

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(Z)-2-(5-Acetyl-4-methyl-3-phenyl-2,3dihydro-1,3-thiazol-2-ylidene)-3-(3methyl-1-benzofuran-2-yl)-3-oxopropanenitrile

Hoong-Kun Fun,^a*‡Ching Kheng Quah,^a§Hatem A. Abdel-Aziz^b and Hazem A. Ghabbour^b

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^bDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia Correspondence e-mail: hkfun@usm.my

Received 24 July 2012; accepted 8 August 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.005 Å; R factor = 0.044; wR factor = 0.119; data-to-parameter ratio = 10.3.

In the title compound, $C_{24}H_{18}N_2O_3S$, the benzofuran ring system (r.m.s. deviation = 0.010 Å) forms dihedral angles of 83.13 (17) and 8.92 (14)° with the benzene and thiazole rings, respectively. The dihedral angle between the benzene and thiazole rings is 84.51 (19)°. The molecular structure features an intramolecular C-H···O hydrogen bond, which closes an S(6) ring. There are no intermolecular hydrogen bonds observed in this structure.

Related literature

For background to and the biological activity of benzofuran derivatives, see: Abdel-Aziz *et al.* (2009); Abdel-Wahab *et al.* (2009). For further synthetic details, see: Dawood *et al.* (2005). For hydrogen-bond motifs, see: Bernstein *et al.* (1995). For related structures, see: Fun *et al.* (2012); Abdel-Aziz *et al.* (2012).

Experimental

Crystal data C₂₄H₁₈N₂O₃S

 $M_r = 414.46$

Monoclinic, $P2_1$	
a = 9.7836 (4) Å	
b = 6.3682 (3) Å	
c = 16.2330 (6) Å	
$\beta = 100.351 \ (3)^{\circ}$	
V = 994.92 (7) Å ³	

Data collection

Bruker SMART APEXII CCD	7151 measured reflections
diffractometer	2831 independent reflections
Absorption correction: multi-scan	2310 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2009)	$R_{\rm int} = 0.041$
$T_{\min} = 0.306, \ T_{\max} = 0.906$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.044$	H-atom parameters constrained
$vR(F^2) = 0.119$	$\Delta \rho_{\rm max} = 0.25 \text{ e } \text{\AA}^{-3}$
S = 1.01	$\Delta \rho_{\rm min} = -0.32 \text{ e } \text{\AA}^{-3}$
2831 reflections	Absolute structure: Flack (1983),
275 parameters	831 Friedel pairs
restraint	Flack parameter: 0.03 (3)

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
C14−H14A····O3	0.96	2.30	2.999 (5)	129

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

The authors thank the Deanship of Scientific Research and the Research Center, College of Pharmacy, King Saud University. HKF and CKQ thank Universiti Sains Malaysia (USM) for the Research University Grant (No. 1001/PFIZIK/ 811160).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6913).

References

- Abdel-Aziz, H. A., Abdel-Wahab, B. F., El-Sharief, M. A. M. Sh. & Abdulla, M. M. (2009). *Monatsh. Chem.* 140, 431–437.
- Abdel-Aziz, H. A., Ghabbour, H. A., Chantrapromma, S. & Fun, H.-K. (2012). Acta Cryst. E68, 01255–01256.
- Abdel-Wahab, B. F., Abdel-Aziz, H. A. & Ahmed, E. M. (2009). Monatsh. Chem. 140, 601–605.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dawood, K. M., Farag, A. M. & Abdel-Aziz, H. A. (2005). *Heteroat. Chem.* 16, 621–627.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Fun, H.-K., Quah, C. K. & Abdel-Aziz, H. A. (2012). Acta Cryst. E68, 01682. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Z = 2

Cu $K\alpha$ radiation

 $0.92 \times 0.09 \times 0.06 \; \text{mm}$

 $\mu = 1.69 \text{ mm}^{-1}$

T = 296 K

[‡] Thomson Reuters ResearcherID: A-3561-2009. § Thomson Reuters ResearcherID: A-5525-2009.

Acta Cryst. (2012). E68, o2727

supplementary materials

Acta Cryst. (2012). E68, o2727 [doi:10.1107/S1600536812035039]

(Z)-2-(5-Acetyl-4-methyl-3-phenyl-2,3-dihydro-1,3-thiazol-2-ylidene)-3-(3-methyl-1-benzofuran-2-yl)-3-oxopropanenitrile

Hoong-Kun Fun, Ching Kheng Quah, Hatem A. Abdel-Aziz and Hazem A. Ghabbour

Comment

In continuation of our interest in the structures and properties of benzofuran derivatives (Abdel-Aziz *et al.*, 2009; Abdel-Wahab *et al.*, 2009), we publish here the crystal structure of the title compound.

In the title molecule, Fig. 1, the benzofuran-2-yl ring system (O1/C1-C8, r.m.s. deviation = 0.010 Å) forms dihedral angles of 83.13 (17) and 8.92 (14)° with the benzene (C18-C23) and thiazol (S1/N1/C11-C13) rings, respectively. The dihedral angle between benzene and thiazol rings is 84.51 (19)°. Bond lengths and angles are comparable to related structures (Fun *et al.*, 2012; Abdel-Aziz *et al.*, 2012). The crystal structure is features an intramolecular C14–H14A···O3 hydrogen bond, forming an S(6) ring motif (Bernstein *et al.*, 1995).

There is no significant intermolecular hydrogen bond observed in this compound.

Experimental

To a solution of 2-cyano-2-(3-methylbenzofuran-2-carbonyl)thioacetanilide (Dawood *et al.*, 2005), (0.33 g, 1 mmol) in ethanol (25 mL) and 3-chloropentane-2,4-dione (0.135 g, 1 mmol), triethylamine (0.2 mL) was added. The mixture was refluxed for 2 h, and then allowed to cool. The formed solid was filtered off, washed with ethanol, and recrystallized from EtOH/DMF solution to afford yellow needles of the title compound.

Refinement

All H atoms were positioned geometrically and refined using a riding model with C-H = 0.93 or 0.96 Å and $U_{iso}(H) = 1.2$ or 1.5 $U_{eq}(C)$. A rotating-group model was applied for the methyl groups. The reported Flack parameter was obtained by TWIN/BASF procedure in SHELXL (Sheldrick, 2008).

Computing details

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT* (Bruker, 2009); program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008) and *PLATON* (Spek, 2009).

Figure 1

The molecular structure of the title compound showing 30% probability displacement ellipsoids for non-H atoms. Intramolecular hydrogen bond is shown as dashed line.

(Z)-2-(5-Acetyl-4-methyl-3-phenyl-2,3-dihydro-1,3-thiazol-2-ylidene)- 3-(3-methyl-1-benzofuran-2-yl)-3-oxopropanenitrile

Crystal data

$C_{24}H_{18}N_2O_3S$	F(000) = 432
$M_r = 414.46$	$D_{\rm x} = 1.383 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1$	Cu <i>K</i> α radiation, $\lambda = 1.54178$ Å
Hall symbol: P 2yb	Cell parameters from 1283 reflections
a = 9.7836 (4) Å	$\theta = 2.8 - 65.0^{\circ}$
b = 6.3682 (3) Å	$\mu = 1.69 \text{ mm}^{-1}$
c = 16.2330 (6) Å	T = 296 K
$\beta = 100.351 \ (3)^{\circ}$	Needle, yellow
V = 994.92 (7) Å ³	$0.92 \times 0.09 \times 0.06 \text{ mm}$
Z = 2	
Data collection	
Bruker SMART APEXII CCD	Graphite monochromator
diffractometer	φ and ω scans
Radiation source: fine-focus sealed tube	

Absorption correction: multi-scan (*SADABS*; Bruker, 2009) $T_{min} = 0.306$, $T_{max} = 0.906$ 7151 measured reflections 2831 independent reflections 2310 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.044$	H-atom parameters constrained
$wR(F^2) = 0.119$	$w = 1/[\sigma^2(F_o^2) + (0.0714P)^2]$
S = 1.01	where $P = (F_o^2 + 2F_c^2)/3$
2831 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
275 parameters	$\Delta \rho_{\rm max} = 0.25 \ { m e} \ { m \AA}^{-3}$
1 restraint	$\Delta \rho_{\rm min} = -0.32 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 831 Friedel pairs
Secondary atom site location: difference Fourier	Flack parameter: 0.03 (3)
map	

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

 $R_{\rm int} = 0.041$

 $h = -11 \rightarrow 11$

 $k = -6 \rightarrow 7$ $l = -19 \rightarrow 19$

 $\theta_{\rm max} = 69.8^{\circ}, \ \theta_{\rm min} = 2.8^{\circ}$

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates an	d isotropic or	• equivalent	isotropic	displacement	parameters	$(Å^2)$?)
----------------------------------	----------------	--------------	-----------	--------------	------------	---------	----

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S1	0.23468 (9)	0.89038 (14)	0.13562 (4)	0.0454 (2)	
N1	0.1798 (2)	0.8805 (5)	0.28286 (14)	0.0386 (6)	
N2	0.3568 (3)	0.4048 (7)	0.39528 (18)	0.0667 (9)	
01	0.4965 (2)	0.1891 (4)	0.26849 (14)	0.0482 (6)	
O2	0.3871 (3)	0.5930 (5)	0.11922 (15)	0.0618 (8)	
03	-0.0119 (3)	1.3800 (6)	0.12668 (17)	0.0857 (11)	
C1	0.4888 (4)	0.3163 (6)	0.1977 (2)	0.0452 (8)	
C2	0.5710 (4)	0.2416 (6)	0.1451 (2)	0.0454 (8)	
C3	0.6340 (3)	0.0518 (6)	0.1842 (2)	0.0462 (9)	
C4	0.7255 (4)	-0.0986 (8)	0.1629 (2)	0.0600 (10)	
H4A	0.7602	-0.0871	0.1134	0.072*	
C5	0.7627 (4)	-0.2620 (7)	0.2159 (3)	0.0659 (12)	
H5A	0.8227	-0.3641	0.2020	0.079*	
C6	0.7126 (4)	-0.2797 (7)	0.2907 (3)	0.0615 (11)	
H6A	0.7400	-0.3935	0.3258	0.074*	
C7	0.6235 (3)	-0.1329 (7)	0.3142 (2)	0.0542 (9)	
H7A	0.5910	-0.1428	0.3645	0.065*	
C8	0.5854 (3)	0.0286 (6)	0.2590 (2)	0.0446 (8)	

C9	0.4003 (4)	0.5035 (6)	0.1875 (2)	0.0453 (8)
C10	0.3304 (3)	0.5853 (6)	0.2518 (2)	0.0398 (7)
C11	0.2520 (3)	0.7699 (5)	0.23210 (18)	0.0366 (7)
C12	0.1271 (4)	1.0842 (6)	0.1664 (2)	0.0440 (8)
C13	0.1085 (3)	1.0533 (6)	0.2467 (2)	0.0421 (8)
C14	0.0248 (4)	1.1810 (7)	0.2967 (2)	0.0532 (10)
H14A	-0.0085	1.3050	0.2659	0.080*
H14B	0.0819	1.2204	0.3489	0.080*
H14C	-0.0527	1.0996	0.3075	0.080*
C15	0.0719 (4)	1.2547 (6)	0.1092 (2)	0.0514 (9)
C16	0.1266 (4)	1.2735 (7)	0.0292 (2)	0.0591 (11)
H16A	0.1020	1.4083	0.0044	0.089*
H16B	0.0871	1.1649	-0.0087	0.089*
H16C	0.2259	1.2593	0.0406	0.089*
C17	0.3444 (3)	0.4875 (6)	0.3318 (2)	0.0446 (8)
C18	0.1851 (3)	0.8306 (5)	0.37089 (19)	0.0377 (7)
C19	0.0806 (4)	0.7114 (6)	0.3935 (2)	0.0488 (8)
H19A	0.0069	0.6639	0.3535	0.059*
C20	0.0879 (5)	0.6641 (7)	0.4774 (3)	0.0629 (11)
H20A	0.0178	0.5853	0.4943	0.076*
C21	0.1971 (5)	0.7323 (9)	0.5355 (2)	0.0687 (13)
H21A	0.2022	0.6964	0.5915	0.082*
C22	0.2995 (4)	0.8532 (8)	0.5121 (2)	0.0669 (13)
H22A	0.3730	0.9003	0.5524	0.080*
C23	0.2939 (3)	0.9058 (7)	0.4283 (2)	0.0496 (9)
H23A	0.3621	0.9895	0.4118	0.059*
C24	0.5966 (5)	0.3262 (8)	0.0633 (2)	0.0680 (12)
H24D	0.6159	0.4739	0.0688	0.102*
H24C	0.5157	0.3040	0.0211	0.102*
H24B	0.6746	0.2552	0.0476	0.102*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0576 (5)	0.0388 (5)	0.0416 (4)	0.0113 (4)	0.0137 (3)	0.0032 (4)
N1	0.0428 (14)	0.0336 (15)	0.0403 (12)	0.0021 (14)	0.0101 (10)	0.0002 (14)
N2	0.088 (2)	0.057 (2)	0.0603 (18)	0.032 (2)	0.0280 (16)	0.015 (2)
01	0.0559 (15)	0.0382 (15)	0.0538 (13)	0.0121 (11)	0.0188 (11)	-0.0001 (12)
O2	0.0834 (19)	0.0566 (19)	0.0504 (14)	0.0275 (16)	0.0252 (13)	0.0067 (14)
O3	0.103 (2)	0.080(2)	0.0808 (19)	0.051 (2)	0.0368 (16)	0.034 (2)
C1	0.051 (2)	0.037 (2)	0.0476 (19)	0.0041 (15)	0.0099 (15)	-0.0022 (15)
C2	0.051 (2)	0.038 (2)	0.0480 (18)	0.0042 (16)	0.0122 (15)	-0.0086 (15)
C3	0.042 (2)	0.043 (2)	0.0524 (19)	0.0005 (15)	0.0056 (15)	-0.0141 (17)
C4	0.056 (2)	0.057 (3)	0.067 (2)	0.012 (2)	0.0123 (17)	-0.021 (2)
C5	0.056 (2)	0.050 (3)	0.089 (3)	0.021 (2)	0.005 (2)	-0.018 (2)
C6	0.052 (2)	0.041 (2)	0.087 (3)	0.0102 (18)	0.002 (2)	0.003 (2)
C7	0.048 (2)	0.046 (2)	0.069 (2)	0.0011 (19)	0.0105 (16)	0.001 (2)
C8	0.0388 (19)	0.035 (2)	0.060(2)	0.0044 (15)	0.0093 (15)	-0.0044 (16)
C9	0.056 (2)	0.032 (2)	0.0478 (18)	0.0040 (17)	0.0091 (15)	-0.0048 (16)
C10	0.0428 (19)	0.0297 (18)	0.0475 (17)	-0.0001 (14)	0.0095 (14)	0.0002 (15)

0.0422 (18)	0.0340 (19)	0.0343 (15)	-0.0012 (14)	0.0086 (13)	-0.0007 (13)
0.049 (2)	0.037 (2)	0.0472 (18)	0.0065 (16)	0.0119 (15)	0.0031 (16)
0.042 (2)	0.035 (2)	0.0489 (17)	0.0040 (14)	0.0060 (14)	0.0010 (15)
0.060 (2)	0.046 (2)	0.055 (2)	0.0197 (19)	0.0148 (17)	0.0006 (19)
0.057 (2)	0.040 (2)	0.057 (2)	0.0123 (17)	0.0098 (17)	0.0071 (17)
0.072 (3)	0.052 (3)	0.052 (2)	0.008 (2)	0.0094 (18)	0.0144 (19)
0.047 (2)	0.0349 (19)	0.055 (2)	0.0070 (16)	0.0174 (16)	-0.0003 (17)
0.0425 (18)	0.0314 (19)	0.0407 (16)	0.0066 (13)	0.0112 (13)	0.0004 (13)
0.049 (2)	0.042 (2)	0.058 (2)	0.0021 (17)	0.0161 (16)	0.0010 (18)
0.072 (3)	0.050 (3)	0.075 (3)	0.008 (2)	0.036 (2)	0.020 (2)
0.076 (3)	0.084 (4)	0.049 (2)	0.020 (3)	0.018 (2)	0.020 (2)
0.066 (3)	0.082 (4)	0.0483 (19)	0.013 (3)	0.0006 (17)	-0.009 (2)
0.0476 (19)	0.049 (2)	0.0528 (18)	-0.0024 (19)	0.0118 (15)	-0.008 (2)
0.079 (3)	0.070 (3)	0.060 (2)	0.011 (2)	0.029 (2)	-0.002 (2)
	0.0422 (18) 0.049 (2) 0.042 (2) 0.060 (2) 0.057 (2) 0.072 (3) 0.047 (2) 0.0425 (18) 0.049 (2) 0.072 (3) 0.076 (3) 0.066 (3) 0.0476 (19) 0.079 (3)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Geometric parameters (Å, °)

				_
S1—C11	1.725 (3)	C10—C17	1.425 (4)	
S1—C12	1.752 (4)	C12—C13	1.363 (4)	
N1—C11	1.372 (4)	C12—C15	1.467 (5)	
N1—C13	1.377 (5)	C13—C14	1.493 (4)	
N1—C18	1.456 (4)	C14—H14A	0.9600	
N2—C17	1.144 (4)	C14—H14B	0.9600	
O1—C8	1.368 (4)	C14—H14C	0.9600	
O1—C1	1.396 (4)	C15—C16	1.496 (5)	
O2—C9	1.233 (4)	C16—H16A	0.9600	
O3—C15	1.213 (5)	C16—H16B	0.9600	
C1—C2	1.361 (5)	C16—H16C	0.9600	
C1—C9	1.465 (5)	C18—C23	1.369 (5)	
C2—C3	1.451 (5)	C18—C19	1.375 (4)	
C2—C24	1.494 (5)	C19—C20	1.384 (5)	
C3—C8	1.390 (5)	C19—H19A	0.9300	
C3—C4	1.396 (5)	C20—C21	1.363 (6)	
C4—C5	1.358 (6)	C20—H20A	0.9300	
C4—H4A	0.9300	C21—C22	1.370 (6)	
C5—C6	1.394 (5)	C21—H21A	0.9300	
C5—H5A	0.9300	C22—C23	1.393 (5)	
C6—C7	1.378 (5)	C22—H22A	0.9300	
C6—H6A	0.9300	C23—H23A	0.9300	
С7—С8	1.370 (5)	C24—H24D	0.9600	
С7—Н7А	0.9300	C24—H24C	0.9600	
C9—C10	1.444 (4)	C24—H24B	0.9600	
C10-C11	1.409 (5)			
C11—S1—C12	91.20 (16)	C12—C13—C14	128.5 (3)	
C11—N1—C13	115.5 (3)	N1-C13-C14	119.3 (3)	
C11—N1—C18	123.1 (3)	C13—C14—H14A	109.5	
C13—N1—C18	121.3 (3)	C13—C14—H14B	109.5	
C8—O1—C1	106.4 (2)	H14A—C14—H14B	109.5	
C2-C1-O1	111.3 (3)	C13—C14—H14C	109.5	

C2—C1—C9	128.1 (3)	H14A—C14—H14C	109.5
O1—C1—C9	120.6 (3)	H14B—C14—H14C	109.5
C1—C2—C3	105.6 (3)	O3—C15—C12	121.8 (3)
C1—C2—C24	130.1 (4)	O3—C15—C16	120.8 (4)
C3—C2—C24	124.3 (3)	C12—C15—C16	117.4 (3)
C8—C3—C4	118.7 (4)	C15—C16—H16A	109.5
C8—C3—C2	106.6 (3)	C15—C16—H16B	109.5
C4—C3—C2	134.7 (4)	H16A—C16—H16B	109.5
C5—C4—C3	118.6 (4)	C15—C16—H16C	109.5
C5—C4—H4A	120.7	H16A—C16—H16C	109.5
C3—C4—H4A	120.7	H16B—C16—H16C	109.5
C4—C5—C6	121.2 (4)	N2-C17-C10	178.4 (4)
С4—С5—Н5А	119.4	C23—C18—C19	122.4 (3)
С6—С5—Н5А	119.4	C23—C18—N1	118.6 (3)
C7—C6—C5	121.6 (4)	C19—C18—N1	119.0 (3)
С7—С6—Н6А	119.2	C18—C19—C20	118.3 (4)
С5—С6—Н6А	119.2	C18—C19—H19A	120.9
C8—C7—C6	116.2 (3)	C20—C19—H19A	120.9
С8—С7—Н7А	121.9	C21—C20—C19	120.5 (4)
С6—С7—Н7А	121.9	C21—C20—H20A	119.8
O1—C8—C7	126.3 (3)	C19—C20—H20A	119.8
O1—C8—C3	110.1 (3)	C20—C21—C22	120.5 (4)
C7—C8—C3	123.7 (3)	C20—C21—H21A	119.7
O2—C9—C10	119.8 (3)	C22—C21—H21A	119.7
O2—C9—C1	116.2 (3)	C21—C22—C23	120.3 (4)
C10—C9—C1	124.0 (3)	C21—C22—H22A	119.9
C11—C10—C17	122.1 (3)	C23—C22—H22A	119.9
C11—C10—C9	116.5 (3)	C18—C23—C22	118.1 (4)
C17—C10—C9	121.4 (3)	C18—C23—H23A	121.0
N1—C11—C10	127.6 (3)	C22—C23—H23A	121.0
N1—C11—S1	109.9 (2)	C2—C24—H24D	109.5
C10-C11-S1	122.6 (2)	C2—C24—H24C	109.5
C13—C12—C15	127.9 (3)	H24D—C24—H24C	109.5
C13—C12—S1	111.2 (3)	C2—C24—H24B	109.5
C15—C12—S1	120.9 (3)	H24D—C24—H24B	109.5
C12—C13—N1	112.3 (3)	H24C—C24—H24B	109.5
C8—O1—C1—C2	-0.7 (4)	C18—N1—C11—S1	-173.8 (2)
C8—O1—C1—C9	179.4 (3)	C17—C10—C11—N1	-0.2 (5)
O1—C1—C2—C3	0.9 (4)	C9—C10—C11—N1	-178.1 (3)
C9—C1—C2—C3	-179.2 (3)	C17—C10—C11—S1	179.8 (3)
O1—C1—C2—C24	-179.3 (4)	C9—C10—C11—S1	1.9 (4)
C9—C1—C2—C24	0.6 (7)	C12—S1—C11—N1	-1.1 (3)
C1—C2—C3—C8	-0.8 (4)	C12—S1—C11—C10	178.9 (3)
C24—C2—C3—C8	179.4 (4)	C11—S1—C12—C13	0.2 (3)
C1—C2—C3—C4	179.0 (4)	C11—S1—C12—C15	178.9 (3)
C24—C2—C3—C4	-0.8 (7)	C15—C12—C13—N1	-177.8 (3)
C8—C3—C4—C5	0.3 (6)	S1-C12-C13-N1	0.7 (4)
C2—C3—C4—C5	-179.4 (4)	C15—C12—C13—C14	1.6 (7)

C3—C4—C5—C6	-0.7 (6)	S1—C12—C13—C14	-179.9 (3)
C4—C5—C6—C7	0.0 (6)	C11—N1—C13—C12	-1.6 (4)
C5—C6—C7—C8	1.1 (6)	C18—N1—C13—C12	174.0 (3)
C1	179.8 (3)	C11—N1—C13—C14	178.9 (3)
C1	0.1 (4)	C18—N1—C13—C14	-5.4 (5)
C6—C7—C8—O1	178.8 (3)	C13—C12—C15—O3	-7.9 (7)
C6—C7—C8—C3	-1.6 (6)	S1—C12—C15—O3	173.7 (3)
C4—C3—C8—O1	-179.4 (3)	C13-C12-C15-C16	170.0 (4)
C2—C3—C8—O1	0.4 (4)	S1-C12-C15-C16	-8.4 (5)
C4—C3—C8—C7	0.9 (5)	C11—N1—C18—C23	82.6 (4)
C2—C3—C8—C7	-179.3 (3)	C13—N1—C18—C23	-92.7 (4)
C2-C1-C9-O2	8.2 (6)	C11—N1—C18—C19	-97.8 (4)
O1—C1—C9—O2	-172.0 (3)	C13—N1—C18—C19	86.9 (4)
C2-C1-C9-C10	-171.7 (4)	C23-C18-C19-C20	-1.0 (5)
O1—C1—C9—C10	8.2 (5)	N1-C18-C19-C20	179.5 (3)
O2—C9—C10—C11	-1.3 (5)	C18-C19-C20-C21	-0.8 (6)
C1—C9—C10—C11	178.5 (3)	C19—C20—C21—C22	1.7 (7)
O2—C9—C10—C17	-179.3 (3)	C20—C21—C22—C23	-0.8 (7)
C1—C9—C10—C17	0.6 (5)	C19—C18—C23—C22	1.9 (6)
C13—N1—C11—C10	-178.2 (3)	N1-C18-C23-C22	-178.6 (4)
C18—N1—C11—C10	6.2 (5)	C21—C22—C23—C18	-1.0 (6)
C13—N1—C11—S1	18(4)		

Hydrogen-bond geometry (A, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
C14—H14A…O3	0.96	2.30	2.999 (5)	129