
Clinical Infectious Diseases

S200 • CID 2019:68 (Suppl 3) • Shortridge and Flamm

Clinical Infectious Diseases®  2019;68(S3):S200–5

Comparative In Vitro Activities of New Antibiotics for the 
Treatment of Skin Infections
Dee Shortridge1 and Robert K. Flamm1

1JMI Laboratories, North Liberty, Iowa

Bacterial skin infections result in significant morbidity and have contributed to enhanced health-care resource utilization. The prob-
lem is heightened by emerging antimicrobial resistance. Multiple novel agents active against resistant pathogens that cause skin 
infections—including dalbavancin, tedizolid phosphate, oritavancin, and delafloxacin—have been approved over the past 5 years. 
Common features of these agents include gram-positive activity and favorable safety. Of these agents, delafloxacin is unique in being 
active against both gram-positive and gram-negative pathogens that cause skin infections, including those resistant to other anti-
microbial agents. It is, therefore, an effective option for the treatment of skin infections.
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Bacterial skin and skin structure infections—also referred to as 
skin and soft tissue infections, skin and skin structure infections 
(SSSI), and (since 2013) acute bacterial skin and skin structure 
infections (ABSSSI)— impose a significant clinical and eco-
nomic burden, estimated on the basis of health-care resource 
utilization. Rates of visits to health-care facilities in the United 
States for treatment of ABSSSIs increased significantly between 
1997 and 2005, from 32.1 to 48.1 visits per 1000 people in the 
population, representing an increase of 50% and translating 
into 14.2 million visits in 2005 [1]. Another study reported sig-
nificant increases in ABSSSI-related hospital admissions, from 
1.6% of all hospital admissions in 2005 to 2.0% in 2011 [2]. The 
current epidemiology and burden of skin infections is discussed 
in greater detail by Kaye et al in this supplement [X].

The predominant bacterial species associated with skin infec-
tions is Staphylococcus aureus, with other gram-positive (eg, 
Streptococcus pyogenes, other Beta hemolytic streptococci, and 
enterococci) as well as gram-negative species (eg, Pseudomonas 
aeruginosa and Escherichia coli) also implicated as causative 
organisms [3–5].

Of concern is the emergence of resistance to antimicrobial 
agents over time, particularly among isolates of S. aureus, which 
have shown increasing frequencies of resistance to methicillin 
(methicillin-resistant S.  aureus [MRSA]) and other antimicro-
bial agents globally [5–7]. Moreover, MRSA isolates causing 

skin infections are often also resistant to macrolides and fluo-
roquinolones [8, 9]. Increased resistance translates into higher 
morbidity and costs [10, 11]. An additional concern is the emer-
gence of vancomycin-resistant enterococcus (VRE), which can 
cause wound infections [12]. These concerns prompted efforts 
to develop new antimicrobial agents that are effective against re-
sistant pathogens, with multiple agents having been approved in 
the United States within the past decade and additional agents 
under development for the treatment of ABSSSI [13, 14]. Agents 
approved in the last 10 years include telavancin, ceftaroline, dal-
bavancin, tedizolid phosphate, oritavancin, and delafloxacin.

This review provides clinicians with a comparative overview 
of the antimicrobial activity of antibiotics approved for the 
treatment of ABSSSI in adults in the United States and Europe 
over the past 5 years (dalbavancin, tedizolid phosphate, orita-
vancin, and delafloxacin). Included are studies evaluating the 
in vitro activity of these agents against both gram-positive and 
gram-negative pathogens causing ABSSSIs. The antimicrobial 
activity of these agents is discussed below, with data on activity 
against gram-positive and gram-negative pathogens being sum-
marized in Tables 1 and 2, respectively.

Dalbavancin

Dalbavancin, a second-generation lipoglycopeptide, was ap-
proved in the United States and Europe for the treatment of 
ABSSSIs in adults on the basis of non-inferiority against vanco-
mycin and linezolid [22]. Its activity against gram-positive 
clinical isolates that cause ABSSSIs has been extensively docu-
mented [15, 23–25]. The first study, which evaluated its activity 
against 81 673 global gram-positive isolates collected between 
2002 and 2007, revealed its activity against oxacillin-susceptible 
and -resistant strains of S. aureus (minimum inhibitory concen-
tration [MIC50/90] 0.06/0.06  mg/L for both) and against coag-
ulase-negative staphylococci (CoNS; MIC50/90 ≤0.03/0.06 mg/L 
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Table 1. Activity of Antimicrobial Agents Approved During the Past 5 Years Against Gram-positive Pathogens Causing Skin and Skin Structure Infections

Organism Group and 
Antimicrobial Agent 
(Number of Isolates)

Location (Year[s] of 
Isolation)

% of Isolates Susceptible 
by the Following Criteria: MIC (µg/mL)

Author (Year) [Reference]CLSI EUCAST 50% 90% Range

Staphylococcus aureus

 Dalbavancin; oxacillin- 
susceptible (27 052)

Global (2002–2007) – – 0.06 0.06 ≤0.03 to 0.25 Biedenbach et al (2009) [15]

 Dalbavancin; oxacillin- 
resistant (19 721)

Global (2002–2007) – – 0.06 0.06 ≤0.03 to 0.5 Biedenbach et al (2009) [15]

 Tedizolid (7813) United States and Europe 
(2009–2013)

99.8 99.8 0.25 0.5 ≤0.015 to 2 Bensaci & Sahm (2017) [16]

 Delafloxacin (1350) United States and Europe 
(2014)

– – ≤0.004 0.25 ≤0.004 to 4 Pfaller et al (2017) [17]

 Delafloxacin (903) Europe and Surrounding 
Areas (2014–2016)

– – ≤0.004 0.25 ≤0.004 to >2 Huband et al (2017) [18]

 Delafloxacin (3163) United States (2014–2016) – – 0.008 0.25 – Shortridge et al (2017) [19]

 Delafloxacin (9355) United States and Europe 
(2014–2016)

88.9 – 0.008 0.5 – Flamm et al (2017) [20]

MRSA

 Tedizolid (3234) United States and Europe 
(2009–2013)

99.6 99.6 0.25 0.5 ≤0.015 to 2 Bensaci & Sahm (2017) [16]

 Oritavancin (not 
reported)

United States and Europe 
(2010–2013)

98.4 (US)/ 
98.9 (EU)a

– 0.03 (US)/ 
0.03 (EU)

0.06 (US)/ 
0.06 (EU)

– Mendes et al (2015) [21]

 Delafloxacin (573) United States and Europe 
(2014)

– – 0.06 0.5 ≤0.004 to 4 Pfaller et al (2017) [17]

 Delafloxacin (177) Europe and Surrounding 
Areas (2014–2016)

– – 0.25 1 ≤0.004 to >2 Huband et al (2017) [18]

 Delafloxacin (1437) United States (2014–2016) – – 0.12 0.5 – Shortridge et al (2017) [19]

 Delafloxacin (3563) United States and Europe 
(2014–2016)

74.4 – 0.12 1 – Flamm et al (2017) [20]

MSSA

 Tedizolid (4579) United States and Europe 
(2009–2013)

99.9 99.9 0.25 0.5 ≤0.015 to 1 Bensaci & Sahm (2017) [16]

 Delafloxacin (777) United States and Europe 
(2014)

– – ≤0.004 0.008 ≤0.004 to 4 Pfaller et al (2017) [17]

 Delafloxacin (1726) United States (2014–2016) – – 0.008 0.25 – Shortridge et al (2017) [19]

Coagulase-negative Staphylococci

 Dalbavancin; oxacil-
lin-susceptible (2836)

Global (2002–2007) – – ≤0.03 0.06 ≤0.03 to 1 Biedenbach et al (2009) [15]

 Dalbavancin; oxacillin- 
resistant (9472)

Global (2002–2007) – – ≤0.03 0.12 ≤0.03 to 2 Biedenbach et al (2009) [15]

 Tedizolid (623) United States and Europe 
(2009–2013)

– 99.0 0.12 0.25 ≤0.008 to 4 Bensaci & Sahm (2017) [16]

 Oritavancin (not 
reported)

United States and Europe 
(2010–2013)

– (US)/ 
– (EU)a

– 0.015 (US)/ 
0.03 (EU)

0.06 (US)/ 
0.06 (EU)

– Mendes et al (2015) [21]

 Delafloxacin (165) Europe and Surrounding 
Areas (2014–2016)

– – 0.15 0.5 ≤0.004 to >2 Huband et al (2017) [18]

 Delafloxacin (228) United States (2014–2016) – – 0.015 0.5 – Shortridge et al (2017) [19]

 Delafloxacin (1575) United States and Europe 
(2014–2016)

– – 0.015 0.5 – Flamm et al (2017) [20]

β-hemolytic streptococci

 Tedizolid (70) United States and Europe 
(2009–2013)

– 100.0 0.12 0.25 ≤0.008 to 0.25 Bensaci & Sahm (2017) [16]

 Dalbavancin (5316) Global (2002–2007) – – ≤0.03 ≤0.03 ≤0.03 to 0.25 Biedenbach et al (2009) [15]

Viridans Group Streptococci

 Dalbavancin (2148) Global (2002–2007) – – ≤0.03 ≤0.03 ≤0.03 to 0.12 Biedenbach et al (2009) [15]

 Tedizolid (51) United States and Europe 
(2009–2013)

– – 0.12 0.25 ≤0.015 to 0.25 Bensaci & Sahm (2017) [16]

 Delafloxacin (294) United States and Europe 
(2014)

– – 0.015 0.03 ≤0.004 to 2 Pfaller et al (2017) [17]
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Organism Group and 
Antimicrobial Agent 
(Number of Isolates)

Location (Year[s] of 
Isolation)

% of Isolates Susceptible 
by the Following Criteria: MIC (µg/mL)

Author (Year) [Reference]CLSI EUCAST 50% 90% Range

Streptococcus pyogenes

 Tedizolid (684) United States and Europe 
(2009–2013)

100.0 100.0 0.12 0.25 ≤0.015 to 0.25 Bensaci & Sahm (2017) [16]

 Oritavancin (not 
reported)

United States and Europe 
(2010–2013)

98.6 
(US)/98.4 

(EU)a

– 0.03 (US)/ 
0.03 (EU)

0.12 
(US)/0.12 

(EU)

– Mendes et al (2015) [21]

 Delafloxacin (433) United States and Europe 
(2014)

– – 0.008 0.015 ≤0.004 to 0.03 Pfaller et al (2017) [17]

 Delafloxacin (1699) United States and Europe 
(2014–2016)

>99.9 – 0.015 0.03 – Flamm et al (2017) [20]

Streptococcus agalactiae

 Tedizolid (715) United States and Europe 
(2009–2013)

100.0 100.0 0.25 0.25 ≤0.015 to 0.5 Bensaci & Sahm (2017) [16]

 Oritavancin (not 
reported)

United States and Europe 
(2010–2013)

97.9 (US)/98.0 
(EU)a

– 0.03 (US)/ 
0.03 (EU)

0.12 
(US)/0.12 

(EU)

– Mendes et al (2015) [21]

 Delafloxacin (225) United States and Europe 
(2014)

– – 0.008 0.015 ≤0.004 to 0.5 Pfaller et al (2017) [17]

 Delafloxacin (827) United States and Europe 
(2014–2016)

98.7 – 0.015 0.03 – Flamm et al (2017) [20]

Streptococcus dysgalactiae

 Oritavancin (not 
reported)

United States and Europe 
(2010–2013)

100.0 
(US)/98.3 

(EU)a

– 0.06 (US)/ 
0.06 (EU)

0.25 (US)/0.5 
(EU)

– Mendes et al (2015) [21]

 Delafloxacin (132) United States and Europe 
(2014)

– – 0.008 0.015 ≤0.004 to 0.03 Pfaller et al (2017) [17]

Enterococcus faecalis

 Tedizolid (868) United States and Europe 
(2009–2013)

99.4 – 0.25 0.5 ≤0.015 to 1 Bensaci & Sahm (2017) [16]

 Oritavancin (not 
reported)

United States and Europe 
(2010–2013)

95.6 (US)/ 
99.3 (EU)a

– 0.015 (US)/ 
0.015 (EU)

0.06 (US)/ 
0.06 (EU)

– Mendes et al (2015) [21]

 Delafloxacin (450) United States and Europe 
(2014)

– – 0.06 1 ≤0.004 to 2 Pfaller et al (2017) [17]

 Delafloxacin (173) Europe and Surrounding 
Areas (2014–2016)

– – 0.12 >4 0.015 to >4 Huband et al (2017) [18]

 Delafloxacin (235) United States (2014–2016) – – 0.12 1 – Shortridge et al (2017) [19]

Vancomycin-susceptible Enterococcus faecalis

 Tedizolid (829) United States and Europe 
(2009–2013)

99.4 – 0.25 0.5 ≤0.015 to 1 Bensaci & Sahm (2017) [16]

Enterococcus faecium

 Tedizolid (372) United States and Europe 
(2009–2013)

– – 0.25 0.5 0.03 to 4 Bensaci & Sahm (2017) [16]

 Delafloxacin (295) United States and Europe 
(2014)

– – >4 >4 0.008 to >4 Pfaller et al (2017) [17]

Vancomycin-susceptible Enterococcus faecium

 Tedizolid (168) United States and Europe 
(2009–2013)

– – 0.25 0.5 0.03 to 1 Bensaci & Sahm (2017) [16]

 Oritavancin (not 
reported)

United States and Europe 
(2010–2013)

– (US)/– (EU)a – ≤0.008 (US)/ 
≤0.008 (EU)

≤0.008 (US)/ 
≤0.008 (EU)

– Mendes et al (2015) [21]

Vancomycin-resistant Enterococcus faecium

 Tedizolid (202) United States and Europe 
(2009–2013)

– – 0.25 0.5 0.12 to 4 Bensaci & Sahm (2017) [16]

 Oritavancin (not 
reported)

United States and Europe 
(2010–2013)

– (US)/– (EU)a – 0.06 (US)/ 
0.015 (EU)

0.12 (US)/ 
0.06 (EU)

– Mendes et al (2015) [21]

Abbreviations: CLSI, Clinical and Laboratory Standards Institute; EUCAST, European Committee on Antimicrobial Susceptibility Testing; EU, Europe; MRSA, methicillin-resistant 
Staphylococcus aureus; MIC, minimum inhibitory concentration; MSSA, methicillin-susceptible Staphylococcus aureus. 
aThe interpretive criteria used were those approved by the US Food and Drug Administration.

Table 1. Continued
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for oxacillin-susceptible CoNS and ≤0.03/0.12 mg/L for oxacil-
lin-resistant CoNS; Table  1) [15]. Both β-hemolytic and viri-
dans group streptococci (VGS) were highly susceptible (MIC50/90 
≤0.03/≤0.03  mg/L; Table  1). A  subsequent analysis of dalba-
vancin’s activity against 1555 isolates, collected in 2011 in the 
United States, revealed its activity against both methicillin-sus-
ceptible S. aureus (MSSA) and MRSA (MIC50/90 0.06/0.06 mg/L 
for both) [23]. An evaluation of its activity against 1600 
gram-positive isolates, collected in the United States in 2012, 
documented its stable activity over time since the initial evalu-
ations (MIC50/90, 0.06/0.06  mg/L against MSSA, MRSA, and 
CoNS; ≤0.03/≤0.03  mg/L against β-hemolytic streptococci; 
and ≤0.03/0.06 against VGS) [24]. An analysis of dalbavancin’s 
activity against 8527 gram-positive isolates responsible for 
SSSIs in the United States and Europe, collected between 2011 
and 2013, revealed MIC50/90 values of 0.06/0.06  mg/L against 
S. aureus isolates and ≤0.03/≤0.03 against VGS and β-hemolytic 
streptococci isolates from both regions [25].

Tedizolid

Tedizolid, available as the prodrug tedizolid phosphate, is an 
oxazolidinone approved in the United States and Europe for 
the treatment of ABSSSI following a demonstration of non-in-
feriority versus linezolid [26, 27]. An evaluation of its activity 
against 11 231 gram-positive clinical isolates, collected between 
2009 and 2013 in the United States and Europe, revealed it to 
be highly active against S. aureus (MIC50/90 0.25/0.5 mg/L), re-
gardless of methicillin resistance, as well as against β-hemolytic 
streptococci, VGS, S. pyogenes (MIC50/90 0.12/0.25 mg/L for all), 
and Enterococcus faecalis (MIC50/90 0.25/0.5 mg/L; Table 1) [16]. 
A subsequent analysis of 3929 S. aureus isolates, collected from 
12 countries between 2014 and 2016, revealed tedizolid to be 
4-fold more active compared with linezolid (MIC90 0.5  mg/L 
versus 2 mg/L), with tedizolid being equally active against both 
MSSA and MRSA (MIC90 0.25 mg/L) [28].

Oritavancin

Oritavancin is another lipoglycopeptide available for the treat-
ment of ABSSSI in adults caused by gram-positive pathogens, 
including MRSA, and was approved based on non-inferiority ver-
sus vancomycin [29]. An analysis of activity against 13 262 isolates 
causing ABSSSIs, collected between 2010 and 2013, demonstrated 
its activity against S. aureus (MIC50/90 0.03/0.06 mg/L, with 98.8% 
of all isolates being susceptible) and CoNS (MIC50 0.015 mg/L and 
0.03 mg/L in isolates from the United States and Europe, respec-
tively; Table 1) [21]. Isolates of E. faecalis were all susceptible at 
≤0.5 mg/L, although vancomycin-resistant isolates were 16-fold 
less susceptible (MIC50/90 0.25/0.5  mg/L) than vancomycin-sus-
ceptible isolates (MIC50/90 0.015/0.03  mg/L; 99.2–99.8% suscep-
tible). Higher MICs (MIC50/90 0.03/0.12 mg/L) were exhibited by 
Van A–containing strains of Enterococcus faecium, while Van B–
containing and vancomycin-susceptible strains showed identical 

MICs (MIC50/90 0.004/0.008 mg/L). Strong activity was also seen 
against S.  pyogenes (MIC50/90 0.03/0.12  mg/L; 98.4%-98.6% sus-
ceptible), while activity was slightly lower against S. dysgalactiae 
(MIC50/90 0.06/0.25 mg/L; ≥98.3% susceptible).

Delafloxacin

Delafloxacin is a non-zwitterionic (anionic) fluoroquinolone 
approved for the treatment of ABSSSI based on efficacy versus 
vancomycin and linezolid [30–32]. Its activity against 6485 clin-
ical isolates, collected in 2014 from the United States and Europe, 
including the gram-positive pathogens S.  aureus (MIC50/90 
≤0.004/0.25 mg/L), Enterococcus faecalis (MIC50/90 0.06/1 mg/L), 
S.  pyogenes (MIC50/90 0.008/0.015  mg/L), Streptococcus agalac-
tiae (MIC50/90 0.008/0.015 mg/L), and S. dysgalactiae (MIC50/90 
0.008/0.015  mg/L), has been demonstrated (Table  1) [17]. 
Delafloxacin’s activity against gram-negative pathogens, includ-
ing E.  coli (MIC50/90 0.03/4  mg/L; against extended-spectrum 
β-lactamase [ESBL]-positive isolates: MIC50/90 2/>4  mg/L), 
Klebsiella pneumoniae (MIC50/90 0.06/>4  mg/L; against ESBL-
positive isolates: MIC50/90 4/>4 mg/L), Enterobacter spp. (MIC50/90 
0.06/1 mg/L), and P. aeruginosa (MIC50/90 0.25/>4 mg/L), was 
also demonstrated (Table  2). It has shown high activity even 
against levofloxacin–non-susceptible isolates of S. aureus (both 
MRSA and MSSA) that cause ABSSSI [33].

In 2 subsequent studies, delafloxacin’s activity was confirmed 
against clinical isolates, including fluoroquinolone-resistant 
isolates, responsible for ABSSSI in Europe and the United States 
between 2014 and 2016 (Tables  1 and 2) [18, 19]. Together, 
these studies evaluating activity against ABSSSI isolates, col-
lected over a 3-year period from 2 geographic regions, highlight 
its continued activity over time.

DISCUSSION AND CONCLUSIONS

Collectively, the reviewed studies highlight the comparative in 
vitro activity of agents approved over the past 5 years against bac-
terial pathogens that cause skin infections. An important char-
acteristic of these antibiotics is their broad-spectrum activity 
against gram-positive pathogens implicated in skin infections, 
including resistant organisms [34–38]. Moreover, delafloxacin 
is also active against gram-negative pathogens [17–20]. Notably, 
delafloxacin has been shown to be significantly more active 
against S. aureus at a low pH, as compared with moxifloxacin, 
with this higher activity being attributed to its higher intracellu-
lar accumulation at a lower pH, which, in turn, is a function of it 
being predominantly uncharged at the low pH [39] (see also the 
review by Tulkens and colleagues in this issue [X]). The broad 
spectrum of activity of delafloxacin augurs well for addressing 
an important, unmet need: namely, the emergence of resistance 
and a consequent reduction in efficacy.

The trend of resistance in S.  aureus, particularly MRSA, 
has been tracked globally by the SENTRY Antimicrobial 
Surveillance Program [40]. Over the last 20 years (1997–2016), 
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the rise of MRSA reached its peak 10 years ago and has been 
decreasing since then in all regions. In addition, the suscepti-
bility of some older agents has increased, and may be associ-
ated with the emergence of epidemic clones (eg, USA 300) with 
fewer resistance determinants. Several of the newer agents dis-
cussed in this review have maintained excellent in vitro activity 
against S. aureus. The trend of increasing susceptibility was not 
the same for enterococci, with the prevalence of VRE increasing 
in all regions over the same period [41]. However, newer agents 
have maintained their excellent in vitro activities against VRE.

The choice of antimicrobial agents for the treatment of skin 
infections depends largely on the agent’s spectrum of activ-
ity, including against resistant pathogens. Delafloxacin, with 
its activity against both gram-positive (including MRSA) and 
gram-negative pathogens and its heightened activity in the 
acidic environments characteristic of skin abscesses, presents an 
effective therapeutic option for the treatment of skin infections.
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