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Purpose: Cardiac motion tracking enables quantitative evaluation of myocardial strain, which is clin-
ically interesting in cardiovascular disease research. However, motion tracking is difficult to perform
manually. In this paper, we aim to develop and compare two fully automated motion tracking meth-
ods for the steady state free precession (SSFP) cine magnetic resonance imaging (MRI), and explore
their use in real clinical scenario with different patient groups.
Methods: We proposed two automated cardiac motion tracking method: (a) a traditional registra-
tion-based method, named full cardiac cycle registration, which simultaneously tracks all cine frames
within a full cardiac cycle by joint registration of all frames; and (b) a modern convolutional neural
network (CNN)-based method, named Groupwise MotionNet, which enhances the temporal coher-
ence by fusing motion along a continuous time scale. Both methods were evaluated on the healthy
volunteer data from the MICCAI 2011 STACOM Challenge, as well as on patient data including
hypertrophic cardiomyopathy (HCM) and myocardial infarction (MI).
Results: The full cardiac cycle registration method achieved an average end-point error (EPE)
2.89 � 1.57 mm for cardiac motion tracking, with computation time of around 9 min per short-axis
cine MRI (size 128 × 128, 30 cardiac phases). In comparison, the Groupwise MotionNet achieved
an average EPE of 0.94 � 1.59 mm, taking < 1 s for a full cardiac phases. Further experiments
showed that registration method had stable performance, independent of patient cohort and MRI
machine, while the CNN-based method relied on the training data to deliver consistently accurate
results.
Conclusion: Both registration-based and CNN-based method can track the cardiac motion from
SSFP cine MRI in a fully automated manner, while taking temporal coherence into account. The reg-
istration method is generic, robust, but relatively slow; the CNN-based method trained with heteroge-
neous data was able to achieve high tracking accuracy with real-time performance. © 2020 The
Authors. Medical Physics published by Wiley Periodicals LLC on behalf of American Association of
Physicists in Medicine. [https://doi.org/10.1002/mp.14341]
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1. INTRODUCTION

Cardiac magnetic resonance imaging (MRI) is the current
gold standard technique to visualize the heart, and provides
important diagnosis and prognosis information for cardiovas-
cular disease patients.1 Cardiac motion can be observed from
the steady state free precession (SSFP) cine MRI, the movie
of heart over a cardiac cycle. Cine MRI reveals the contract-
ing and relaxing pattern of the myocardium in fine spatial
and temporal resolution. In clinical practice, myocardium
strain and motion abnormalities are visually assessed by radi-
ologists. However, the visual assessment is tedious, subjec-
tive, and lacking in quantitative nature. With the complexity
and volume of the cine scan (usually more than 300 frames
per scan), quantification of myocardium motion can hardly
be manually performed. Advanced computer methods are

demanded to automatically track the cardiac motion and gen-
erate clinically relevant quantitative parameters.

Established cardiac motion tracking methods include (a)
local feature tracking (FT),2 which tracks the myocardium tis-
sue by following the texture pattern around local myocar-
dium, and (b) registration-based method,3 which tracks the
myocardium tissue by aligning the myocardium between car-
diac phases and inversely calculating the motion. The FT
method is fast, however, it only focuses on local texture and
can be sensitive to noise and image quality.4 Moreover, the
method was originally developed for the speckle-tracking
echocardiography,5 in which the myocardium exhibits unique
speckle patterns that facilitates tracking. In cine MRI, there
are no such patterns within the myocardium and the method
does not have a solid ground. In contrast, the registration-
based method6,7 uses the information not only from the
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myocardium but also from the context, and is more robust to
local noise or global quality of images. Registration between
images is, however, computationally intensive, and a potential
problem is that the resulting motion is lacking in consistency,
as no temporal constraints are applied to regulate the continu-
ous motion in a cardiac cycle.8,9

The latest development of deep learning convolutional neu-
ral networks (CNN) brings new opportunities to tackle the
motion tracking problem. While it is not a common image
classification or segmentation task,10–12 cardiac motion track-
ing can be formulated as an optimal flow computation prob-
lem. In literature, Dosovitskiy et al.13 proposed two prominent
CNN models for optical flow: FlowNetS and FlowNetC,
which shows the feasibility of directly estimating optical flow
from raw images. Ilg et al.14 presented FlowNet2.0 combined
several FlowNetC and FlowNetS networks into one compre-
hensive model. More recently, Sun et al.15 presented a more
compact and effective CNN model for optical flow, called
PWC-Net, and Ren et al.16 proposed a method for multiframe
optical flow estimation. All these methods focused on natural
image or video streams with huge training datasets. In addi-
tion, some recent research studied automatic tracking of car-
diac motion. Rohé et al.17 applied the stationary velocity fields
(SVF) parametrization for cardiac motion analysis and built
affine subspaces on a manifold, where each point refers to a
three-dimensional (3D) image and the geodesic distance
between two points describes the deformation. Krebs et al.18

proposed an unsupervised multiscale deformable registration
approach that learns a low-dimensional probabilistic deforma-
tion model. In this work, we propose to develop a dedicated
CNN, built upon the previous optical flow work, to address
the real-time motion tracking problem for cardiac cine MRI.

We observed that in clinical practice, the radiologists typi-
cally view cine MRI in the movie mode, evaluating many tem-
poral frames at the same time. They rarely evaluate the motion
only by comparing two frames of cine. Inspired by the expert
way, in this work, we take into consideration the temporal
dimension in cine in both registration-based and CNN-based
algorithms. We evaluated both methods using heterogeneous
datasets: healthy volunteers with normal cardiac motion,
hypertrophic cardiomyopathy (HCM) patients, and myocardial
infarction (MI) patients with abnormal cardiac motion.

The contribution of the work is threefold: (a) A comparison
between the traditional registration-based method and the mod-
ern CNN-based method for cardiac motion tracking, in terms
of accuracy, efficiency, and generalization capability; (b) the
integration of temporal information in both methods to imitate
the radiologists’way of viewing a cine MRI; (c) the experimen-
tal setup to include both healthy volunteer and patient data to
evaluate both motion tracking methods in a clinical scenario.

2. MATERIALS

2.A. Dataset

The cardiac images used in this work are from three inde-
pendent datasets: healthy volunteers, HCM, and MI. The

healthy volunteer images are from the Motion Tracking Chal-
lenge datasets from MICCAI 2011 STACOM.19 The MRI
datasets were acquired using a 3.0-T Philips Achieva System
(Philips Healthcare, Best, the Netherlands). SSFP datasets
were scanned in multiple views (TR/TE = 2.9/1.5 ms, flip
angle = 40). This dataset consisting of a whole-heart steady
state free precession (SSFP) sequence gated at end-diastole
and end-expiration from 15 healthy volunteers, where each
acquisition consists of 14 short-axis levels with 30 cardiac
phases. Image resolution is 1:2�1:2�8 mm3.

Additionally, cine MRI images of two patient cohorts were
collected at Tongji Hospital, China, including 15 HCM
patients and 15 MI patients. The datasets were both acquired
by a 1.5-T Avando System (Siemens Medical Solutions,
Erlangen, Germany). Each acquisition consists of 6-8 short-
axis levels with 30-45 cardiac phases. The in-plane image
resolution ranges from 1.679 to 1.979 mm, and through-plane
image resolution is 10 mm. For all images, we only focused
on the region-of-interest (ROI) of the heart, and cropped
image from the center with 128 × 128 pixels, removing the
background with little motion.

2.B. Ground truth

Development of motion tracking method usually suffers
from the lack of ground-truth data. Gold standard of motion
tracking is difficult to acquire due to the intensive labor
needed; and for cine MRI it is especially difficult as the myo-
cardium has a homogeneous texture (Fig. 1). We used an
established algorithm to generate the motion ground truth on
a dense grid.20 The method matches pixel-wise scale-invari-
ant feature transform (SIFT) features,21 which establishes
dense, semantically meaningful correspondence between two
images. The core of this algorithm is based on Refs. [22] and
[23]. The SIFT flow method follows the computational
framework of the classical optical flow, but instead of match-
ing pixels, it matches the transform-invariant SIFT features,
and demonstrates improved performance over the original
optical flow.20 Because of its solid physical ground and state-
of-the-art accuracy, the method has been widely chosen as
reference in many work related to flow and motion, including
optical flow least square estimation,24 red blood cell track-
ing,25 and cardiac motion estimation.26 Figure 1 shows the
ground truth obtained by the reference method, superimposed
on the cine MRI, with the grid deforming at different cardiac
phases. It can be observed that salient points, such as the
right-ventricular insertion points, are well followed by the
method.

3. METHODS

3.A. Cardiac motion tracking by registration

3.A.1. Full cardiac cycle registration

In a conventional way, by registering a pair of neighboring
cine MRI frames (one as reference), displacement can be
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computed at every voxel in the reference image and thereby
motion can be estimated. If we have N frames in a cine MRI
sequence, we can perform N�1 times pairwise registration
between the neighboring frames and obtain the motion
through a cardiac cycle.

This process, however, only takes into account two neigh-
boring frames each time and cannot guarantee temporal
coherence of the motion. Instead of N�1 separate indepen-
dent registration processes, we propose to register all N
frames in one registration step:

ρ¼ argmin
ρ

CðTρ;I1, I2, :::, INÞ (1)

where the cost function C can be defined as a groupwise reg-
istration metric.27,28 In our work, we chose to minimize the
variance in the group of images by:

CðρÞ¼ ∑
N

i¼1
TρðIiÞ��Iρ
� �2

(2)

with �Iρ named as the “mean-shape” image:

�Iρ ¼ 1
N
∑
N

i¼1
Tρ Iið Þ (3)

where ρ is the transformation parameter applied to N
images Ii . The transformation parameters are computed by
minimizing (1), using the stochastic gradient descend
method. The mean-shape image is conceptually an average
“shape” of the heart across different phases, which is com-
puted as the mean intensity image of groupwise registered
images. It is different from the mean intensity image,
which directly averages the original images and therefore
suffers from motion of heart 6.

3.A.2. Hierarchical registration strategy

For stable registration performance, a hierarchical strategy
is recommend. Firstly, to obtain a rough alignment of the
heart size and orientation, we applied the affine registration,
with the transformation parameters including one scaling and
three rotational parameters. Subsequently, a B-spline

nonrigid registration is performed to fit local deformation,
where Tρ is defined as:

TρðxÞ¼ xþ ∑
x∈Nx

pkβ
3 x� xk

σ

� �
(4)

where xk is the control points and σ is the xk spacing. The defi-
nition of xk is based on a regular grid k, which is defined by
the physical space between the control points. pk is the coeffi-
cient vector of the B-spline, β3 is the cubic B-spline polyno-
mial, and Nx is the set of all control points within the compact
support of the B-spline at x. The transformation parameters set
ρ is a combination of all these parameters. The local support
of B-splines allow the transformation of a point to be com-
puted from a limited number of surrounding control points. A
multiresolution pyramid approach was applied to perform the
nonrigid registration in a coarse-to-fine manner.28

3.A.3. Back propagation

After obtaining the transformation parameters for each
image in the full cardiac cycle, the pixel positions of first
image are propagated to the mean-shape image. The inverse
transformation from the mean-shape image �I to the other
images can be obtained by solving T 0

ρ Tρ Ið Þ� �¼ I .26 Subse-
quently, the pixel position on the mean-shape image �I can be
back propagated onto the given image I . The motion during
one cardiac circle is calculated based on the relative change
of pixel position at neighboring phases.

3.B. Cardiac Motion Tracking by CNN

3.B.1. Optical flow

Optical flow is a well-established method to infer the vertical
and horizontal motion of each pixel between two temporally
neighboring frames,29 expressed by the following equation:

Iðx,y, tÞ¼ IðxþΔx,yþΔy, tþΔtÞ (5)

where I x,y, tð Þ is the signal intensity at the location x,yð Þ in the
image plane at time t. Using the chain rule of differentiation

FIG. 1. An example of short-axis cine magnetic resonance imaging acquisition, with the x-axis being the cardiac phases, the y-axis being the location on the left
ventricle: base, middle, and apex. The yellow grids show the motion tracking ground truth by the reference optical flow method.20 The ground-truth motion fields
were showed in sparse grid (8 × 8 pixels) for visualization, while the actual grid spacing in our experiments and calculation was 1 × 1 pixel.
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∂I
∂x

Vxþ ∂I
∂y

Vyþ∂I
∂t
¼ 0 (6)

where Vx and Vy are the flow in two directions. Figure 2
shows two examples of motion field estimation from cine
MRI by the optimal flow method, at the diastolic and systolic
phases, respectively.

3.B.2. MotionNet

The MotionNet, dedicated to cardiac motion tracking,
employs a context network that uses contextual information
to refine the optical flow.15 Given two input images, the net-
work extracts features at each pyramid level by CNN with
multiple channels. At each level, it utilizes the two up-sam-
pled flow from the next level to warp the second feature
image toward the first feature image. The cost volume layer is
constructed using the features that store the matching costs
for connecting a pixel with its corresponding pixel in the next
frame. The optical flow estimator is a multilayer CNN
enhanced with the DenseNet connections. The context net-
work consists of seven convolutional layers with different
dilation constants to refine the flow estimation. To solve the
cardiac motion tracking problem, which is more constrained
than natural or video scenes, the proposed network is lighter
and faster than the traditional FlowNet.14

Figure 3 shows the detailed architecture of the MotionNet,
each convolution followed by a leaky ReLU unit. The training
loss is defined as:

LðθÞ¼ ∑
L

l¼l0

αl∑
x

f lθ xð Þ� f lGT xð Þ�� ��þ ɛ
� �ρþδk θ k22 (7)

where θ is the set of all learnable parameters, f l is the flow
field at the l th pyramid level. αl is the weight at pyramid level
l. ɛ is a small constant as weight decay. The parameter ρ con-
trols the penalty for outliers to improve network robustness. δ
weighs the regularization to reduce overfitting.

3.B.3. Groupwise MotionNet

With MotionNet as the building block, the Groupwise
MotionNet integrates motion information over a time span to
enhance accuracy and consistency of motion estimation. Fig-
ure 4 shows the architecture of the Groupwise MotionNet.
Given N input cardiac image frames It�N�1, :::, It , the Group-
wise MotionNet estimates the optical flow f t�1!t from frame
It�1 to frame It. The computation resource was the bottleneck
for the max number frames that can be input into the Motion-
Net. Previous research 16 showed that using up till four
frames improves the performance, while the relative improve-
ment saturates when more than four frames are added. In this
work, we therefore used four frames as an empirical choice to
balance accuracy and speed of training.

The step is as follows: First, we use the pretrained Motion-
Net to estimate multiple motion fields:
f t�1!t�3, f t�3!t�1, f t�2!t�1, f t�1!t�2, f t�1!t . Second, we
warp the opposite flow pair to enhance the flow estimation30:

FIG. 2. Two examples of the optical flow computed between cine magnetic resonance imaging temporal frames. The flow field (third row) reflects the local dis-
placement (second row) between two frames (first row), where red arrows represent example points motion direction. Flow image colors indicate directions of
motion, and shades indicate the speed of motion. The first example illustrates the motion field during the diastolic phase, and the second example illustrates the
more intense motion field during the systolic phase. [Color figure can be viewed at wileyonlinelibrary.com]
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specifically, we backward warped f t�3!t�1 to f t�1!t�3 , and
f t�2!t�1 to f t�1!t�2 to achieve a robust estimation of
f t�3!t�1 and f t�2!t�1 . We found the two-way estimation
more accurate than the one-way estimation, as also suggested
in literature.16 The computation of f t�1!t , however, was not
performed as f t�1!t is our final goal of estimation and we
intended to preserve the original computation in the direction
of t-1 -> t while using adjacent flows to correct for it. Third,

we apply a light CNN to perform flow fusion integrating dif-
ferent estimates including: (a) the absolute image difference
map Et�3!t�1, Et�2!t�1, and Et�1!t, where Et�1!t is defined
as It�1�W It; f t�1!tð Þj j, where W I;fð Þ is the result of warp-
ing It to It�1 using the flow field estimation. The map quanti-
fies the difference between the first image and the second
image warped with the estimated flow, indicating a measure
of uncertainly for the estimated flow at each pixel, under the

FIG. 3. The MotionNet architecture. The input of the network is two temporally adjacent cine frames and the output is the estimated optical flow. Ilt denotes the
extracted features of image I at level l. [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 4. The overall Groupwise MotionNet architecture. The input is four cine frames from It�3 to It . Dashed lines imply shared weights of the same MotionNet.
Multiple flows are estimated and fused by the fusion network to produce the final flow f t�1!t. [Color figure can be viewed at wileyonlinelibrary.com]
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assumption that the difference between two cine frames was
mainly due to cardiac motion, (b) the estimated flow fields
f t�3!t�1 , f t�2!t�1 , and f t�1!t , and (3) the input image It�1

The fusion step includes concatenating (1)–(3) as input to a
CNN and pass them through a multilayer encoder–decoder
CNN to produce the final flow estimation. Here the CNN
acted as a way to fuse different channels of information by
learning, as in Ref. [14].

4. EXPERIMENTS AND RESULTS

4.A. Experiments

4.A.1. Training and Testing Datasets

The dataset from MICCAI 2011 STACOM and Tongji
Hospital contain in total 45 subjects, including 15 healthy
volunteers, 15 HCM patients, and 15 MI patients, described
in Section 2.A. For each cohort, we randomly divided them
into ten training and five testing datasets.

We performed three experiments to compare the Full Car-
diac Cycle Registration and Groupwise MotionNet methods
for motion tracking. As the former method is training free,
the setting of training and testing is only related to the Group-
wise MotionNet method. For fair comparison of the perfor-
mance, we tested the methods on the same heterogeneous
testing cohort: five volunteer data, five HCM data, and five
MI data. The follow four experiments were performed:

i. The Full Cardiac Cycle Registration applied to the testing
cohort.

ii. Groupwise MotionNet trained only with healthy volunteer
data: using 10 volunteer data for training the CNN, and
tested on the 15 testing data.

iii. Groupwise MotionNet trained with heterogeneous data: using
10 volunteer data, 10 HCM data, and 10 MI data for training
the CNN, and testing the CNN on the 15 testing data.

4.A.2. Registration-based motion tracking

All registrations were performed using the Elastix tool-
box31 in the Matlab environment (R2018b, MathWorks, Nat-
ick, MA, USA). The spline grid was set to 10 mm, the
number of pyramids 3, and the fixed number of iterations for
each resolution 1000. We adopted the minimal variance (vari-
ance-over-last-dimension in the toolbox) metric and the
stochastic gradient descent approach for optimization.

4.A.3. CNN-based motion tracking

We used four consecutive cine MRI frames (named here-
after as quadruplet) as input in all experiments. Parameters
in the loss function n were set empirically as
α¼ 0:32,0:08,0:02,0:01½ �,ɛ¼ 0:008,δ¼ 0:0006, and ρ¼ 0:3
. For the Groupwise MotionNet trained with ten healthy vol-
unteer data, we used 2900 quadruplets to training the CNN,

in which 87 were used for validation of network parameters.
For the Groupwise MotionNet trained with 30 heterogeneous
data, we used 11 108 quadruplets to train the CNN, in which
2777 were used for validation. (In the latter scenario we kept
a larger portion of data for validation purposes, as the training
data are sufficient.) The heterogeneous testing cohort, includ-
ing five subjects per category, have in total 5100 pairs of con-
secutive frames for evaluating the motion tracking
performance.

4.A.4. Performance evaluation

The accuracy of the motion estimates was evaluated using
the average end-point error (EPE) defined as the Euclidean
distance between the predicted flow field f and the reference
motion estimation by the reference method f r over the heart
ROI:

EPE¼ 1
M

∑
M

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð f x� f rxÞ2þð f y� f ryÞ2

q
(8)

where M is the total number of pixels in the heart ROI.

4.B. Results: comparison to state-of-the-art CNNs

We evaluated the two proposed methods, namely, Full
Cardiac Cycle Registration and Groupwise MotionNet, with
reference to the basic pairwise registration method and the
basic MotionNet without integrating temporal information.
We also benchmarked the Groupwise MotionNet with three
other state-of-the-art CNNs: FlowNetS 13, FlowNetC 13, and
FlowNet2 14. The experiments were performed on the healthy
volunteer data from the STACOM challenge, where all neural
networks were trained on the same data as used to train the
proposed CNNs. The pairwise registration resulted in higher
EPE (3.24 � 1.72 mm) than the Full Cardiac Cycle Registra-
tion method (2.89 � 1.57 mm), P<0:05 by the paired t-test.
The Groupwise MotionNet achieved a significantly lower
average EPE (0.94 � 1.59 mm) compared to the Full Cardiac
Cycle Registration method (2.89 � 1.57 mm), the MotionNet
(1.17 � 1.48 mm), the FlowNetS (2.62 � 2.37 mm), Flow-
NetC (2.33 � 2.48), and the FlowNet2 (2.21 � 2.08 mm).
The results of average EPE and running time are reported in
Table I. Figure 5 shows a few examples of cardiac motion
field by proposed Full Cardiac Cycle Registration and the
Groupwise MotionNet. The boxplot showed the motion track-
ing performance in three groups: volunteer, HCM, and MI in
Fig. 6. Three experiments were carried out for each group of
subjects: Full Cardiac Cycle Registration, Groupwise
MotionNet model trained by 10 volunteers, and by 30 sub-
jects from each subject group: 10 volunteers, 10 HCM
patients, and 10 MI patients.

4.C. Results: generalization to patient data

The generalizability of training-based method to new data-
sets is an important concern in clinical applications. The
results of the two motion tracking method on different
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cohorts are reported in Table II. The registration-based
method achieved stable results with EPE of 2.73 � 1.43,
2.87 � 1.82, and 2.93 � 1.74 mm for the heterogeneous test-
ing data: five healthy volunteers, five HCM, and five MI sub-
jects, respectively, without an issue of generalizability. In
comparison, the Groupwise MotionNet trained with ten
healthy volunteers showed excellent performance on the five
healthy volunteer data (EPE 0.94 � 1.59mm), but had signif-
icantly degraded performance on the HCM and MI cohorts,

with an EPE of 3.14 � 2.53mm and 3.61 � 2.72mm, respec-
tively. The results were also inferior to the Full Cardiac Cycle
Registration method. However, when trained with 30 hetero-
geneous dataset, the Groupwise MotionNet showed improved
generalization across the cohorts, with the EPE reduced to
0.87 � 1.34, 0.90 � 1.86, 0.89 � 1.64 mm for healthy,
HCM, and MI, respectively.

In addition, we manually annotated the myocardium in 15
subjects, including five cases from each category of healthy

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 5. The flow field estimation from input Image 1 to Image 2 by the two proposed methods: Full cardiac cycle registration and the Groupwise MotionNet.
The colormap of flow field is shown at the rightmost panel, encoding both the amplitude and direction of motion. [Color figure can be viewed at wileyonlinelib
rary.com]

TABLE I. Motion tracking performance.

EPE (mm)

Registration-based methods CNN-based methods

Pairwise registration Full cardiac cycle registration FlowNetS FlowNetC FlowNet2 MotionNet Groupwise MotionNet

EPE (mm) Train 1.62 � 1.83 1.59 � 1.91 1.41 � 1.82 0.86 � 1.32 0.73 � 1.27

Test 3.24 � 1.72 2.89 � 1.57 2.62 � 2.37 2.33 � 2.48 2.21 � 2.08 1.17 � 1.48 0.94 � 1.59

Time per frame(s) 7.63 19.13 0.05 0.06 0.13 0.02 0.03

Performance comparison among different motion tracking methods (registration based and CNN based), in terms of average end-point error (EPE) (mm) and running time.
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volunteers, hypertrophic cardiomyopathy (HCM), and
myocardial infarction (MI). The results of the EPE measure
in the myocardium region are reported in Table III.

4.D. Execution performance

For the Full Cardiac Cycle Registration, the typical com-
putation time was around 9 min for a cardiac cycle, implying
around 18 s per frame on a computer with a CPU of Intel
Xeon E5-2687W processor (3.00GHz) and 64GB RAM. In
comparison, the CNN-based approaches dramatically
reduced the computation time to 0.03 s per cine frame. Com-
putation time of motion in one cine MRI acquisition was
therefore reduced from 9 min to <1 s.

5. DISCUSSION

In this work, we developed and validated two fully auto-
mated motion tracking methods, using different methodolo-
gies: registration based and CNN based. In both methods, we
integrated the temporal information to make the motion track-
ing more coherent and accurate. As CNN motion tracking
method is based on training, we further tested its generaliz-
ability on different patient cohorts: healthy, HCM, and MI.
Experiment results show that the proposed Groupwise
MotionNet, if trained with heterogeneous data, could achieve
fast and accurate motion tracking performance. The Full Car-
diac Cycle Registration method also showed stable perfor-
mance on all cohorts of data, without need of training.

A characteristic of the proposed Full Cardiac Cycle Regis-
tration method is that it takes into consideration of all cine
frames in one full cardiac cycle. With pairwise registration,
the motion tracking can be sensitive to the artifact in one
occasional frame, that is, the motion related to this particular
frame may fail and shows up as abrupt, unrealistic move-
ments. To estimate the motion over the full cardiac cycle as
one optimization problem, the situation is largely alleviated
as the continuity of motion is an intrinsic constraint during
the computation. The registration-based motion tracking
method does not require training, therefore can be used in sit-
uations where training data are not available.

Convolutional neural network-based approaches are
increasingly popular in recent years, symbolizing the para-
digm shift in medical image analysis. Compared to the

FIG. 6. Bar plots of the testing results of motion tracking in three groups: volunteer, HCM, and MI. Each group has three bars: Full cardiac cycle registration,
Groupwise MotionNet model trained by 10 volunteers, and trained by 30 subjects: 10 volunteers, 10 HCM patients, and 10 MI patients. [Color figure can be
viewed at wileyonlinelibrary.com]

TABLE II. Generalizability of motion tracking methods.

EPE (mm) Volunteer HCM MI

Full cardiac cycle registration 2.73 � 1.43 2.87 � 1.82 2.93 � 1.74

Groupwise MotionNet

Trained by data from healthy
volunteers

0.94 � 1.59 3.14 � 2.53 3.61 � 2.72

Trained by data from
heterogeneous cohort

0.87 � 1.83 0.90 � 1.86 0.89 � 1.64

Generalizability of the registration-based and CNN-based motion tracking meth-
ods on different cohorts: healthy volunteer, hypertrophic cardiomyopathy (HCM),
and myocardial infarction (MI). Performance was quantified by the average end-
point error (EPE) (mm).
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registration-based method, the CNN-based method showed
higher motion tracking accuracy, when the training and test-
ing data are from the same cohort. Another big advantage of
CNN-based methods over registration-based methods is that
they run real time. This makes it feasible for evaluating
motion in clinical practice, where the radiologists do not need
to wait for a long time to report quantitative numbers. In the
proposed Groupwise MotionNet, we also integrated the tem-
poral information from neighboring frames to boost its per-
formance by the groupwise strategy. Our experiments showed
that the Groupwise MotionNet indeed achieved better motion
tracking performance than the original MotionNet alone.

As CNN is training based, it is very important that the
generalization capability is rigorously evaluated, not only on
independent testing data from the same cohort but also on
completely unseen data from patient cohorts. In this work,
we showed that the first Groupwise MotionNet trained only
with healthy volunteer data worked well on other volunteer
data, but degraded significantly on unseen patient data. How-
ever, if we enlarge the training dataset to include patient data,
the generalization significantly improved on all cohorts. This
is in line with a previous multicenter multivendor study,
showing that including data from heterogeneous origin is a
simple and effective way to improve generalization.32 We
argue that the enlarged training dataset is helpful in two
senses: the first reason is that the training datasets now
include different motion patterns covering a wider popula-
tion, and the second reason is that the training dataset now
also include data from different MRI machines (i.e., Siemens)
that have different image characteristics, for example, contrast
and sharpness. Without the presence of the physical tissue
patterns as in MRI tagging, the tracking error of the CNN
method was around 1.5 pixels, slightly higher than that
reported previously from MRI tagging (around 1 pixel).33

The improvement in accuracy of CNN-based methods
over registration-based methods can be attributed to its flexi-
bility: in our registration-based method, for regularization we
used B-Spline, which may limit the estimated displacement at
the systolic phase where the motion is too large to be covered
by smooth Spline; in comparison, CNN-based methods do
not apply such internal parametrization. In Fig. 5 it can be
observed that for neighboring frames with large changes
(e.g., systole), the motion amplitude estimated by the Group-
wise MotionNet was higher than that by the Full Cardiac

Cycle Registration method. In the registration-based motion
tracking method, we adopted the Elastix implementation;
however, we note that the registration could also be per-
formed by optical flow-based algorithms, which are likely to
yield motion tracking performance closer to the optical flow-
based ground truth.

There are a few limitations in the presented study. Firstly,
due to the lack of gold standard, we used a widely used flow
estimation method from the computer vision society, based
on physical principles, to generate the ground truth. Secondly,
strictly speaking, the motion of heart is in 3D,34–37 but our
computed flow was in 2D because most clinical cine MRI is
2D + t, acquired per breath-hold. Nevertheless, if there are
3D + t cine MRI data available for clinical use, our method
can be adapted in two ways: firstly, we can create multiorien-
tation 2D + t data (e.g., short-axis, two-chamber, four-cham-
ber) and directly apply the methods, secondly, the
methodology of both methods can be extended to one dimen-
sion higher, with the same rationale but increased computa-
tion and memory use. Another limitation is that to improve
the CNN generalization, we need to include sufficient data
from different cohorts (although no annotation is needed) for
training the CNN. Further studies on transfer learning or
domain adaptation are warranted, which may lead to a more
generic solution.

6. CONCLUSION

In this paper, we developed and compared two fully auto-
matic cardiac motion tracking method for SSFP cine MRI,
namely, Full Cardiac Cycle Registration and Groupwise
MotionNet. In designing both methods, we incorporated tem-
poral information for more accurate and coherent motion
tracking. We evaluated both methods on the heterogeneous
datasets including healthy volunteers, HCM patients, and MI
patients. Experiments showed that the registration method
had stable performance independent of patient cohort and
MRI machine, while the CNN-based method had low gener-
alizability when the training data were limited. However, the
CNN-based method trained with heterogeneous data achieved
high accuracy in different patient groups, with real-time per-
formance.
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