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Abstract

This review provides a summary of the current state of optical breast imaging and describes its potential future
clinical applications in breast cancer imaging. Optical breast imaging is a novel imaging technique that uses near-
infrared light to assess the optical properties of breast tissue. In optical breast imaging, two techniques can be
distinguished, i.e. optical imaging without contrast agent, which only makes use of intrinsic tissue contrast, and
optical imaging with a contrast agent, which uses exogenous fluorescent probes. In this review the basic concepts
of optical breast imaging are described, clinical studies on optical imaging without contrast agent are summarized, an
outline of preclinical animal studies on optical breast imaging with contrast agents is provided, and, finally, potential
applications of optical breast imaging in clinical practice are addressed. Based on the present literature, diagnostic
performance of optical breast imaging without contrast agent is expected to be insufficient for clinical application.
Development of contrast agents that target specific molecular changes associated with breast cancer formation is the
opportunity for clinical success of optical breast imaging.

Keywords: Optical imaging; Breast cancer; Fluorescence; Absorption; Molecular imaging.

Optical breast imaging is a novel imaging technique
that uses near-infrared (NIR) light to assess the optical
properties of tissue, and is expected to play an important
role in breast cancer detection. It dates back to 1929

Background

Breast cancer is a major global health problem. As of
2007, an estimated 1.3 million new cases of invasive

breast cancer are diagnosed annually and about
465,000 women are expected to die from this disease
worldwide!'!. X-Ray mammography is used in screening
programs and reduces mortality significantly due to ear-
lier detection of breast cancer!>*!. For younger women,
the benefit from screening with X-ray mammography is
markedly less than for women over the age of 50 years.
This is probably caused by the lower incidence of breast
cancer at a younger age, the more rapidly growing
tumours, and the higher radiographic breast density in
young women!*!. Sensitivity of X-ray mammography
for breast cancer detection in women with fatty breasts
is approximately 88%, but this sensitivity is strongly
reduced in women with dense breasts, i.e. 62%"!. This
is an important problem, especially since these women
have an increased risk of breast cancer!®l.

when Cutler investigated the shadows of light transmitted
through the breast with a normal lamp (transillumina-
tion)!". Although large malignant lesions with high vas-
cularization could be detected, the method did not
achieve sufficient sensitivity and specificity to be used
in clinical practice at the time. During the last decade,
progress in source and detector technology, light propa-
gation modelling, and potential fluorescent contrast
agents, has resulted in a renewed interest in optical
imaging!®. Optical breast imaging uses near-infrared
(NIR) light in the wavelength range of 600—1000 nm to
assess the optical properties of tissue. Functional infor-
mation on tissue components, i.e. absorption character-
istics of oxy- and deoxyhaemoglobin, water, and lipid, can
be obtained by combining images acquired at various
wavelengths. When using only intrinsic breast tissue
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contrast in optical breast imaging, this is referred to as
optical breast imaging without contrast agent. The other
modality, i.e. optical breast imaging with a contrast agent,
uses exogenous fluorescent probes that target molecules
specific for breast cancer. The use of fluorescent probes
has great potential in early breast cancer detection, since
in vivo imaging of molecular changes associated with
breast cancer formation is technically feasible.
Additional advantages of optical breast imaging are that
it uses no ionizing radiation and it is relatively inexpen-
sive, which can realize repeated use (also in young
women) and easy access to the technique. The aim of
this review is to provide a summary of the current state of
optical breast imaging and to describe its potential future
clinical applications in breast cancer imaging.

The basic concepts of optical
breast imaging

In general, optical imaging devices transmit light through
the breast, where it is both absorbed and scattered by the
tissue components present. NIR in the wavelength range
of 600—1000nm is used to allow for sufficient tissue
penetration. After passing through the breast, the remain-
ing light is registered by detectors and advanced com-
puter algorithms are used to reconstruct the images
(Figs. 1 and 2)[9_“]. Determining tissue properties and
their spatial distribution is complex due to the irregular
and long pathways over which light travels through the
breast!!?!.

Different optical breast imaging systems have been
investigated. In transillumination, sources and detectors
are positioned at opposite sides of the breast. This gen-
erates two-dimensional projection views, comparable to

Figure 1 Prototype of the diffuse optical tomography
system used for clinical research (Philips Healthcare,
Best, The Netherlands).

Figure 2 Concepts of optical breast imaging. Optical
breast imaging lay-out (A) with source and detector fibres
covering the entire breast surface. In optical breast
imaging without contrast agent (B) higher absorption by
tumour components (predominantly haemoglobin) results
in decreased light intensity registered by the detectors.
In optical breast imaging with contrast agent (C) a fluores-
cent probe is administered that ideally accumulates at the
tumour site. After excitation, light is emitted at a higher
wavelength by this agent and the excitation wavelength
is filtered to only detect the fluorescent signal.
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X-ray mammography, and wusually requires breast
compression[13_17]. In tomography, sources and detectors
are placed over the entire breast surface!'®1%) This
enables the acquisition of three-dimensional optical
breast images. Another approach is the use of handheld
devices that are placed manually at the position of inter-
est, comparable to imaging with ultrasound probes[zo_n].

Although companies and academic institutions have
put vast effort into designing optical breast
imaging systems, only three of them are commercially
available at this moment. The ComfortScan® system,
developed by DOBI Medical, is a transillumination
system that requires breast compression to generate
two-dimensional optical images (http://www.dobimedi-
cal.com/dobisys1.html).  SoftScan®, by Advanced
Research Technologies Inc. (ART), is a system that
uses slight breast compression, but is able to generate
tomographic images of a chosen region of interest of
the breast. This is the only commercial system that
uses more than one laser, namely four, to be able to
transmit light of different wavelengths through the
breast (http://www.art.ca/en/products/ softscan.html)[23].
The Computed Tomography Laser Mammography
system CTLM®, developed by Imaging Diagnostic
Systems Inc. (IDSI), is a tomographic system that
requires no breast compression to generate volumetric
optical images of the breast (http://www.imds.com/
products/ctlm/).

All optical imaging systems in general, use three differ-
ent illumination methods: time domain, frequency
domain, and continuous wave. The time domain tech-
nique uses short (50—400 ps) light pulses to assess the
temporal distribution of photons[15'16’24]. In this way,
distinction between scattering and absorption can be
made. This technology collects the most information on
the optical properties of tissue and therefore has
better contrast and spatial resolution compared to the
other methods. However, time domain equipment is
more expensive and acquisition times are longer.
Frequency domain devices modulate the amplitude of
the light that is continuously transmitted at high frequen-
cies (50-500 MHZ)[25]. By measuring phase shifts
of photons and their amplitude decay (compared to a

(@) MRI (b)

enhanced-water map (c)

reference signal), information on the optical properties
of tissue is acquired and scattering and absorption can be
distinguished. Frequency domain devices could generate
the same information as time domain systems if a large
range of frequencies is used?!. Continuous wave Sys-
tems emit light at constant intensity or modulated at
low frequencies (0.1—-100 kHz)[26]. It is a straightforward
technique, which basically measures the attenuation of
light transmitted between two points on the breast sur-
face. Because of its simplicity, continuous wave equip-
ment is cheap and image acquisition fast. However, it is
very difficult to discriminate scattering from absorption
with this technique and data analysis requires complex
reconstruction algorithmsm].

Optical breast imaging without
contrast agent

Optical breast imaging uses NIR light to assess the opti-
cal properties of breast tissue. Light absorption at these
wavelengths is minimal, allowing for sufficient tissue
penetration (up to 15cm). The main components of
the breast all have specific absorption characteristics as
a function of the wavelength. By combining images
acquired at various wavelengths (spectroscopy), concen-
trations of oxy- and deoxyhaemoglobin, water and lipid
can be determined. Fig. 3 demonstrates an example of a
benign cyst imaged with both magnetic resonance ima-
ging (MRI) and optical imaging; spectroscopic analysis
of the optical data confirmed the high water and low
blood concentration in this lesion!?3!.

In a malignant tumour, haemoglobin concentration is
directly related to angiogenesis, the key factor required
for tumour growth and metastases'>’!. In addition, the
proportions of oxy- and deoxyhaemoglobin change in
such a tumour due to its metabolism'°!. By measuring
the concentrations of the breast components, discrimina-
tion of benign and malignant tumours may be possible
with diffuse optical imaging (Fig. 2A and B).

Clinical studies thus far performed using optical
breast imaging without contrast agent are shown
in Table 11372431341 Cqge reports are not presented
in this overview. Most studies report the number of

enhanced-blood map

Figure 3 T2-weighted MRI with fat-suppression compared to the enhanced-water map and the enhanced-blood map of
the optical data set. The cyst shows a high signal intensity on the MRI and the enhanced-water map (high water content),
and a low signal intensity on the enhanced-blood map (low blood content)lzs].
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lesions detected on the optical images (detection rates),
irrespective of their classification (benign/malignant).
Sensitivity and specificity have not been determined
yet. Detection rates for carcinomas range from 0.50 to
1.00 in these studies. Studies performed with handheld
devices report high detection rates (0.95—1.00)[20_22].
Detection rates for the transillumination approach
range from 0.58 to 0.941137171 With tomography, carci-
nomas were detected in 74%'8! and 50%''°). Detection
rates of benign lesions vary between 0.04 and
0.94114-21311 Benign cysts were detected with tomogra-
phy in 83931, Malignant lesions were detected by their
higher optical attenuation compared to the surrounding
tissue, mainly related to increased light absorption by
their higher haemoglobin content!?°~2*33341 " Solid
benign lesions were more difficult to detect, but some-
times showed increased attenuation, although to a lesser
extent than malignant lesions! 14721311 Ag opposed to the
other lesions, benign cysts showed lower optical attenua-
tion, associated with lower light absorption or scattering
by their high water content!'®?*311 Some groups found
lower oxygenation for carcinomas compared to the sur-
rounding tissue[2123:24331 Ip addition, Cerussi et al.
described increased water content and decreased lipid
content in malignant lesions, and age-dependency of
the tumour spectra[33]. This group also investigated the
response to chemotherapy in breast cancer patients and
reported significant decrease in deoxyhaemoglobin (27%)
and relative water content (20%) in responders compared
to non-responders; oxyhaemoglobin decreased in both
groups, but significantly more in responders (33%) com-
pared to non-responders (18%)[32].

Optical breast imaging with
contrast agent

In optical breast imaging with contrast agent, fluorescent
probes are used that emit photons at predefined wave-
lengths after excitation by laser light. These photons are
detected while the light of the excitation wavelength is
filtered (Fig. 2C).

Fluorescent probes that target molecules specific for
breast cancer are currently being developed and validated
in preclinical animal studies. An overview of these studies
is provided in Table 2°°~*31 All animal studies were
performed with breast cancer mouse models with NIR
continuous wave optical imaging devices. In most studies,
transillumination was used, but two research groups
applied a tomographic approach[3 SAlA variety of opti-
cal probes for specific breast cancer cell targeting has
been designed. The group of Bremer and Mahmood
et al. developed so-called ‘smart’ optical probes to
target proteases[35_37]. These probes are non-fluorescent
in their native state, but convert to a highly fluorescent
active state when their backbone is cleaved by cathepsins.
In four animals with human breast cancer xenografts,
tumours showed a strong fluorescence signal in vivo

after injection of the cathepsin-sensing probe. Signal-to-
noise ratio (SNR) after 48h was 21 in tumours with
mean diameters <2mm. The smallest detectable
tumour was <lmm in diameter’®’!. This technique
using smart optical probes also showed good results in
transgenic mice that spontaneously developed tumours.
With transillumination, all 24 tumours in 10 animals
could be clearly delineated after injection of the cathe-
psin-sensing probe. Tumour fluorescence in vivo was sig-
nificantly higher compared to background fluorescence
measured in the adjacent skin (380 £23 AU vs. 179+ 8
AU; p<0.01). Tomography was performed in four ani-
mals; co-registration with MRI revealed a strong fluores-
cence signal within the tumour tissue and virtually no
background fluorescence in the corresponding slices!®°!.
Differences in tumour aggressiveness could be depicted
by this technique when comparing eight well-differen-
tiated, with eight highly invasive metastatic human
breast cancer models. The highly aggressive cancers,
which expressed higher levels of proteases, revealed sig-
nificantly higher tumour fluorescence compared to well-
differentiated tumours (861 488 AU vs. 566 =36 AU;
p<0.01). Tumours in non-injected animals were not vis-
ible due to identical autofluorescence in tumour and adja-
cent skin'*®!.

Three research groups focused on targeting the human
epidermal growth factor-2 (HER2) receptor with probes

containing the humanized monoclonal anti-HER2
antibody trastuzumab, Herceptin, coupled to an NIR
dye®****2] Hilger er al. compared such probes in

three animals with HER2-overexpressing tumours and
three animals with normal HER2-expression. Distinctly
higher relative fluorescence signals were found in
the tumours with HER2-overexpression compared to
the tumours with normal HER2-expression (e.g. 16h
after injection: 2.2 £0.1 vs. 1.3 :i:0.2)[39]. Sampath and
colleagues designed a duallabelled probe consisting of
trastuzumab as targeting component, an iy complex
as radiotracer, and an NIR dye as optical signal genera-
tor. Fluorescence signal intensities obtained after injec-
tion with this HER2-specific probe in three mice bearing
HER2-overexpressing tumours, were significantly higher
(tumour-to-muscle ratio (TMR) 2.25 £0.2) compared to
fluorescence signal intensities after injection of two non-
specific probes (TMR 1.354+0.1 and 1.4440.18;
p<0.001), each administered in five mice. TMR in
five mice pre-injected with trastuzumab before receiving
the HER2-specific probe was significantly lower than
in the mice not pre-injected (p =0.0048). Single photon
emission computed tomography (SPECT) fused with
computed tomography (CT) showed similar patterns
in probe uptakeml, Montet et al. co injected two optical
probes, an NIR fluorochrome labelled vascular
marker (Angiosense-750) and Herceptin coupled to an
NIR dye, at the same time in an HER2-overexpressing
breast cancer mouse model. This model showed
significant tumoural uptake of both the vascular
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Results

Injection

Optical imaging probe

Use of other Target

Imaging approach modality

System

Subjects (n)

Author (year)

Wavelengths

Technique

(nm) excitation/

emission

Distinct fluorescence signal
in HER2-overexpressing

Intravenous

Herceptin (monoclonal antibody)

coupled to Cy5.5

HER2

Transillumination

675/708

Continuous

wave

Mice bearing

Hilger et al.

human breast

(2004)13!

tumours compared to normal

expressing tumours

cancer xenograft
in thigh, with or

without HER2-

overexpression (6)
Mice bearing

Significant fluorescence

Angiosense-750 (an NIR fluoro- Intravenous

Angiogenesis
and HER2

MRI and

Tomography

672, 748

Continuous

wave

Montet et al.
(2005)!41

signal at tumour site for both
the HER2 and the angiogen-
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marker (3.1£0.5%) and the HER2-specific probe
(14.7 &+ 1.3 pmol), indicating that studying two different
physiologic variables simultaneously is feasible with this
technique[41 1

Ke et al. used human epidermal growth factor (EGF)
coupled to an NIR dye to detect the EGF receptor in
breast cancer cells. A fluorescence signal was clearly
visualized in EGF receptor-positive tumours but not in
EGF receptor-negative tumours. The uptake of the probe
was blocked by the anti-EGF receptor antibody C225,
indicating specificity of the probe for the EGF recep-
tor*°!. Another target for breast cancer detection with
fluorescent probes is the Interleukin-11 receptor alpha-
chain, investigated by Wang et al. They designed a
duallabelled probe consisting of a cyclic nonapeptide
as targeting component, an iy complex as radiotracer,
and an NIR dye as optical signal generator. Both optical
imaging and SPECT/CT showed high uptake of this
probe at the tumour site in mice!*4!.

Non-specific tumour accumulation through polymeric
micelles was studied by Yang et al. These micelles
remained in the circulation for a prolonged time and
effectively accumulated at the tumour site through micro-
vascular hyperpermeability, displaying a strong fluores-
cence signal[45 I

Aforementioned studies demonstrate proof of principle
of optical breast imaging with fluorescent probes in an
animal model. Thus far, only two clinical optical breast
imaging studies with contrast agent have been described
in the literature, both using Indocyanine Green (ICG) in
3 patients[46’47]. ICG is a non-specific blood pool agent
that is both absorbing and fluorescent in the NIR range.
It is used clinically, mainly for retinal angiography and
liver function tests. Both studies observed differences in
ICG pharmacokinetics between malignant and benign
lesions on the optical images. In the study by Intes
et al. a maximal increase in absorption of 0.042 cm™!
was measured in an invasive ductal carcinoma. For an
adenoma, an absorption increase of 0.025 cm~! was
found. The absorption increase observed in a fibroade-
noma was ~0.03 cm~'*¢! In a patient with invasive
ductal carcinoma Ntziachristos ez a/. found an increase
in absorption at the tumour position of ~0.05 cm™!. The
increase in absorption in a fibroadenoma was ~0.03
cm~ L In healthy tissue some moderate enhancements
were seen of ~0.025 cm™ 1471,

Discussion

Clinical studies performed on optical breast imaging
without contrast agent showed cancer detection rates
ranging from 0.50 to 1.00 for different optical imaging
systems. Since knowledge on lesion localization within
the breast was available in almost all studies, true detec-
tion rates will probably be substantially lower.
Information available from the literature is too scarce
to determine sensitivity and specificity of optical breast
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imaging without the use of contrast agent for breast
cancer detection. Although differences were found in
haemoglobin and oxygenation between carcinomas and
benign lesions, the sensitivity and specificity achieved
by optical breast imaging without contrast agent seem
currently insufficient to use this modality in clinical prac-
tice. In a study setting, optical breast imaging without
contrast agent is presently being explored to evaluate
the response to neoadjuvant chemotherapy in patients
with a known breast cancer. These patients have large
tumours the position of which is known a priori.
Biochemical changes in tumour tissue often precede
anatomical alterations (e.g. tumour shrinkage) after che-
motherapy. Optical breast imaging can thus potentially
be applied to predict the response to neoadjuvant chemo-
therapy earlier in the treatment cycle.

Preclinical studies showed that probes designed to
target specific proteins characteristic for breast cancer
can successfully detect breast tumours using optical ima-
ging in animal models. Optical imaging probes have been
developed to target the following proteins: Cathepsin
B and H, HER2, EGF receptor, and Interleukin-11 recep-
tor alpha-chain. Blood pool agents without a specific
target, such as Angiosense-750, ICG, and polymeric
micelles, have also been assessed to visualize tumours
and their associated angiogenesis. With the exception
of ICG, the optical probes have not yet been tested in
humans. In breast cancer mouse models, optical imaging
with contrast agent showed very promising results.
A strong fluorescence signal was obtained from tumour
tissue in comparison to tissue that did not overexpress
the target of interest. Most studies confirmed their results
with histology and/or SPECT/CT imaging of probe
uptake.

As mentioned before, breast imaging modalities in
current use have some limitations. The sensitivity
of X-ray mammography for breast cancer detection is
reduced in women with dense breasts (62%)[5]. This
issue is especially important since these women have an
increased risk of breast cancer!®!. Breast MRI has high
sensitivity (>95%) and is currently used in clinical prac-
tice as an adjunct to X-ray mammography for screening
of high risk patients[48’49]. Despite substantial improve-
ments in imaging technology, MRI in general only
allows lesion detection and classification when tumour
size is 5mm or more®°!. As lesion size upon discovery
decreases with more efficient screening programs, the
need for a non-invasive tool that provides more specific
information on small breast lesions becomes obvious.

Optical breast imaging could be the modality with this
potential, because of its molecular imaging capability.
Molecular imaging is defined as the visualization, char-
acterization, and measurement of biological processes at
the molecular and cellular levels in humans and other
living systems[sn. A major advantage is that molecular
changes associated with cancer formation may possibly
be detected at a very early stage, even before anatomical

changes occur. With the use of target-specific probes,
optical imaging could be a valid candidate for the
early detection of breast cancer, e.g. in young women
with dense breasts. Other potential applications of this
technique may be the selection of appropriate treatment
and evaluation of response to treatment in breast
cancer patients. If the molecular characteristics of
breast tumours can be identified in vivo using optical
breast imaging with contrast agents, this molecular
tumour profile can be used to select appropriate therapies
for individual patients (personalized medicine).
Moreover, response to therapy can be evaluated using
the same imaging technique.

Important advantages of optical imaging with contrast
agent are that it does not use any radioactive components
(as in positron emission tomography (PET) and
SPECT), and that its sensitivity for probe detection is
very high (possibly in the nanomolar to the 100 picomo-
lar concentration range) as compared to MRI (micro-
molar to millimolar range). Moreover, optical imaging
uses no ionizing radiation and can thus be used repeat-
edly, also in younger women. Non-toxic fluorescent
probes that can be applicable in clinical practice are
currently being developed. At present, a single molecular
marker that is expressed by all different types of breast
cancers is not available. Likely, a combination of fluores-
cent probes would have to be administered to be able to
detect all breast cancer types with this technique. The use
of a single probe targeting one of the breast cancer types
could nevertheless be valuable to select patients for, and
monitor certain cancer treatments. The need to inject one
or more contrast agent(s) intravenously prior to the opti-
cal imaging studies may comprise some practical limita-
tions. For instance, interactions between the probes need
to be thoroughly investigated, as well as the optimal ima-
ging time points after their injection. Another limitation
of optical breast imaging is its low spatial resolution.
Spatial resolution in optical imaging is dependent on
the length of the light pathways, resulting in lower spatial
resolution when tissue penetration is deeper. If detailed
anatomical information is also needed, a second imaging
technique or a multi-modality imaging approach in which
the optical scanner is combined with another modality
(e.g. MRI, ultrasound) could offer a solution.

In conclusion, the diagnostic performance of optical
breast imaging without contrast agent is likely inadequate
for clinical application. Development of contrast agents
that target specific molecular changes associated with
breast cancer formation is the opportunity for clinical
success of optical breast imaging.
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