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regulation of TNF-α, IL-6, and IL-1β compared with the only LPS-treated group (Figure 5A).
Different expression levels of these pro-inflammatory cytokines were observed in the taVNS
with 15 Hz and 25 Hz groups (decrease rate in the 15 Hz_10 min treated group, −65%
(TNF-α), −85% (IL-6), −38% (IL-1β); 25 Hz_10 min group, 22% (TNF-α), −10% (IL-6),
−15% (IL-1β). Particularly, taVNS with 15 Hz showed some variation compared to 25 Hz.
This may imply that the stimulation condition of the taVNS with 15 Hz group was unstable.
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Figure 5. taVNS induced anti-inflammatory effect on the intestine of LPS-induced endotoxemia.
(A) Determination of the pro-inflammatory cytokines in the intestine of LPS-induced inflammation with
or without taVNS treatment. The relative expression levels of pro-inflammatory cytokines in response to
taVNS treatment of LPS-induced endotoxemia were indicated. Fold change of groups was represented
as a graph and calculated decreases rate in taVNS treated groups. (B) The morphological changes of
the intestine were represented. Scale bar: 10 mm. (C) H&E staining showed the histological change of
the intestine upon observation under a light microscope. Scale bar: 200 µm (upper panels) and 50 µm
(lower panels). The villus height and crypto depth of the intestine were determined and represented by
a graph. (D) Immunohistochemical staining with anti-MPO antibodies showed a significant decrease in
neutrophils in LPS-induced inflammation by interventions as of taVNS. Scale bar: 50 µm. All taVNS
groups were treated with electrical stimulation for 10 min. Data have been presented as the means and
SD; * p < 0.05, ** p < 0.01, and *** p < 0.001, compared to the corresponding control.

The intestine in LPS-induced endotoxemia was swollen and longer compared to the
untreated group. The treatment of taVNS on LPS-induced inflammation reduced these
morphological changes in the LPS-treated group (Figure 5B). To assess the protective
capacity of taVNS on intestine injury via LPS, histological evaluation was performed using
H&E and MPO stain in LPS-induced intestine with taVNS 15 Hz and/or 25 Hz (Figure 5C).
Histological scores and MPO intensity-graph of the intestine showed the effective anti-
inflammatory capacity of taVNS. Moreover, a difference in the recovery efficacy of taVNS
between 15 Hz and 25 Hz on acute inflammation was also observed in mice gut.
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3.5. Electrical Frequency of the taVNS Parameter Regulated Inflammatory Cytokines in the Serum
of LPS-Induced Endotoxemia

We next investigated the whole inflammatory molecule level changes triggered at two
different pulse frequency parameters upon taVNS treatment of the LPS-induced endotox-
emia to analyze the different anti-inflammatory effects of taVNS on systemic inflammation.
The heatmap image shows the differentially expressed 50 cytokines/chemokines related to
inflammation and immune response between LPS-induced inflammation treated with or
without taVNS. taVNS downregulated most of the cytokines/chemokines activated by LPS
induction (Figure 6A). taVNS with 15 Hz suppressed the cytokines/chemokines evaluated
values more severely than taVNS with 25 Hz. The scatter plot analysis also presents the
differential downregulation of the upregulated cytokines/chemokines by LPS between
taVNS with 15 Hz and 25 Hz, as shown by the distribution of cytokines/chemokines dots
(Figure 6B). Of these 50 cytokines, the pixel intensity of TNF-α, IL-6, IL-1β, TGF-β1, TLR4,
and IL-10 and fold change of chemokines (CCL/CXCL) and interleukins (IL) presented in
Figure 6C and Supplementary Figure S3 also indicate differential modulation of inflam-
matory cytokine levels through different taVNS pulse frequencies. The pixel intensity of
34 significantly downregulated chemokine/cytokines at 15 Hz compared to 25 Hz is pre-
sented in Supplementary Figure S4. These results imply that taVNS differentially improved
systemic inflammation via modulation of the expression levels of cytokines/chemokines
using changes in the pulse frequency parameter of taVNS.
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Figure 6. Changes in inflammatory cytokines and chemokines in the plasma of LPS-induced en-
dotoxemia with taVNS. (A) Most cytokines and chemokines were upregulated by LPS injection
(LPS/Sham). Both taVNS groups (15 Hz and 25 Hz) attenuated the expression levels of cytokines and
chemokines in serum. taVNS with 15 Hz was more significantly reduced than with 25 Hz. Clustering
software generated a heatmap. The color depicts the levels of fold change. (B) Scatter plot analysis
showed the expression changes of cytokines and chemokines for the LPS-induced inflammation verse
sham (left), taVNS with 15 Hz on the LPS-induced inflammation versus the LPS-induced inflam-
mation (middle), and taVNS with 25 Hz on the LPS-induced inflammation versus the LPS-induced
inflammation (right). Upregulation is presented as red dots and downregulation as green dots.
(C) The representative pixel density of pro- and anti-inflammatory-related cytokines, namely TNF-α,
IL-6, IL-1β, TGF-β1, TLR4, and IL-10 in the serum of the sham, LPS applied groups and taVNS with
15 Hz or 25 Hz on LPS-induced groups. Data have been presented as the means and SD; * p < 0.05,
** p < 0.01, and *** p < 0.001 to determine the significance levels compared to the LPS group.
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4. Discussion

VNS has three main fibers: A-, B-, and C-fibers, which can be delivered by sensory
afferent and motor efferent signals to regulate vital functions in the body’s autonomic
nervous system [31]. These nerve fibers of the VN innervate different physiological changes
via combined or individual fiber form [32]. For example, the activation of A- and B-fibers
of the VN is associated with anti-inflammatory effects, while C-fibers activation is involved
in triggering cardioinhibitory effects [24,33]. Each fiber of the VN has distinct stimulation
thresholds for activation because of its different axon diameters, conduction velocity,
and myelination [34,35]. Typically, the higher the stimulation current levels, the smaller
nerve fiber activation in the peripheral nervous system occurs [36]. The increasing pulse
width and amplitude also selectively activate small diameter nerve fibers while inhibiting
the activation of large diameter fibers [37]. This means that the bioelectric stimulation
parameter can differentially modulate the activation of VN fibers and consequently exhibit
desired physiological effects [32]. The most important goal of taVNS research is the selective
and efficient nerve activation using taVNS parameters, such as pulse frequency, duration,
amplitude, time, and electrical current rate, to apply as a therapeutic tool. However, it
has been poorly defined, and the stimulation parameter of taVNS for neuromodulation
therapy needs to be optimized. We first tested how different pulse frequencies and times of
taVNS affect the anti-inflammatory effects on VN innervated tissues and serum using an
LPS-induced endotoxemia model. taVNS effectively reduced LPS-induced inflammation, as
indicated by a decrease in pro-inflammatory cytokines expression, histopathological scores,
and leukocyte infiltration. These anti-inflammatory effects of taVNS were changed by the
stimulation parameter of pulse frequency and time. Among them, the result of the cytokine
array showed the most obvious difference between 15 Hz and 25 Hz of taVNS during
inhibition of the LPS-induced inflammation. taVNS with 15 Hz severely downregulated
the levels of cytokines and chemokines in serum, whereas taVNS with 25 Hz did not. These
findings indicate that the rate of inflammatory cytokine production can be modulated by
regulating the pulse frequency of taVNS in various inflammatory conditions.

In 2020, Piruzyan et al. showed that electrical stimulation with a high-frequency pulse
current more effectively suppressed the excessive production of inflammatory cytokines
than a low-frequency pulse current [38]. However, this report included different electrical
stimulation systems and anti-inflammatory mechanisms without stimulation of the VN.
Another recent study supports our results that low pulsing frequency selectively provided
the optimal intensity range to activate the A- and B-fibers of the VN [39]. The low stimula-
tion threshold of A- and B-VN fibers need to achieve the activating vagal anti-inflammatory
pathway that distinguishes the C-fiber of the VN to regulate the heart rate [24]. The electri-
cal stimulation condition of taVNS with 15 Hz may be more effective in the activation of
CAP through A- and B-fibers of vagal signaling than a higher pulse frequency of taVNS.
This does not mean that taVNS with 15 Hz is optimal for regulating inflammation because
proper inflammation response is necessary to defend the body against infection. Tsaava
et al. suggested that different pulse widths, duration, and amplitude may play an important
role in the modulation of inflammatory-related cytokines via the VN [29]. However, our
taVNS equipment could not regulate other parameters except Hz and time, which was a
limitation of this study. The taVNS parameters need to be fine-tuned in the future.

The fibers in the cervical VN consist of a mixed formation, which co-activates side
effect-inducing fibers [40]. It has been known that the inhibitory effect of intestinal inflam-
mation was supposed to be related to vagal C-fibers with a high stimulation threshold
but typically also activated other fibers in the cervical VN [41,42]. The selective activation
of fibers in the VN is essential to the treatment of distinct diseases if VNS is used as a
treatment method [43]. Compared with cervical VNS, taVNS is easy to apply for therapy on
ears. In addition to convenience, taVNS is a safe method because it indirectly regulates the
VN without directly connecting with the vagal fibers. Thus, taVNS has not been reported
to cause cardiac dysfunction [44].
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Inflammation is a protective reaction of the host against exogenous pathogens, stress,
and injury that must control and balance the body’s immune system [43]. Excessive
inflammatory response due to autoimmunity or uncontrolled inflammatory pathway of
host cells leads to several inflammatory diseases such as rheumatoid arthritis, atopic
dermatitis, and chronic inflammation in humans [45,46]. COVID-19 also causes serious
inflammatory responses and many chemical drug therapies have been trialed such as
corticosteroids, tocilizumab, IL-6 inhibitor, and intravenous immunoglobulin. However,
specific approaches for COVID-19 are currently lacking [16,47–51]. The anti-inflammatory
role of VNS can specifically reduce overproduced inflammatory cytokine levels via CAP
activation. Two case studies of using VNS treatment for COVID-19 have highlighted its
potential clinical benefit in treating patients with COVID-19 [21,52]. taVNS is a non-invasive
and safe therapy. Therefore, VNS may be considered as a supplement treatment if large
clinical trials prove its efficacy in treating patients with COVID-19.

5. Conclusions

We developed a stimulating electrode system of transcutaneous auricular VN and
determined the effective anti-inflammation capacity of taVNS. Different taVNS pulse fre-
quency parameters differentially modulated the rate of inflammation injuries on the spleen,
lung, and gut, regulation of inflammatory-related cytokines expression, and chemokines
levels. taVNS appears to be an effective therapeutic tool against inflammation disorders in
humans following optimization of the taVNS parameters.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biomedicines10020247/s1, Video S1: taVNS 15 Hz and 25 Hz
treated mice. Figure S1: Histological evaluation of the lung in taVNS 15 Hz for 5 min and 25 Hz for
5 min on LPS-induced endotoxemia. Figure S2: Histological evaluation of the lung in taVNS 15 Hz for
10 min and 25 Hz for 10 min on LPS-induced endotoxemia. Figure S3: Fold change of CCL/CXCL/IL
in 15 Hz and 25 Hz taVNS on endotoxemia mice. Figure S4: The pixel intensity of chemokines in
15 Hz and 25 Hz taVNS on endotoxemia mice.
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