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Abstract: Atopic dermatitis (AD) is one of the most common chronic inflammatory skin diseases,
which generally presents with intense itching and recurrent eczematous lesions. AD affects up to 20%
of children and 10% of adults in high-income countries. The prevalence and incidence of AD have
increased in recent years. The onset of AD mostly occurs in childhood, although in some cases AD may
persist in adult life or even manifest in middle age (adult-onset AD). AD pathophysiology is made of
a complex net, in which genetic background, skin barrier dysfunction, innate and adaptive immune
responses, as well as itch contribute to disease development, progression, and chronicization. One of
the most important features of AD is skin dehydration, which is mainly caused by filaggrin mutations
that determine trans-epidermal water loss, pH alterations, and antigen penetration. In accordance
with the “outside-inside” theory of AD pathogenesis, in a context of an altered epidermal barrier,
antigens encounter epidermal antigen presentation cells (APCs), such as epidermal Langerhans cells
and inflammatory epidermal dendritic cells, leading to their maturation and Th-2 cell-mediated
inflammation. APCs also bear trimeric high-affinity receptors for immunoglobulin E (IgE), which
induce IgE-mediated sensitizations as part of pathogenic mechanisms leading to AD. In this review,
we discuss the role of cytokines in the pathogenesis of AD, considering patients with various clinical
AD phenotypes. Moreover, we describe the cytokine patterns in patients with AD at different phases
of the disease evolution, as well as in relation to different phenotypes/endotypes, including age, race,
and intrinsic/extrinsic subtypes. We also discuss the outcomes of current biologics for AD, which
corroborate the presence of multiple cytokine axes involved in the background of AD. A deep insight
into the correlation between cytokine patterns and the related clinical forms of AD is a crucial step
towards increasingly personalized, and therefore more efficient therapy.

Keywords: atopic dermatitis; cytokines; intracellular pathways; endotypes; itch; biologics;
small-molecule inhibitors

1. Introduction

Atopic dermatitis (AD) is one of the most common chronic inflammatory skin diseases,
characterized by intense itching and recurrent eczematous lesions [1]. The prevalence and
incidence of AD have increased in recent years [1]. According to the Global Burden of
Disease Study, the prevalence in high-income countries is between 15% and 20% among
children, and up to 10% among adults [2,3]. No gender-related differences are reported,
while for ethnicity a higher prevalence was observed in Afro-American U.S. children (19.3%)
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compared to Caucasians (16.8%) [1]. The onset of AD mostly occurs in childhood, usually
followed by remission before adulthood, although some cases may reveal protracted disease
activity (persistent AD) or even a primary outbreak in middle age (adult-onset AD) [4].
Several patients may also have an onset in childhood followed by a latency period with
re-exacerbation in adulthood (chronic-relapsing form) or even, in a few cases, the first
occurrence in adolescence (adolescent-onset AD).

AD is generally associated with other atopic diseases (atopic march), such as asthma,
rhinitis, conjunctivitis, and food allergy, which further worsen quality of life [5,6]. Evidence
of this association is provided by a study on Italian atopic schoolchildren [7], which reported
a prevalence of asthma ranging from 46% in children with AD to 10% in unaffected ones,
while the prevalence of allergic rhino-conjunctivitis in these population groups was 35.6%
and 15.1%, respectively. Besides, atopic patients have a major risk of developing respiratory,
contact, or food allergies.

AD clinically manifests as the evolution from an initial acute phase, characterized
by pruritus and erythemato-vesicles/papules, to a chronic phase, during which skin
appears more lichenified as a consequence of tissue remodeling and dermal fibrosis due to
inflammation and scratching of the skin [1]. Acute and chronic lesions are often found in
the same individual, often overlap, and clinically are sometimes difficult to distinguish [8].
Rarely, a simultaneous occurrence of psoriasis and AD may be observed in the same patient,
making the differential diagnosis even more complex [9].

AD pathophysiology is made of a complex net, in which genetic background, skin
barrier dysfunction, innate and adaptive immune responses, and itch contribute to devel-
opment, progression, and chronicitation of disease [3]. One of the most important markers
of AD is skin dehydration, which is mainly caused by filaggrin (FLG) gene mutations that
determine trans-epidermal water loss, pH alterations, and antigen penetration [10]. In
accordance with the “outside-inside” theory of AD pathogenesis, in a context of an altered
epidermal barrier, antigens encounter epidermal antigen presentation cells (APCs), such as
epidermal Langerhans cells and inflammatory epidermal dendritic cells (IEDC), leading to
their maturation and Th2-mediated inflammation. APCs also bear trimeric high-affinity
receptors for immunoglobulin E (IgE), and therefore IgE-mediated sensitizations play an
important role as part of pathogenic mechanisms leading to AD.

In this review, we discuss the role of cytokines in the pathogenesis of AD considering
patients with various clinical AD phenotypes. Moreover, we describe the cytokine patterns
in patients with AD at different phases of the disease evolution, as well as in relation to the
different phenotypes/endotypes, including age, race, and intrinsic/extrinsic subtypes. We
also discuss the outcomes of current biologics for AD, which corroborate the concept that
multiple cytokine axes act in the background of AD. A deep insight into the correlation
between cytokine patterns and the related clinical forms of AD is the crucial step towards
increasingly personalized, and therefore more efficient therapy.

2. Active Participation of Inflammatory Cytokines during AD Evolution
2.1. Role of Cytokines in Acute AD

AD disease is characterized by a biphasic inflammation, evolving from an initial, acute,
Th2- and Th22-dominated phase to a chronic phase characterized by the concomitant pres-
ence of T helper (Th)1, Th2 cells, and Th17 cells [3]. Th2-derived cytokines, together with
inflammatory mediators released by innate immune cells, such as mast cells, pathogenically
contribute to the initiation and amplification of skin inflammation in AD lesions.

The role of the innate immune system in the early phase of AD has been demonstrated
in experimental animal models [11,12] and is likely of clinical relevance in infancy [13].

A key player of innate immunity is the epidermal barrier and the loss-of-function FLG
gene variants (R510X and 2282del4) that constitute a major predisposing factor for AD [14].
However, whether immune dysregulation results from skin barrier abnormalities, such
as FLG lack, or it can be considered as the initial trigger leading to barrier deficiencies
by downregulation of, for example, FLG gene expression, is still debated. A recent study
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indicates that FLG-deficiency renders skin equivalents more sensitive to the detrimental
effects of IL-4 and IL-13 compared to skin equivalents with normal FLG expression, and
therefore, defects in the epidermal barrier, skin permeability, and cutaneous innate immune
response are not primarily linked to FLG gene deficiency but are rather secondarily induced
by Th2 inflammation [15].

2.1.1. IL-1 Cytokine Family

Regarding the innate immune responses, dysregulation of the IL-1 axis may account
for the initiation of inflammatory responses in AD [16]. Indeed, an up-regulated expression
of the IL-1-related cytokines IL-1β and IL-18 was observed in AD patients with FLG muta-
tion. These cytokines promote lead to cutaneous inflammation through the induction of
secondary cytokines, such as IL-8, and upregulation of endothelial adhesion molecules [16].
IL-1α is a pro-inflammatory cytokine released by keratinocytes after injury and by skin
dysbiosis [17]. As one of the first and most important mediators in antigen presentation
and induction of the inflammatory cascade, IL-1α has been considered as a therapeutic
target in AD.

Similarly, IL-33, a cytokine structurally related to IL-1β and IL-18, is abundant in
the epidermis of AD lesions [18,19]. However, it is unclear whether IL-33 is the cause
or the result of AD. Of note, when up-regulated in keratinocytes of a transgenic mouse
model, IL-33 induces severe eczema [20]. IL-33 is produced by endothelial cells and various
epithelial cells, including keratinocytes, which constitutively express IL-33 as an inactive
precursor [19]. In response to infection or tissue injury, IL-33 precursor is cleaved by
caspase-1 to form an active secreted IL-33, which in turn activates mast cells, basophils,
and group 2 innate lymphoid cells (ILC2) to secrete IL-4, IL-5, and IL-13 via the receptor
suppression of tumorigenicity 2 (ST2) [21]. Other than triggering Th2 polarization, IL-33
promotes the secretion of pruritic cytokines, including TSLP and IL-31, from keratinocytes
and Th2 cells, respectively, which amplifies Th2 responses [21,22]. IL-33 also mediates
the itch response by activating itch-sensing sensory neurons [19] and contributes to the
disruption of the epidermal barrier function via the down-regulation of FLG and claudin-1
levels [23] (Figure 1).

Danger signals from barrier disruption and microbial invasion trigger the production
of additional keratinocyte-derived cytokines, such as IL-6, IL-23, and tumor necrosis factor
(TNF)-α, which exhibit pro-inflammatory activities and promote the activation, differenti-
ation, and recruitment of inflammatory cells to skin lesions [24–27]. The combination of
IL-1β and IL-6, together with transforming growth factor-β (TGF-β), promotes Th17 cell
activation, which plays an important part in early stages of AD [28].

IL-36 cytokines are other innate immunity players belonging to the IL-1 family that are
upregulated in the skin of acute and chronic AD. Interestingly, colonization with S. aureus in a
murine AD model induces inflammation through IL-36R- and IL-1R-dependent signaling [29].

In acute phases of AD, keratinocytes in barrier-disrupted epidermis also produce large
amounts of thymic stromal lymphopoietin (TSLP) and interleukin (IL)-25, which promote
Th2 immune deviation via OXO40L/OX40 signaling [30].

2.1.2. TSLP

TSLP is an epithelial cell-derived IL-7-like cytokine that is released in response to
mechanical injury, microbial infection, and allergen exposure [21]. Increased expression
of TSLP was observed in FLG-depleted keratinocytes after TLR-3, TLR-5, and TLR-2/-6
ligand stimulation [30]. The expression of TSLP in AD skin correlates with the severity of
the disease and the degree of epidermal barrier disruption [31]. TSLP directly activates
dendritic cells to polarize naive T cells towards Th2 cells that secrete IL-4, IL-5, and IL-13,
which further induce TSLP release by keratinocytes themselves [32,33].
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Figure 1. A simplistic overview of AD pathogenesis. Non-lesional skin has an epidermal barrier 
deficiency with a reduced diversity of the microbiome. In acute AD lesion, Langerhans cells, IEDC 
bearing specific IgE bound to the high affinity receptor for IgE, and dermal dendritic cells bind 
allergens and antigens. Keratinocyte-derived (IL-18, IL-1β, IL-33, TSLP and IL-25) and Th2-cell-de-
rived cytokines IL-4, IL-13, and IL-31 directly activate sensory nerves, which promotes pruritus. 
During transition to chronicity, itch is amplified by various pruritogens (e.g., antigens and molecu-
lar mediators such as histamine and other substances). Scratching exacerbates dermatitis, which 
may further enhance pruritus and result in an itch/scratch vicious cycle. Chronic AD lesional skin 
is characterized by the intensification of Th2, Th1, and Th17 responses. DC = dendritic cell, MC = 
mast cell, IDEC = inflammatory dendritic epidermal cell, ILC = innate lymphoid cell. LC = lymphoid 
cell, B = B cell, Eo = eosinophile, Ba = basophile, IFN = interferon, IL = interleukin, Th = T-helper cell, 
Th0 = naive T cell, TNF = tumor necrosis factor, TSLP = thymic stromal lymphopoietin. 
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Figure 1. A simplistic overview of AD pathogenesis. Non-lesional skin has an epidermal barrier
deficiency with a reduced diversity of the microbiome. In acute AD lesion, Langerhans cells, IEDC
bearing specific IgE bound to the high affinity receptor for IgE, and dermal dendritic cells bind
allergens and antigens. Keratinocyte-derived (IL-18, IL-1β, IL-33, TSLP and IL-25) and Th2-cell-
derived cytokines IL-4, IL-13, and IL-31 directly activate sensory nerves, which promotes pruritus.
During transition to chronicity, itch is amplified by various pruritogens (e.g., antigens and molecular
mediators such as histamine and other substances). Scratching exacerbates dermatitis, which may
further enhance pruritus and result in an itch/scratch vicious cycle. Chronic AD lesional skin is
characterized by the intensification of Th2, Th1, and Th17 responses. DC = dendritic cell, MC = mast
cell, IDEC = inflammatory dendritic epidermal cell, ILC = innate lymphoid cell. LC = lymphoid cell,
B = B cell, Eo = eosinophile, Ba = basophile, IFN = interferon, IL = interleukin, Th = T-helper cell,
Th0 = naive T cell, TNF = tumor necrosis factor, TSLP = thymic stromal lymphopoietin.

TSLP also inhibits the production of antimicrobial peptides by keratinocytes, such as
hBD-2, which correlates with the susceptibility of the skin to infections [34]. Furthermore,
keratinocyte-derived TSLP contributes to pruritus induction by binding TSLP receptors
located on cutaneous sensory neurons [35] (Figure 1).

2.1.3. IL-17 Cytokine Family

IL-25 is another key mediator of the development of Th2 response [36]. IL-25, also
known as IL-17E, is a member of the IL-17 family, sharing structural similarity with other
IL-17 members [36,37]. Although produced by several types of immune cells, such as
allergen-activated mast cells, eosinophils, basophils, dermal dendritic cells, T cells, or ILC2,
a vast amount of IL-25 derives from epithelial cells and in particular, by keratinocytes [37,38].
An increased number of IL-25-expressing epidermal keratinocytes was detected in lesional
and non-lesional AD skin compared to the skin from healthy individuals [38]. IL-25 is
known to induce Th2 cells via direct activation of naive CD4+ T cells or ILC2 activation to
promote innate type-2 immune responses [37] (Figure 1).
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2.1.4. Th2-Derived Cytokines

AD is generally considered a Th2-mediated disease. In the acute phase, Th2 lympho-
cytes mount strong inflammatory responses with the secretion of type-2 cytokines, such
as IL-4 and IL-13, which downregulate the levels of FLG, loricrin (LOR), and involucrin
(INV) in keratinocytes, and exacerbates epidermal barrier dysfunction [10]. Keratinocytes
constitutively express functional IL-4 and IL-13 receptors [39] and produce the eosinophil
chemokine CCL26 in response to IL-4 and IL-13. Other than regulating IgE antibody pro-
duction in B cells, IL-4 and IL-13 have been reported to act directly on itch-sensory neurons
to promote itch [40,41]. Th2 cells also secrete IL-31, a pruritogenic cytokine described below
(see Section 2.2).

2.1.5. IL-22

In addition to the strong Th2 activation, the acute AD lesions in adults are also char-
acterized by a Th22 response, with release of IL-22 and S100A proteins [42,43]. Following
scratching, the endogenous TLR-4 ligands stimulate the production of IL-23 from ker-
atinocytes [44]. IL-23 in turn activates IL-23R-expressing DCs, which trigger Th22 immune
response mediated by the aryl-hydrocarbon receptor (AHR) [45]. The robust IL-22 expres-
sion results in epidermal hyperplasia and barrier defects of affected skin [46] (Figure 1).

2.2. Role of Cytokines in Chronic AD

Although a Th2 signature predominates in the acute phase, a Th2 towards Th1 switch
has been long deemed to promote disease chronicity [46,47].

More recent findings demonstrated that the progression of acute-to-chronic AD is
associated with quantitative rather than qualitative changes in cytokine responses, with
the intensification of Th2, Th1, and Th17 responses in chronic inflammation of AD [47].
Th17-related responses lead to the accumulation of IL-17A and IL-17F cytokines in chronic
AD lesions. It is yet to be elucidated whether IL-17 plays a critical role in AD as it does
in psoriasis.

In chronic AD, lymphocyte-released cytokines synergize, thus amplifying the inflam-
matory responses. For example, in keratinocytes, IL-4 potentiates the action of IFN-γ and
TNF-α in inducing CXCR3 agonistic chemokines, such as CXCL9, CXCL10, and CXCL11,
which recruit more T cells into inflamed skin [48].

The shift to chronic AD is also accompanied by increased activity of IL-36 cytokines [47].
IL-36 cytokines are expressed predominantly by epidermal keratinocytes and act on many
cells including endothelial and immune cells [49–51]. IL-36 cytokines do not act directly
on T cells but instead can stimulate maturation and function of DCs and through them
drive T cell proliferation, thereby propagating and amplifying immune responses in the
skin [52]. Recently, Shao et al. demonstrated that the serine-threonine kinase IRAK2 is
the main intracellular effector of IL-36 and IL-1 cytokines in human keratinocytes, and its
levels correlate with disease severity in AD and psoriasis [53] (Figure 1).

Chronic itch is the major symptom in AD patients [54,55]. Scratching exacerbates
predisposing dermatitis, which may further enhance pruritus and result in an itch/scratch
vicious cycle typically occurring in chronic AD [56].

Other than IL-33 and TLSP, IL-31 has also a pruritogenic activity through activation of
the heterodimeric receptor IL-31 receptor A (IL31RA)/Oncostatin M receptor (OSMRβ),
expressed by dorsal root ganglia neurons, keratinocytes, and various innate immune
cells [56]. IL-31 is a cytokine produced by various cells including Th2 cells, macrophages,
dendritic cells, and eosinophils, and its levels were increased in lesional and non-lesional
skin of AD patients [57–59]. In parallel, serum levels of IL-31 correlated with disease
severity in AD patients [60,61]. Finally, in human AD skin, keratinocytes show elevated
levels of IL31RA/OSMRβ expression resulting in stronger receptiveness to IL-31 [62]. In
addition to its pruritogenic function, IL-31 is known to directly inhibit the differentiation of
keratinocytes by downregulating the expression of barrier/differentiation-related proteins,
which results in the disruption of epidermal barrier function [63–65] (Figure 1).
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A summary of the main cytokines involved in AD pathogenesis is reported in Table 1.

Table 1. Key biological effects of the main cytokines in AD pathogenesis.

Cytokine AD Phase Function Refs

IL-1α, IL-1β
(IL-1 family) Acute Promote the recruitment of leukocytes and regulate

synthesis of the extracellular lipid bilayers. [16,17]

IL-33
(IL-1 family) Acute

Activates mast cells, basophils, and ILC2; promotes
the secretion of pruritic cytokines, i.e., TSLP and

IL-31, from keratinocytes and Th2 cells, respectively.
[18–23]

TSLP Acute/Chronic
Activates dendritic cells to polarize naive T cells

towards Th2 cells; induces pruritus by binding TSLP
receptors on cutaneous sensory neurons

[30–35]

IL-25
(IL-17 family) Acute/Chronic

Induces innate and adaptive immune responses by
activating ILC2 or polarizing naive T cells

to Th2 cells.
[36,37]

IL-4/IL-13
(Th2 cytokines) Acute/Chronic

Exacerbate epidermal barrier dysfunction; regulates
IgE antibody production in B cells; promotes itch

directly acting on sensory neurons.
[10,40,41]

IL-22 Acute Induces epidermal hyperplasia and barrier defects
of affected skin [42–46]

IL-17A, IL-17F (IL-17 family) Chronic It is yet to be elucidated whether IL-17 plays a
critical role in AD. [46,47]

IFN-γ/TNF-α
(Th1 cytokines) Chronic Induce CXCR3 agonistic chemokines, which recruit

more T cells into inflamed skin. [48]

IL-36s
(IL-1 family) Acute/Chronic Levels of IL-36 cytokines correlate with disease

severity in AD. [52,53]

IL-33 Acute/Chronic
Has pruritogenic activity; inhibits keratinocyte

differentiation by downregulating the expression of
barrier/differentiation-related proteins.

[56–65]

3. Cytokines as Endotype-Specific Biomarkers

AD is a heterogeneous disease with various clinical manifestations (phenotypes)
sustained by specific molecular mechanisms (endotypes). Several endotypes based on the
age of onset [66,67], ethnic origin [68], and clinical features can be distinguished [69,70].

3.1. Age of AD Onset

Regarding the age of onset, early-onset (infantile < 2 years, childhood 2–12 years, adolescent
12–18 years) and adult onset (in patients aged >18) can be distinguished. Recently, a specific AD
subtype has been identified to include elderly onset AD in patients aged >60 years.

Together with Th2 (IL-13, IL-31 and CCL17) activation, enhanced Th22 (IL-22 and
S100As), Th17 (IL-17A, IL-19, CCL20, LL37 and peptidase inhibitor 3/elafin), and Th1
(IFN-γ and CXCL9/CXCL10/CXCL11) pathways characterize adult AD, whereas pediatric
patients exhibit lower Th1 activation but a higher expression of Th9 (IL-9), and innate
markers (IL-1β, IL-8 and IFN-α1), as well as dysfunctions in epidermal lipid metabolism
responsible for the barrier alterations [71,72]. A recent study on tape strips from early-onset
pediatric AD highlighted abnormalities in Th2-, Th22-, and Th17-related pathways also
in non-lesional skin [73]. Non-lesional skin in pediatric patients with AD showed higher
levels also of IL-19 and LL37, as well as of epidermal proliferation (Keratin 16 and S100As)
markers [71] (Figure 2).
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Figure 2. A schematic picture of the T cell subsets and cytokine profiles in the main AD endotypes.
Adult AD is characterized by the intensification of Th1 signature, whereas pediatric AD shows
the predominance of Th17(IL-17A, IL-19, CCL20, LL-37, elafin) and Th9 (IL-9)-related cytokines.
Moderate and severe AD share Th2-dependent immune responses, with the identification of Th22
(IL-22), Th1 (IFN-γ, TNF-a, TNF-β), and Th17 (IL-17A and IL-21)-related cytokines in severe AD.
Patients with extrinsic AD tend to exhibit barrier disruption, which causes repeated allergen exposure
and B-cell activation resulting in hyper-IgE levels in serum. The cytokine spectrum of patients with
intrinsic AD is further complicated with additional cytokine axes, including Th1 (IFN-γ, CXCL9, 10,
11) and Th17 (IL-17A, CXCL8).

An attempt to stratify adult patients with AD by the serum biological markers has
succeeded in identifying four clusters [74]. In this study, sera from 193 adult patients with
moderate AD, severe AD, and healthy control subjects without AD were analyzed for
serum mediators, total IgE levels, and allergen-specific IgE levels. A principal component
analysis yielded four distinct clusters of patients with AD. Cluster 1 showed more severe
clinical scores and more affected areas enriched with Th2 cytokines (IL-13, IL-5), as well
as IL-22 and IL-33, with the highest levels of TARC, pulmonary and activation-regulated
chemokines (PARC), tissue inhibitor of metalloproteinases 1 (TIMP1), and soluble CD14.
Cluster 2 was characterized by a relatively low inflammatory state particularly distinctive
from that of the other clusters by virtue of having low serum levels of Th2/severity-related
(MDC, PARC, and TARC) and eosinophil-related (RANTES, eotaxin, and eotaxin-3) markers.
Cluster 3 had more severe clinical scores with the lowest levels of IFN-β, IL-1, and epithelial
cytokines, such as TSLP. Cluster 4 had milder clinical scores but the highest levels of the
inflammatory Th2-related (IL-4, IL-5, and IL-13), Th1-related (IFN-γ, TNF-α, and TNF-ß),
Th17-related (IL-17 and IL-21), and epithelial-related (IL-25, IL-33, and TSLP) cytokines
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(Figure 2). This study has been recently confirmed by the same authors in a different cohort
of patients with severe AD [75].

Of note, Lauffer et al. recently identified three distinct endotypes based on serum
cytokines and clinical features in children with AD that discriminate a persistent course
from remission [76].

3.2. Ethnicity and AD

In relation to race, although Th2 markers (IL-13, CCL17, CCL18, and CCL22) were
similar between Asian and European American patients with AD, Th1 markers were
significantly lower in lesional and non-lesional tissues of Asian patients with AD [66].
Asian patients have accentuated polarity of the Th22 (IL-22 and S100A12)/Th17 (IL-17A
and the related CCL20 marker) pathways, and also exhibit epidermal barrier defects
despite relative maintenance of FLG and loricrin gene expression [77]. In contrast, African
American patients do not exhibit FLG mutations and have distinct attenuation of Th17/Th1
axes [78,79]. Levels of IL-19, which are induced by IL-4, IL-13, and IL-17, and augment
IL-17-dependent effects on keratinocytes [80,81] were significantly greater in AD lesions of
Asian versus EA patients (Figure 2).

3.3. Intrinsic and Extrinsic AD

The endotype pattern of AD also includes extrinsic and intrinsic AD [79,82]. Extrin-
sic (allergic) AD represents about 80% of adult atopic patients and is associated with a
high level of serum IgE. Elderly patients with this AD endotype show frequent allergic
sensitization to airborne allergens and to food allergens [83].

The intrinsic (non-allergic) AD is a less common subtype (≈20%); however, it affects
the elderly in an increased proportion [84]. Intrinsic AD is characterized by normal or
low serum IgE levels, the absence of atopic background, and a lack of sensitization to
environmental allergens. However, specific IgE against enterotoxins of S. aureus and other
microbial antigens have been identified [84,85]. Intrinsic AD shows similar Th2 but higher
Th17, Th1, and Th22 immune activation compared with extrinsic AD, with higher amounts
of the inflammatory IL-17, CXCL8, IFN-γ, and IL-22 cytokines and related chemokines in
intrinsic AD lesional skin (79) (Figure 2).

Three main phenotypes of AD have been proposed in a recent PRACTALL document:
non-lesional skin, acute disease flares, and chronic remitting relapsing AD. A type 2
immune response is present in all three phenotypes, with a peak in acute disease flares.
Here, the type-2 immune response is associated to a Th22- and Th17-driven inflammation
present in non-lesional skin, whereas Th22- and Th1-driven responses are abundant in
patients with the chronic form of AD. Epithelial dysfunction is present in non-lesional skin
and in patients with chronic AD [86].

In conclusion, stratification of AD patients into distinct cytokine-based endotypes
might contribute to more personalized medicine and may be important to better inform
which patients are most likely to benefit from specific targeted therapies and to design
disease-modifying strategies. Some biomarkers, such as CCL17 chemokine, are a consistent
measurement of AD severity in multiple clinical trials. However, multiple biomarkers will
probably be needed as a signature profile in AD to predict the severity, comorbidities, and
treatment response.

4. Involvement of Th1/Th2-Derived Cytokines in AD Comorbidities

Several studies have considered AD as a systemic disorder, due to its association to
a variety of conditions, known as atopic comorbidities. They include infectious, atopic,
autoimmune, cardiovascular, and psychiatric disorders, which share similar immune
pathogenic mechanisms with AD [87]. Frequent and severe bacterial and viral cutaneous
infections are typical comorbidities of AD. S. aureus is found in up to 90% of AD lesions,
while in healthy individuals, a 5–30% prevalence of colonization is reported [88]. This
agent seems to be involved in the pathogenesis of AD through the induction of IL-4, IL-13,
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and IL-22 [87]. The most common viral complication in AD patients is eczema herpeticum
(EH), which tends to be more frequent in individuals with evident Th2 polarization, and
consistent allergen sensitization. Th2/Th1 impaired balance leads to lower levels of antimi-
crobial peptides and barrier proteins. AD patients affected by EH also display low IFN-γ
levels and a down-regulation of IFN-γ receptors, resulting in defective responses to viral
multiplication [88].

The skin of individuals with AD clearly shows greater vulnerability to bacterial or
fungal colonization. The predominant skin infection in AD is caused by S. aureus and the
presence of specific IgE antibodies to Staphylococcus exotoxins (SE) has been demonstrated
in patients with AD [89]. Moreover, patients with moderate to severe AD appear to have
IgE to bacterial antigens more frequently than patients with mild symptoms. Furthermore,
these exotoxins may play a central role not only as “allergens”, but also as “superantigens”,
through the restricted non-MHC activation of T cells bearing the reactive TCRVβ family.
S. aureus is in fact able to generate a series of exotoxins with super-antigenic capacity that
can stimulate specific subsets of T lymphocytes. As a consequence, treatment of S. aureus
skin infections with specific antibiotics significantly reduces the clinical severity of the
disease [90].

Fungi are common and important allergens in the environment, and fungal sensiti-
zation to C. albicans, A. alternata, T., P. chrysogenum, A. fumigatus, and M. furfur is often
observed in AD. IgE sensitization to Malassezia is observed in AD and not in patients with
allergic rhinitis or asthma without AD. The presence in AD of specific IgE recognition of the
manganese superoxide dismutase (MnSOD), a protein probably involved in IgE-mediated
self-reactivity, has been demonstrated [91,92]. The hypothesis of a molecular mimicry
followed by cross reactivity was raised by Schmid-Grendelmeier et al., as a result of the
primary sensitization to MnSOD belonging to the Malassezia sympodialis. IgE-mediated
reactivity against self-proteins with structural similarity to exogenous allergens has been
hypothesized as a further potential mechanism involved in AD pathogenesis [93]. In ad-
dition to exogenous allergens, a specific IgE response can be directed against a range of
human proteins located in a variety of cell and tissue types [94]. In the last two decades,
five IgE-reactive auto allergens were identified using sera from severe AD patients on a
human cDNA library [95–98]. A significant correlation was observed between IgE self-
reactivity and AD severity. A reduction in the IgE response was observed after treatment
with cyclosporine, suggesting a role for self-reactive IgE as a marker of tissue damage.

The susceptibility to skin infections is caused, at least in part, by the reduced ex-
pression of the host defense peptides (HDPs) LL-37, hBD-2, and hBD-3 observed in AD
patients [99,100]. These peptides exhibit anti-microbial activities against skin pathogens,
pro- and anti-inflammatory properties, and immunomodulatory activities [101,102]. In
particular, HDPs induce cytokine and chemokine production and promote cell prolifer-
ation and migration [101,102]. HDPs also mediate the maintenance of epithelial barrier
function by regulating the trans-epidermal water loss and distribution of tight junction
proteins [103].

The reduced levels of HDPs may be explained by the predominance of Th2-derived
cytokines, which act as strong inhibitors of LL-37, hBD-2, and hBD-3 production [102,103]. The
pruritic cytokines, including IL-31 and TSLP, also have inhibitory effects on the production of
these anti-microbial peptides [104,105]. FLG gene mutation in AD skin promotes perturbation
of the skin barrier, but the impact of FLG on hBD levels remains controversial [99].

Atopic comorbidities, such as allergic rhinitis, asthma, and food allergy, are considered
as the major criteria for AD diagnosis. They share with AD the Th2 polarization of lympho-
cytes, regardless of the presence or absence of IgE. Even the eyes can be frequently affected
by the atopic condition, which may cause keratoconjunctivitis. Of note, the prevalence of
hand eczema and allergic contact dermatitis (ACD) is increased in patients with AD [106],
probably due to the action of the Th2-related (IL-4, IL-13, IL-25) and Th22-related (IL-22)
cytokines, which reduce FLG levels in keratinocytes. The subsequent barrier dysfunction
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allows penetration of irritants and contact allergens. In addition, AD and ACD appear to
share some immune pathways, including Th1, Th2, Th9, and Th17 [107,108].

Moreover, Koga C. et al. demonstrated a positive correlation of Th17 levels with AD
clinical severity [109], whereas Nakae S. et al. reported that ACD reaction is weaker in the
absence of IL-17 [110].

AD patients often use topical products, and these products may contain substances that
lead to contact sensitization [111]. The last suggested mechanism to explain the association
between AD and ACD is the skin bacterial colonization detected in most AD patients,
which may create an inflammatory environment favoring contact sensitization [112]. The
risk of irritative contact dermatitis is approximately three-fold in AD patients due to the
impaired barrier function. The altered function of FLG is a common pathogenic mechanism
in AD, and this can also be observed in ichthyosis vulgaris and keratosis pilaris. Indeed, an
association of these diseases with AD has been reported [106].

Furthermore, the increased Th17 activity could, at least in part, explain the associ-
ation between AD and some autoimmune diseases (i.e., inflammatory bowel diseases,
rheumatoid arthritis, and lupus erythematosus) [113]. The correlation between AD and
autoimmune diseases, including alopecia areata and vitiligo, could be due to the presence
of some specific susceptibility genes shared among them.

In addition, AD patients more frequently suffer from depression and suicidality [114].
According to some studies, they also are at an increased risk of developing attention deficit
hyperactivity disorder during childhood [115]. This could be explained by the relevant
impact of AD on the patients’ quality of life [116], and more specifically by the prevalence
and intensity of itching often associated with sleep disturbances, which may interfere with
brain development in children [117], but also by early exposure of the central nervous
system to inflammatory Th2 cytokines and systemic corticosteroids in pediatric age [118].

An increased risk of non-Hodgkin lymphomas has been observed in AD patients [119],
possibly due to chronic inflammation and Th2 polarization able to reduce Th1 anti-neoplastic
activity. An increased cardiovascular risk has even been found with a higher incidence of
myocardial infarction and congestive heart disease; however, this seems to be attributable
to poor health behaviors and more frequent cardiovascular risk factors rather than the
atopic condition itself [120].

5. Cytokines and Their Intracellular Effectors as Therapeutic Targets in AD

Therapeutic strategies for AD vary according to several factors, including the severity
of disease, extent and location of the affected body area, age, comorbidities, and quality of
life of the patient. In recent years, the therapeutic choice for moderate to severe AD has
been widened by the remarkable development of new target therapies, which not only
allow more personalized treatment, but also bypass the possible toxicities of conventional
therapies [121,122]. Some of these drugs are still in the trial phase, but others are already
approved by the FDA and EMA (Table 2).

Dupilumab is a human monoclonal antibody directed against subunit α of the IL-4
receptor, which is also part of the IL-13 receptor. Through inhibition of the signaling of these
two cytokines, dupilumab significantly improves Investigator’s Global Assessment (IGA),
EASI (Eczema Area and Severity Index), and symptoms [123]. The most frequently reported
adverse event in clinical trials in AD patients was conjunctivitis (8–22% of cases), but, in
patients without AD and treated with dupilumab, no conjunctivitis occurred, making this
a disease-specific adverse effect [124]. The safety and efficacy of dupilumab allowed its
approval in 2017 in the U.S. and in Europe for moderate-severe AD in adults [124] and its
recent approval even for adolescents from 12 years of age [125]. To date, it is not clear how
long the therapy should be continued or whether or not it can be alternated with other
therapeutic approaches.
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Table 2. Therapeutic approaches in AD: molecular and cellular targets of biologics and small molecules.

Biologics Molecular Target Intracellular Mediators Cellular Target

Dupilumab IL-4/IL-13 receptor
(α subunit) JAK1/JAK3 Keratinocytes, B cells, cutaneous peripheral

sensory neurons

Tralokinumab IL-13 receptor (α1 and α2 chains) JAK1/JAK2 Keratinocytes, B cells, cutaneous peripheral
sensory neurons

Lebrikizumab IL-13 receptor (α1 chain) JAK1/JAK2 Keratinocytes, B cells

Nemolizumab IL-31 receptor (α subunit) JAK1/JAK2 Immune cells, keratinocytes and cutaneous
peripheral sensory neurons

Etokimab IL-33 Myd88/IRAK-1/IRAK-4 Keratinocytes, cutaneous peripheral sensory
GBR830 and KHK4083 OX40 TRAF-5, -6, -2 Th2 cells

Tezepelumab TSLP JAK1, JAK2 DC, ILC2, MC, sensory neurons,
Ag-specific Th2 cells

Fezakinumb IL-22 TYK2, JAK1 Keratinocytes, dermal endothelial cells

Small Molecules Intracellular Target Cytokine Target Clinical Trial Stage

Tofacitinib JAK1/JAK3 IL-4, partly IL-13, TSLP, IL-22, IL-31 Phase II completed (Topical)
(NTC#02001181)

Baricitinib JAK1/JAK2 IL-13, TSLP, partly IL-4, IL-31, IL-22 Phase III completed
(NTC#03559270)

Peficitinib Pan-JAK IL-4, IL-13, IL-31, TSLP, IL-22 Phase II ongoing
(NTC#04218877)

Delgocitinib Pan-JAK IL-4, IL-13, IL-31, TSLP, IL-22 Phase II ongoing
(NTC#03725722)

Upadacitinib JAK1 Partly IL-4, IL-13, TSLP Phase III ongoing
(NTC#03569293)

Abrocitinib JAK1 Partly IL-4, IL-13, TSLP Phase III completed
(NTC#04564755)

The IL-13 signaling pathway is also blocked by other monoclonal antibodies currently
being tested, in particular tralokinumab and lebrikizumab, which showed excellent results
in clinical trials. Specifically, tralokinumab blocks the binding of IL-13 to both receptor
chains, whereas lebrikizumab only blocks binding to the α1 chain, conversely allowing
binding to the α2 chain, which plays a useful regulatory role [123] (Table 2).

Even the IL-31 pathway is currently under investigation. IL-31R seems to play a
key role in the modulation of pruritus in AD patients. Indeed, it is expressed not only
by immune cells, but also by keratinocytes and cutaneous peripheral sensory neurons.
Nemolizumab is a humanized antibody targeting α subunit of IL-31R that has shown
significant improvements in AD severity scores with few adverse effects (i.e., nasopharyn-
gitis and upper respiratory infections) [123]. There is no approved indication for this
drug yet [124]. Therapeutic strategies to inhibit IL-33 activity are under investigation as
treatments for moderate to severe AD.

An anti-IL-33 monoclonal antibody, etokimab, was used in recent phase 2 clinical
trials, showing an important reduction in skin inflammatory cascades [126].

Other signaling pathways under investigation are TSLP, OX40, and IL-22. TSLP acti-
vates dendritic cells, inducing Th2 polarization; it is the target of the human monoclonal
antibody tezepelumab, which shows positive results in trials. OX40 is a costimulatory
molecule of the TNF receptor, expressed mainly on T lymphocytes. Since the OX40 lig-
and is overexpressed on dendritic cells in AD patients, blocking this pathway is the new
target of monoclonal antibodies GBR830 and KHK4083. IL-22 is a major contributor
to cytokine-mediated dysfunction in keratinocytes and endothelial cells in AD. Fezak-
inumb, an IL-22 antagonist, has been developed, demonstrating good outcomes in phase
2 studies [123] (Table 2).

In addition to biological drugs, small-molecule inhibitors are a useful pharmacological
class in development for the treatment of AD. Some of these drugs directly block JAK/STAT
proteins, which are intracellularly activated by cytokine receptors and shared by groups
of cytokine signals, in particular those related to IL-4, IL-5, IL-13, IL-31 and TSLP. For
example, JAK1 is shared by signaling pathways induced by IL-4, TLSP, IL-13, IL-22 and
IFN-γ, whereas TYK2 is common to IL-13 and IL-22 signaling. Based on these molecular
features, most of JAK inhibitors synergistically act as inhibitors of both the inflammatory
responses and pruritus [127].
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Tofacitinib, a JAK1/JAK3 inhibitor, has been approved for RA and psoriatic arthritis,
whereas baricitinib is a JAK1/JAK2 inhibitor approved for RA and the treatment of AD
in Europe. Recently, baricitinib received emergency approval, in combination with the
antiviral remdesivir, for the treatment of COVID-19 [128]. Peficitinib is a pan-JAK inhibitor
approved in Japan for the treatment of RA, whereas delgocitinib (JTE-052) is a topical JAK
inhibitor approved in Japan for AD [129]. Finally, upadacitinib has a degree of selectivity
for JAK1 over JAK2 and is approved for the treatment of RA and AD in Europe [130].

The systemic JAK inhibitors (baricitinib, upadacitinib, and abrocitinib) show a rapid
efficacy with rapid improvement of pruritus and a good tolerability in AD patients. How-
ever, topical application of JAK inhibitors is expected to play an important role in new
therapeutic concepts for AD patient management, particularly for children (Table 2).

6. Conclusions

In summary, the complex clinical heterogeneity of AD needs newer and more effective
treatments that are able to control the disease and improve the quality of life of patients. To
date, biologics have showed long-term control of AD symptoms, whereas JAK inhibitors
provide rapid relief in pruritus and inflammation. However, although well-tolerated,
benefit–risk ratio of JAKs inhibitors remains a key issue for pharmacovigilance.

Some of these drugs even have the potential to modify the disease and could impact
the atopic march and other comorbidities, if applied in the early phase of AD. Of note,
specific cytokine profiles and barrier abnormalities characterize different AD groups and
should be carefully considered when future therapeutic agents are being developed or
tested for younger patients with AD. Therefore, accompanied by a deep characterization
of different phenotype and endotype subsets, the application of precision medicine could
provide new prospects for the optimal treatment of AD.
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