npj ‘ Digital Medicine

ARTICLE OPEN

www.nature.com/npjdigitalmed

Deep learning interpretation of echocardiograms
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Euan A. Ashley@? and James Y. Zou®'>*°*

Echocardiography uses ultrasound technology to capture high temporal and spatial resolution images of the heart and surrounding
structures, and is the most common imaging modality in cardiovascular medicine. Using convolutional neural networks on a large
new dataset, we show that deep learning applied to echocardiography can identify local cardiac structures, estimate cardiac
function, and predict systemic phenotypes that modify cardiovascular risk but not readily identifiable to human interpretation. Our
deep learning model, EchoNet, accurately identified the presence of pacemaker leads (AUC = 0.89), enlarged left atrium (AUC =
0.86), left ventricular hypertrophy (AUC = 0.75), left ventricular end systolic and diastolic volumes (R* = 0.74 and R* = 0.70), and
ejection fraction (R? = 0.50), as well as predicted systemic phenotypes of age (R?> = 0.46), sex (AUC = 0.88), weight (R> = 0.56), and
height (R> = 0.33). Interpretation analysis validates that EchoNet shows appropriate attention to key cardiac structures when
performing human-explainable tasks and highlights hypothesis-generating regions of interest when predicting systemic
phenotypes difficult for human interpretation. Machine learning on echocardiography images can streamline repetitive tasks in the
clinical workflow, provide preliminary interpretation in areas with insufficient qualified cardiologists, and predict phenotypes

challenging for human evaluation.
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INTRODUCTION

Cardiovascular disease has a substantial impact on overall health,
well-being, and life-expectancy. In addition to being the leading
cause of mortality for both men and women, cardiovascular
disease is responsible for 17% of the United States’ national health
expenditures.! Even as the burden of cardiovascular disease is
expected to rise with an aging population,’ there continues to be
significant racial, socioeconomic, and geographic disparities in
both access to care and disease outcomes.>* Variation in access to
and quality of cardiovascular imaging has been linked to
disparities in outcomes?* It has been hypothesized that
automated image interpretation can enable more available and
accurate cardiovascular care and begin to alleviate some of the
disparities in cardiovascular care.>® The application of machine
learning in cardiology is still in its infancy, however there is
significant interest in bringing neural network based approaches
to cardiovascular imaging.

Machine learning has transformed many fields, ranging from
image processing and voice recognition systems to super-human
performance in complex strategy games.” Many of the biggest
recent advances in machine learning come from computer vision
algorithms and processing image data with deep learning.®™""
Recent advances in machine learning suggest deep learning can
identify human-identifiable characteristics as well as phenotypes
unrecognized by human experts.''® Efforts to apply machine
learning to other modalities of medical imaging have shown
promise in computer-assisted diagnosis.'*"'® Seemingly unrelated
imaging of individual organ systems, such as fundoscopic retina
images, can predict systemic phenotypes and predict cardiovas-
cular risk factors.'? Additionally, deep learning algorithms perform
well in risk stratification and classification of disease.'*'® Multiple
recent medical examples outside of cardiology show

convolutional neural network (CNN) algorithms can match or
even exceed human experts in identifying and classifying
diseases.'>'*

Echocardiography is a uniquely well-suited approach for the
application of deep learning in cardiology. The most readily
available and widely used imaging technique to assess cardiac
function and structure, echocardiography combines rapid image
acquisition with the lack of ionizing radiation to serve as the
backbone of cardiovascular imaging.*'” Echocardiography is both
frequently used as a screening modality for healthy, asymptomatic
patients as well as in order to diagnose and manage patients with
complex cardiovascular disease.'” For indications ranging from
cardiomyopathies to valvular heart diseases, echocardiography is
both necessary and sufficient to diagnose many cardiovascular
diseases. Despite its importance in clinical phenotyping, there is
variance in the human interpretation of echocardiogram images
that could impact clinical care.’”®2° Formalized training guidelines
for cardiologists recognize the value of experience in interpreting
echocardiogram images and basic cardiology training might be
insufficient to interpret echocardiograms at the highest level.?'

Given the importance of imaging to cardiovascular care, an
automated pipeline for interpreting cardiovascular imaging can
improve peri-operative risk stratification, manage the cardiovas-
cular risk of patients with oncologic disease undergoing
chemotherapy, and aid in the diagnosis of cardiovascular
disease."???* While other works applying machine learning to
medical imaging required re-annotation of images by human
experts, the clinical workflow for echocardiography inherently
includes many measurements and calculations and often is
reported through structured reporting systems. The ability to
use previous annotations and interpretations from clinical reports
can greatly accelerate adoption of machine learning in medical
imaging. Given the availability of previously annotated clinical
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Fig. 1

EchoNet machine learning pipeline for outcome prediction. a EchoNet workflow for image selection, cleaning, and model training.

b Comparison of model performance with different cardiac views as input. ¢ Examples of data augmentation. The original frame is rotated (left

to right) and its intensity is increase (top to bottom) as augmentations.

reports, the density of information in image and video datasets,
and many available machine learning architectures already
applied to image datasets, echocardiography is a high impact
and highly tractable application of machine learning in medical
imaging.

Current literature have already shown that it is possible to
identify standard echocardiogram views from unlabeled data-
sets.>®?* Previous works have used CNNs trained on images and
videos from echocardiography to perform segmentation to
identify cardiac structures and derive cardiac function. In this
study, we extend previous analyses to show that EchoNet, our
deep learning model using echocardiography images, can reliably
identify local cardiac structures and anatomy, estimate volumetric
measurements and metrics of cardiac function, and predict
systemic human phenotypes that modify cardiovascular risk.
Additionally, we show the first application of interpretation
frameworks to understand deep learning models from echocar-
diogram images. Human-identifiable features, such as the
presence of pacemaker and defibrillator leads, left ventricular
hypertrophy, and abnormal left atrial chamber size identified by
our CNN were validated using interpretation frameworks to
highlight the most relevant regions of interest. To the best of
our knowledge, we develop the first deep learning model that can
directly predict age, sex, weight, and height from echocardiogram
images and use interpretation methods to understand how the
model predicts these systemic phenotypes difficult for human
interpreters.

RESULTS

We trained a CNN model on a data set of more than 2.6 million
echocardiogram images from 2850 patients to identify local cardiac
structures, estimate cardiac function, and predict systemic risk
factors (Fig. 1). Echocardiogram images, reports, and measurements
were obtained from an accredited echocardiography lab of a large
academic medical center (Table 1). Echocardiography visualizes
cardiac structures from various different orientations and geome-
tries, so images were classified by cardiac view to homogenize the
input data set. Echocardiogram images were sampled from
echocardiogram videos, pre-processed by de-identifying the
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images, and cropped to eliminate information outside of the
scanning sector. These processed images were used to train
EchoNet on the relevant medical classification or prediction task.

Predicting anatomic structures and local features

A standard part of the clinical workflow of echocardiography
interpretation is the identification of local cardiac structures and
characterization of its location, size, and shape. Local cardiac
structures can have significant variation in image characteristics,
ranging from bright echos of metallic intracardiac structures to
dark regions denoting blood pools in cardiac chambers. As our
first task, we trained EchoNet on three classification tasks
frequently evaluated by cardiologists that rely on recognition of
local features (Fig. 2). Labels of the presence of intracardiac
devices (such as catheters, pacemaker, and defibrillator leads),
severe left atrial dilation, and left ventricular hypertrophy were
extracted from the physician-interpreted report and used to train
EchoNet on unlabeled apical-4-chamber input images. The
presence of a pacemaker lead was predicted with high accuracy
(AUC of 0.89, F1 score of 0.73), followed by the identification of a
severely dilated left atrium (AUC of 0.85, F1 score of 0.68), and left
ventricular hypertrophy (AUC of 0.75, F1 score of 0.57). Similarly
high performance was achieved in predicting right atrium major
axis length and left atrial volume estimate. Scatter plots are shown
in the Supplemental Materials. To understand the model’s
predictions, we used gradient-based sensitivity map methods*
to identify the regions of interest for the interpretation and show
that EchoNet highlights relevant areas that correspond to
intracardiac devices, the left atrium, and the left ventricle
respectively. Models’ prediction robustness was additionally
examined with direct input image manipulations, including
occlusion of human recognizable features, to validate that
EchoNet arrives at its predictions by focusing on biologically
plausible regions of interest.”® For example, in the frames in Fig. 2
with pacemaker lead, when we manually mask out the lead in the
frame, EchoNet changes its prediction to no pacemaker.
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Table 1. Baseline characteristics of patients in the training and test datasets.
Characteristics Complete data A4C view data

Train data Test data Train data Test data
Number of patients 2850 373 2546 337
Number of images 1,624,780 169,880 172,080 21,540
Sex (% Male) 52.4% 52.8% 52.2% 53.7%
Age: mean, years (std) 61.3 (17.2) 62.8 (16.8) 61.1 (17.1) 63.2 (16.9)
Weight: mean, Kg (std) 78.8 (22.7) 78.9 (20.8) 78.0 (21.7) 78.5 (20.2)
Height: mean, m (std) 1.69 (0.11) 1.69 (0.11) 1.69 (0.12) 1.69 (0.11)
BMI: mean (std) 27.3 (6.7) 27.5 (6.5) 27.1 (6.5) 27.3 (6.1)
Pacemaker or defibrillator lead (% Present) 13.2 14.7 13.1 15.1
Severe left atrial enlargement (% Present) 17.2 20.3 18.0 21.9
Left ventricular hypertrophy (% Present) 333 38.0 32.7 37.9
End diastolic volume, mL: mean (std) 94.3 (47.2) 94.6 (13.0) 95.1 (48.2) 96.9 (48.0)
End systolic volume, mL: mean (std) 45.6 (38.3) 46.2 (36.1) 46.0 (39.3) 47.0 (36.6)
Ejection fraction: mean (std) 55.2 (12.3) 54.7 (13.0) 55.1 (12.2) 54.8 (13.1)
Predicting cardiac function (R* = 0.46, MAE = 9.8 year, mean prediction MAE = 13.4 year), sex
Quantification of cardiac function is a crucial assessment  (AUC=0.88), weight (R*=0.56, MAE = 10.7 Kg, mean prediction

addressed by echocardiography. However, it has significant
variation in human interpretation.'®'® The ejection fraction, a
measure of the volume change in the left ventricle with each heart
beat, is a key metric of cardiac function, but its measurement relies
on the time-consuming manual tracing of left ventricular areas
and volumes at different times during the cardiac cycle. We
trained EchoNet to predict left ventricular end systolic volume
(ESV), end diastolic volume (EDV), and ejection fraction from
sampled apical-four-chamber view images (Fig. 3). Left ventricular
ESV and EDV were accurately predicted. For the prediction of ESV,
an R? score of 0.74 and mean absolute error (MAE) of 13.3 mL was
achieved versus MAE of 25.4 mL if we use mean prediction which
is to predict every patient’s ESV as the average ESCV value of
patients. The result for the EDV prediction was an R? score of 0.70
and MAE of 20.5 mL (mean prediction MAE = 35.4 mL). Conven-
tionally, ejection fraction is calculated from a ratio of these two
volumetric measurements, however, calculated ejection fraction
from the predicted volumes were less accurate (Fig. 3¢) than
EchoNet trained directly on the ejection fraction (Fig. 3d). We
show the relative performance of a deep learning model
undergoing a standard human workflow of evaluating ESV and
EDV then subsequently calculating ejection fraction from the two
volumetric measurements vs. direct “end-to-end” deep learning
prediction of ejection fraction and show that the “end-to-end”
deep learning prediction model had improved performance. Using
the trained EchoNet, an R? score of 0.50 and MAE of 7.0% is
achieved (MAE of mean prediction =9.9%). For each model,
interpretation methods show appropriate attention over left
ventricle as the region of interest to generate the predictions. A
comparison of model performance based on number of sampled
video frames did not show gain in model performance after 11
frames per prediction task.

Predicting systemic cardiovascular risk factors

With good performance in identifying local structures and
estimating volumetric measurements of the heart, we sought to
determine if EchoNet can also identify systemic phenotypes that
modify cardiovascular risk. Previous work has shown that deep
CNNs have powerful capacity to aggregate the information on
visual correlations between medical imaging data and systemic
phenotypes.’? EchoNet predicted systemic phenotypes of age
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MAE = 15.4Kg), and height (R*=0.33, MAE=0.07m, mean
prediction MAE = 0.09 m) with similar performance to previous
predictions of cardiac specific features (Fig. 4a). It is recognized
that characteristics such as heart chamber size and geometry vary
by age, sex, weight, and height,>’?® however, human interpreters
cannot predict these systemic phenotypes from echocardiogram
images alone. We also investigated multi-task learning—sharing
some of the model parameters while predicting across the
different phenotypes—and this did not improve the model
performance. Bland-Altman plots of the model accuracy in
relationship to the predictions are shown in Fig. 5 and in the
Supplemental Materials.

Lastly, we used the same gradient-based sensitivity map
methods to identify regions of interest for models predicting
systemic phenotypes difficult for human experts to predict. These
regions of interest for these models tend to be more diffuse,
highlighting the models for systemic phenotypes do not rely as
much on individual features or local regions (Fig. 4b). The
interpretations for models predicting weight and height had
particular attention on the apex of the scanning sector,
suggesting information related to the thickness and character-
istics of the chest wall and extra-cardiac tissue was predictive of
weight and height.

DISCUSSION

In this study, we show that deep CNNs trained on standard
echocardiograms images can identify local features, human-
interpretable metrics of cardiac function, and systemic pheno-
types, such as patient age, sex, weight, and height. Our models
achieved high prediction accuracy for tasks readily performed by
human interpreters, such as estimating ejection fraction and
chamber volumes and identifying of pacemaker leads, as well as
for tasks that would be challenging for human interpreters, such
as predicting systemic phenotypes from images of the heart
alone. Unique from prior work in the field, instead of using hand-
labeled outcomes, we describe and exemplify an approach of
using previously obtained phenotypes and interpretations from
clinical records for model training, which can allow for more
external validity and more rapid generalization with larger
training data sets.

npj Digital Medicine (2020) 10



npj

A. Ghorbani et al.

There is a Left atrium is There is left ventricular
pacemaker lead. severely dilated. hypertrophy.
1.0 1.0 1.0
Yos Los Yos
© © ©
o o o
_g 0.6 _g 0.6 g 0.6
= 3 ®
Qo4 Qo4 g o4
(] [ [
= | = = |
Eo2 Eo2 E 02
0.0 0.0 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate False Positive Rate False Positive Rate
AUC =0.89 AUC =0.86 AUC =0.75

Fig. 2 EchoNet performance and interpretation for three clinical interpretations of local structures and features. For each task,
representative positive examples are shown side-by-side with regions of interest from the respective model. Shaded areas indicate 95%

confidence intervals.

One common critique of deep learning models on medical
imaging datasets is the “black-box” nature of the predictions and
the inability to understand the models ability to identity relevant
features. In addition to showing the predictive performance of our
methods, we validate the model’s predictions by highlighting
important biologically plausible regions of interest that corre-
spond to each interpretation. These results represent the first
presentation of interpretation techniques for deep learning
models on echocardiographic images and can build confidence
in simple models as the relevant pixels are highlighted when
identifying local structures such as pacemaker leads. In
addition, this approach of using interpretability frameworks to
identify regions of interest may lay additional groundwork
toward understanding human physiology when interpreting
outputs of deep learning models for challenging, human-
unexplainable phenotypes in medical imaging. These results
represent a step towards automated image evaluation of
echocardiograms through deep learning. We believe this
research could supplement future approaches to screen for
subclinical cardiovascular disease and understand the biological
basis of cardiovascular aging.

While age, sex, weight, and height are relatively obvious visual
phenotypes, our paper presents models predicting these systemic
phenotypes in the roadmap of progressing from simple local
feature based predictions, to more complex dynamic measure-
ment predictions, and finally to human-difficult classifications of
systemic phenotypes without obvious local features. Previous
studies have shown that medical imaging of other organ systems
can predict cardiovascular risk factors including age, gender, and
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blood pressure by identifying local features of systemic pheno-
types.'? Recently, 12-lead ECG based deep learning models have
been shown to accurately predict age and sex, further validating a
cardiac phenotype for aging and gender dysmorphism.>® Our
results identify another avenue of detecting systemic phenotypes
through organ-system specific imaging. These results are sup-
ported by previous studies that showed population level
normative values for the chamber sizes of cardiac structures as
participants vary by age, sex, height, and weight.*”*® Age-related
changes in the heart, in particular changing chamber sizes and
diastolic filling parameters, have been well characterized,***' and
our study builds upon this body of work to demonstrate that these
signals are present to allow for prediction of these phenotypes to
a degree of precision not previously reported. As systemic
phenotypes of age, sex, and body mass index are highly correlated
with cardiovascular outcomes and overall life expectancy, the
ability of deep learning models to identify predictive latent
features suggest that future work on image-based deep learning
models can identify features hidden from human observers and
predict outcomes and mortality.3>3*

In addition to chamber size, extracardiac characteristics as well
as additional unlabeled features, are incorporated in our models
to predict patient systemic phenotypes. The area closest to the
transducer, representing subcutaneous tissue, chest wall, lung
parenchyma, and other extracardiac structures are highlighted in
the weight and height prediction models. These interpretation
maps are consistent with prior knowledge that obese patients
often have challenging image acquisition,>*>° however, it is
surprising the degree of precision it brings to predicting height

Scripps Research Translational Institute
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Fig. 3 EchoNet performance and interpretation for ventricular size and function. EchoNet performance for a predicted left ventricular end
systolic volume, b predicted end diastolic volume, ¢ calculated ejection fraction from predicted ESV and EDV, and d predicted ejection
fraction. e Input image, interpretation, and overlap for ejection fraction model.

and weight. Retrospective review of predictions by our model
suggest human-interpretable features that show biologic plausi-
bility. In the saliency maps for the age prediction model,
significant attention was paid to the crux of the heart, involving
the intra-atrial septum, where the aortic annulus as the view
becomes closer to an apical-five-chamber view, septal insertion of
the mitral and tricuspid leaflets, and the mitral apparatus. This is
an area of where differential calcification can be seen, particularly
of the aortic valve and mitral annulus, and is known to be highly
correlated with age-related changes.>”*® Images predicted to be
of younger patients also show preference for small atria and is
consistent with prior studies showing age-related changes to the
left atrium.3'?° The feedback loop between physician and
machine learning models with clinician review of appropriate
and inappropriately predicted images can assist in greater
understanding of normal variation in human echocardiograms
as well as identify features previously neglected by human
interpreters. Understanding misclassifications, such as patients
with young biological age but high predicted age, and further
investigation of extreme individuals can potentially help identify
subclinical cardiovascular disease and better understand the aging
process.

Prior foundational work on deep learning interpretation of
echocardiogram images have focused on the mechanics of
obtaining the correct echocardiographic view and hand-crafted
scenarios with closely curated patient populations and multi-step
processing and post-processing feature selection and calcula-
tion.>?* The work described here focuses on using more modern
deep learning architectures and techniques in the framework of
using previously adjudicated phenotypes with the potential of
rapid scaling of algorithms to clinical practice. With the
continued rapid expansion of computational resources, we were
able to input higher resolution images (299 x 299 instead of 60 x
80 in prior studies)** and present an ‘end-to-end’ approach to
predicting complex phenotypes like ejection fraction that has
decreased variance over multi-step techniques which require
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identification of end-systole, end-diastole, and separate segmen-
tation steps.’

While our model performance improves upon the results of
prior work, EchoNet's evaluation of clinical measurements of ESV,
EDV, and EF have non-negligible variance and does not surpass
human assessment of these metrics. For these tasks, clinical
context and understanding of contextual information and other
measurements likely has significant relevance to the training task.
For example, evaluation of EF as a ratio of ESV and EDV magnifies
errors and performs worse than estimation of ESV or EDV
individually. Future work requires greater integration of temporal
information between frames to better assess cardiac motion and
interdependencies in cardiac structures. In addition to quantitative
measurements, human evaluation of cardiac structures, such as
tracings of the left ventricle, are potentially high value training
datasets.

Recent novel machine learning techniques for interpreting
network activations are also presented for the first time to
understand regions of interest in the interpretation of echocardio-
gram images.2> While prior work used hand-labeled outcomes and
patient cohorts for the majority of their outcome labels, we
describe and showcase an approach of using previously obtained
phenotypes and interpretations from clinical records for model
training, which can allow for more external validity and more rapid
generalization with larger training data sets. Additionally, given
the significant difference between images in ImageNet vs.
echocardiogram images, pretraining with ImageNet weights did
not significantly help model performance, however, our models
trained on systemic phenotypes can be good starting weights for
future work on training on echocardiogram images of more
complex phenotypes.

Previous studies of deep learning on medical imaging focused
on resource-intensive imaging modalities common in resource-
rich settings*®*" or sub-speciality imaging with focused indica-
tion."*"*'® These modalities often need retrospective annotation
by experts as the clinical workflow often does not require

npj Digital Medicine (2020) 10
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detailed measurements or localizations. In the development of
any machine learning models to healthcare questions, external
validity of first-order importance. An important caveat of our
work is that the images obtained were from one type of
ultrasound machine and our test dataset was of different
patients but also scanned using the sample machine and at
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the same institution. Our approach trains deep learning models
on previous studies and associated annotations from the EMR to
leverage past data for rapid deployment of machine learning
models. This approach leverages two advantages of echocardio-
graphy, first that echocardiography is one of the most frequently
using imaging studies in the United States*? and second,

Scripps Research Translational Institute
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echocardiography often uses structured reporting, making
advances in deep learning particularly applicable and general-
izable. However, such a method depends on the clinical
standard, as there is known variability between MRI and
echocardiography derived methods and training on clinical
reports require rigorous quality control from the institution’s
echocardiography lab. Future work on deep learning of
echocardiography would need to confirm the performance
in broader populations and settings. Automation of echocardio-
graphy interpretation through deep learning can make cardio-
vascular care more readily available. With point-of-care
ultrasound is being more frequently used by an increasing
number of physicians, ranging from emergency room physicians,
internists, to anesthesiologists, and deep learning on cardiac
ultrasound images can provide accurate predictions and
diagnoses to an even wider range of patients.

In summary, we provide evidence that deep learning can
reproduce common human interpretation tasks and leverage
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additional information to predict systemic phenotypes that could
allow for better cardiovascular risk stratification. We used
interpretation methods that could feedback relevant regions of
interest for further investigation by cardiologists to better
understand aging and prevent cardiovascular disease. Our work
could enable assessment of cardiac physiology, anatomy, and risk
stratification at the population level by automating common
workflows in clinical echocardiography and democratize expert
interpretation to general patient populations.

METHODS

Dataset

The Stanford Echocardiography Database contains images, physician
reports, and clinical data from patients at Stanford Hospital who
underwent echocardiography in the course of routine care. The accredited
echocardiography laboratory provides cardiac imaging to a range of
patients with a variety of cardiac conditions including atrial fibrillation,
coronary artery disease, cardiomyopathy, aortic stenosis, and amyloidosis.

npj Digital Medicine (2020) 10
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For this study, we used 3312 consecutive comprehensive non-stress
echocardiography studies obtained between June 2018 and December
2018, and randomly split the patients into independent training, validation,
and test cohorts. Videos of standard cardiac views, color Doppler videos,
and still images comprise each study and is stored in Digital Imaging and
Communications in Medicine (DICOM) format. The videos were sampled to
obtain 1,624,780 scaled 299 x 299 pixel images. The sampling rate was
chosen to optimize model size and training time while maintaining model
performance and additional preprocessing details are described in the
Supplementary Materials. For each image, information pertained to image
acquisition, identifying information, and other information outside the
imaging sector was removed through masking. Human interpretations
from the physician-interpreted report and clinical features from the
electronic medical record were matched to each echocardiography study
for model training. This study was approved by the Stanford University IRB.
Written informed consent was waived for retrospective review of imaging
obtained in the course of standard care.

Model

We chose a CNN architecture that balances network width and depth in
order to manage the computational cost of training. We used the
architecture based on Inception-Resnet-v1'® to predict all of our
phenotypes. This architecture has strong performance on benchmark
datasets like ILSVR2012 image recognition challenge (Imagenet)® and is
computationally efficient compared to other networks.*® Pretraining
Inception-ResNet with ImageNet did not significantly increase model
performance, and our ultimate model used randomly initiated weights.

For each prediction task, one CNN architecture was trained on individual
frames from each echocardiogram video with output labels that were
extracted either from the electronic medical record or from the physician
report. From each video, we sampled 20 frames (one frame per 100
milliseconds) starting from the first frame of the video. The final prediction
was performed by averaging all the predictions from individual frames.
Several alternative methods were explored in order to aggregate frame-
level predictions into one patient-level prediction and did not yield better
results compared to simple averaging.

Model training was performed using the TensorFlow library™* which is
capable of utilizing parallel-processing capabilites of Graphical Processing
Units (GPUs) for fast training of deep learning models. We chose Adam
optimizer as our optimization algorithm which is computationally efficient,
has little memory usage, and has shown superior performance in many
deep learning tasks.*> As our prediction loss, we used cross-entropy loss for
classification tasks and squared error loss for regressions tasks along with
using weight-decay regularization loss to prevent overfitting.*® We
investigated other variants of prediction loss (absolute loss, Huber loss*”
for regression and Focal loss*® for classification), and they did not improve
performance. For each prediction task, we chose the best performing
hyper-parameters using grid search (24 models trained for each task) to
optimize learning rate and weight decay regularization factor. In order to
perform model selection, for each tasks, we split the training data into
training and validation set by using 10% of train data as a held-out
validation set in; the model with the best performance on the validation set
is then examined on the test set to report the final performance results.
After the models were trained, they were evaluated on a separate set of test
frames gathered from echocardiogram studies of 337 other patients with
similar demographics (Table 1). These patients were randomly chosen for a
10% held-out test set and were not seen by the model during training.

Data augmentation

Model performance improved with increasing input data sample size. Our
experiments suggested additional relative improvement with increase in
the number of patients represented in the training cohort compared to
oversampling of frames per patient. Data augmentation using previously
validated methods,***° also greatly improving generalization of model
predictions by reducing over-fitting on the training set. Through the
training process, at each optimization step each training image is
transformed through geometric transformations (such as flipping, reflec-
tion, and translation) and changes in contrast and saturation. As a result,
the training data set is augmented into a larger effective data set. In this
work, mimicking variation in echocardiography image acquisition, we used
random rotation and random saturation augmentation for data augmenta-
tion (Fig. 1c). During each step of stochastic gradient descent in the
training process, we randomly sample 24 training frames, and we perturb
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each training frame with a random rotation between —20 to 20 degrees
and with adding a number sampled uniformly between —0.1 to 0.1 to
image pixels (pixels values are normalized) to increase or decrease
brightness of the image. Data augmentation results in improvement for all
of the tasks; between 1-4% improvement in AUC metric for classification
tasks and 2-10% improvement in R? score for regression tasks.

Cardiac view selection

We first tried using all echocardiogram images for prediction tasks but
given the size of echocardiogram studies, initial efforts struggled with long
training times, poor model convergence, and difficulty with model
saturation. With the knowledge that, in a single comprehensive
echocardiography study, the same cardiac structures are often visualized
from multiple views to confirm and corroborate assessments from other
views, we experimented with model training using subsets of images by
cardiac view. As described in Fig. 1b, a selection of the most common
standard echocardiogram views were evaluated for model performance.
Images from each study were classified using a previously described
supervised training method.” We sought to identify the most information-
rich views by training separate models on the subsets of dataset images of
only one cardiac view. Training a model using only one cardiac view results
in one order of magnitude reduction of training time and computational
cost with the benefit of maintaining similar predictive performance when
information-rich views were used. For each of the prediction tasks and
specific choice of hyper-parameters, training a model on the A4C-View
data set converges in ~30 h using one Titan XP GPU. The training process
of the same model and prediction task converges in ~240 h using all the
views in the dataset. Given the favorable balance of performance to
computational cost as well as prior knowledge on which views most
cardiologists frequently prioritize, we chose the apical-four-chamber view
as the input training set for subsequent experiments on training local
features, volumetric estimates and systemic phenotypes.

Interpretability

Interpretability methods for deep learning models have been developed to
explain the predictions of the black-box deep neural network. One family
of interpretations methods are the sensitivity map methods that seek to
explain a trained model’s prediction on a given input by assigning a scalar
importance score to each of the input features or pixels. If the model’'s
input is an image, the resulting sensitivity map could be depicted as a two-
dimensional heat-map with the same size as the image where more
important pixels of the image are brighter than other pixels. The sensitivity
map methods compute the importance of each input feature as the effect
of its perturbation on model’s prediction. If the pixel is not important, the
change should be small and vice versa.

Introduced by Baehrens et al.>’ and applied to deep neural networks by
Simonyan et al,*? the simplest way to compute such score is to have a
first-order linear approximation of the model by taking the gradient of the
output with respect to the input; the weights of the resulting linear model
are the sensitivity of the output to perturbation of their corresponding
features (pixels). More formally, given the d-dimensional input x; € R? and
the model’s prediction function f(.), the importance score of the j'th
feature is |Vif(x;);|. Further extensions to this gradient method were
introduced to achieve better interpretations of the model and to output
sensitivity maps that are perceptually easier to understand by human
users: LRP,>®> DeepLIFT,** Integrated Gradients,>> and so forth. These
sensitivity map methods, however, suffer from visual noise®® and
sensitivity to input perturbations.>® SmoothGrad®® method alleviates both
problems®” by adding white noise to the image and then take the average
of the resulting sensitivity maps. In this work, we use SmoothGrad with the
simple gradient method due to its computational efficiency. Other
interpretation methods including Integrated Gradients were tested but
did not result in better visualizations.

Lessons from model training and experiments

EchoNet performance greatly improved with efforts to augment data size,
homogenize input data, and with optimize model training with
hyperparameter search. Our experience shows that increasing number of
unique patients in the training set can significantly improve the model,
more so than increasing the sampling rate of frames from the same
patients. Homogenizing the input images by selection of cardiac view prior
to model training greatly improved training speed and decreased
computational time without significant loss in model performance. Finally,
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we found that results can be significantly improved with careful
hyperparameter choice; between 7-9% in AUC metric for classification
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