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ABSTRACT

The Gene Ontology (GO) is extensively used to ana-
lyze all types of high-throughput experiments.
However, researchers still face several challenges
when using GO and other functional annotation
databases. One problem is the large number of mul-
tiple hypotheses that are being tested for each
study. In addition, categories often overlap with
both direct parents/descendents and other distant
categories in the hierarchical structure. This makes
it hard to determine if the identified significant cate-
gories represent different functional outcomes or
rather a redundant view of the same biological pro-
cesses. To overcome these problems we developed
a generative probabilistic model which identifies a
(small) subset of categories that, together, explain
the selected gene set. Our model accommodates
noise and errors in the selected gene set and GO.
Using controlled GO data our method correctly
recovered most of the selected categories, leading
to dramatic improvements over current methods for
GO analysis. When used with microarray expression
data and ChIP-chip data from yeast and human our
method was able to correctly identify both general
and specific enriched categories which were over-
looked by other methods.

INTRODUCTION

High-throughput experiments in molecular biology are
enabling researchers to obtain large quantities of data.
In many cases these datasets are in the form of lists of
genes (for example, differentially expressed genes or tar-
gets of a transcription factor). However, due to the size of
the resulting lists it is often hard to manually inspect them
to characterize the functional outcome of the experiment.
To overcome this challenge researchers have been

increasingly relying on automated analysis using curated
databases of functional annotations. These include the
Gene Ontology (GO) (1) and the MIPS (2) databases,
among others. In these databases, genes are annotated
by standardized terms (for example, GO categories) indi-
cating their known functions or related biological pro-
cesses. The popularity of this type of analysis is evident
from its wide use in almost all types of high-throughput
experiments, including large-scale sequencing efforts (3,4),
microarrays (5,6), protein–protein interactions (7–9),
protein–DNA interactions (10,11), knockouts (12) and
many more.
While using curated databases to analyze high-

throughput experiments has led to some success, there
are many challenges facing researchers trying to use
these databases. Multiple hypothesis testing is often an
issue since GO contains thousand of categories which
are all tested for enrichment for the same gene set (13).
While this issue can be addressed by statistical correction
methods, other problems remain unsolved. The categories
to which genes are assigned are not independent, making
it hard to determine if a set of identified significant cate-
gories represents a set of different functional outcomes or
rather a redundant view of the same biological process.
For example, GO categories are organized into a hierar-
chy with more general categories close to the root and
more specific categories at the bottom. Genes annotated
by a specific term are implicitly annotated to all parent
terms, resulting in highly overlapping categories. Thus, if
an intermediate node is determined to be significant it is
often the case that many nodes below it would also be
significant. In addition, many genes are annotated to mul-
tiple categories that do not share a directed path in the GO
hierarchy, resulting in overlapping categories that cannot
be detected using the hierarchical structure. Indeed, when
using GO to compute hypergeometric P-values, which is
the most common method used, researchers often recover
several redundant categories as the top hits (14,15; see also
Table 1 and Supplementary Tables 3–6) which both masks
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other important categories and makes it hard to determine
the most relevant category.
These problems with GO have been recognized and a

few methods were developed to address them. One of
the first attempts was the use of ‘GO Slim’ (http://www.
geneontology.org/GO.slims.shtml), a leaner version of
GO containing a manually picked small set of categories
(130 of the current �24 000 categories in GO) with a small
overlap between them. While useful, this method only
retains the general categories and does not provide more
specific ones which are often most interesting to biologists.
Other attempts were proposed by a few recent papers.
Grossmann et al. (14) recomputed the P-value for a spe-
cific category by taking into account the immediately more
general terms (the parents). This can often lead to the
removal of false positives, since some of the more specific
categories are eliminated if their parent category is deter-
mined to be significant. Alexa et al. (15) proposed two
algorithms to correct the P-values for a specific GO
term. The first algorithm, ‘Elim’, tests the enrichment of
each GO category in a gene set by examining the GO
hierarchy in a bottom-up order. Once a GO category is
determined to be significant, all genes associated with it
are removed in the following analysis of its ancestral
(more general) categories. The other algorithm, ‘Weight’,
uses a similar strategy but rather than completely remov-
ing genes in significant categories it down-weights them
for the remaining categories.
While these methods are more powerful, they only uti-

lize local information in the graph structure (parent-child
or bottom-up). Thus, they cannot account for longer
range relationships and global dependencies such as
highly overlapping categories that do not share a directed
path. In addition, all the aforementioned methods return a
(sometimes long) list of GO categories with their P-values
requiring the user to select a cutoff in order to further
analyze the resulting list.
Our approach is different. From a biological point of

view, one of the goals of using functional databases is to
identify a set of biological processes related to the specific
study. Thus, it would be natural to identify the set of
significant GO categories and processes that ‘generated’
the observed list. This leads us to use a generative model
for this task. A generative model is a computational model
that assumes that the observed data is sampled from
(or was generated by) some distribution. The observed

data is then used to estimate the parameters of the distri-
bution and to infer values that could not be directly
observed. In this case the parameters we are interested
in relate to the noise and incompleteness of the genomic
data and the GO hierarchy and the missing observations
are the GO categories that are related to the experimental
study. Our goal is to identify a (preferably small) set of
categories that together account for the set of genes
observed. Since many experiments study complicated
responses involving several processes, the categories can
come from different locations and levels in the hierarchy.
However, highly overlapping and redundant categories
will not be selected since one of them is often enough to
explain the subset of the genes belonging to these
categories.

We applied our method, which we term GenGO
(GENerative GO analysis), to analyzing the GO hierarchy
for yeast and humans. We used a controlled analysis
(in which subsets of categories are selected and the goal
is to recover the (hidden) categories), microarray expres-
sion data and ChIP-chip data for both species. GenGO
was able to drastically reduce the false positive rates, even
after statistical correction. As we show, GenGO consis-
tently outperforms both the original hypergeometric
method and the methods considering only local structural
dependencies, in some cases dramatically so.

MATERIALS AND METHODS

The activation graph for GO categories

We developed a generative model to identify a subset of
active GO categories. A generative model is a model that
assumes that the observed data is sampled from (was gen-
erated by) some distribution. That data is then used to
estimate the parameters of the distribution, by providing
either a point estimate or a Bayesian posterior. These esti-
mates can then be used to infer missing observations.
Unlike discriminative models (that are commonly used
for classification) generative models make explicit assump-
tions about how the data was generated. Thus, generative
models can be superior when the assumptions are at least
approximately correct. In this case we could rely on
knowledge regarding the possible noise sources for speci-
fying our generative model.

When designing the method we placed special emphasis
on simplicity and speed. GO analysis is often an

Table 1. Categories for cell cycle experiments

Classic Parent-Child Elim Weight GenGO

Mitotic cell cycle Cell cycle Microtubule nucleation Microtubule nucleation Mitotic cell cycle
DNA replication Cell cycle process Mitotic sister chromatid

cohesion
Mitotic sister chromatid cohesion DNA replication

Cell cycle DNA metabolic process Mitotic spindle organization
and biogenesis

DNA strand elongation during
DNA replication

Microtubule-based process

Cell cycle process Microtubule-based process DNA replication initiation Mitotic spindle organization and
biogenesis

Cell division

DNA-dependent
DNA replication

DNA replication Telomere maintenance via
recombination

Telomere maintenance via
recombination

Chromatin assembly or
disassembly

Top five GO categories identified by different methods from the list of periodically expressed yeast genes during the mitotic cell cycle (18).
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interactive process in which users change their lists, or
analyze multiple lists (for example, different gene clusters
or different targets of transcription factors). Thus for a
method to be successful it should be computable in a rea-
sonable time to allow interactive analysis.

To explain our method, one can think of this problem in
terms of a bi-partite graph representing the relationships
between GO categories and genes (Figure 1). Nodes on the
left side of the graph represent GO categories and nodes
on the right represent all genes annotated in that species.
We connect a gene node with a GO node by an edge if and
only if the gene is annotated to belong to that GO cate-
gory. We denote genes that were identified in the experi-
ment as ‘ON’ or active and genes that were not identified
as ‘OFF’ or inactive. Similarly, when a biological process
(corresponding to a specific GO category) is active, we
represent it by setting its GO node to ‘ON’ and when it
is inactive, we set its state to ‘OFF’.

To find this set we define a probabilistic model on the
activation graph (containing both gene and GO nodes).
The model accounts for noise in the experimental and GO
data. We develop an algorithm that identifies active GO
categories by maximizing the likelihood of this model con-
ditioned on the set of active genes. The final outcome is a
small subset of active GO nodes that together explains the
set of active genes. We describe the model in details in the
following sections.

Probabilistic model for activation graphs

We assume a generative model for gene activation. In this
model we first select a subset of GO categories and acti-
vate all genes in these categories. Next, a random process
(representing noise, errors in GO assignments and partial
knowledge) inactivates, with probability 1� p, genes in
each of the selected categories and activates, with prob-
ability q, genes in categories that were not selected leading
to the observed gene set. Given a list of active (selected)

genes and a set of active GO categories, we can define the
following sets:

(i) Ag—active gene nodes connected to at least one
active GO node

(ii) An—active gene nodes not connected to any active
GO nodes

(iii) I—inactive gene nodes
(iv) Sg—edges connecting nodes in I with active GO

nodes
(v) Sn—edges connecting nodes in I with inactive GO

nodes

Using these symbols we define the following log-like-
lihood function which we would like to maximize:

LðC jp;q;GÞ ¼ jAgj log pþ jAnj logq

þ jSgj logð1� pÞ þ jSnj logð1� qÞ � � jCj
1

where G is the set of active (selected) gene nodes (the
input), C is the set of active GO nodes, and |X| represents
the size of theX group (Ag,An, etc.). This function captures
our generative model. With probability P genes belonging
to active categories would remain active (Ag). With prob-
ability q genes that do not belong to any active category
would be activated (An). Similarly, with probability 1� p
genes in active categories will become inactive (Sg) and
with probability 1� q genes in inactive categories will
remain inactive (Sn). The last term in the likelihood func-
tion penalizes the size of the set of active GO categories
(|C|) so that the model will prefer a smaller set of categories
when explaining the selected set of genes. The hyperpara-
meter � is a positive number controlling the penalization.
See Supplementary Material for examples illustrating the
differences between this likelihood function and using the
classic hypergeometric method.
Note that the likelihood function formulated above dis-

courages the identification of highly overlapping and
redundant categories. For such categories it is usually
enough to select one category to account for the observed
genes from both categories. Selecting the second would
not increase the contribution from the active genes
(since these are already accounted for by the first category)
and would lead to penalty for both the non active genes
from the second category and the addition of another
category to the active GO set (using the a penalty para-
meter). Thus our method would select the best category
that fits the data resulting in a small and unique set of GO
categories for each experiment.
The above likelihood model is a function of the selected

set of active GO categories (denoted by C). In the next
section we present an algorithm for finding such a set that
maximizes this likelihood. We also present a method for
optimizing the values for the noise parameters p and q.
Once the algorithm terminates we compute a P-value
score for each of the selected categories using hypergeo-
metric distribution and return an ordered list of selected
categories to the user.

Optimization by greedy search

Given an input list of active genes, we would like to deter-
mine a set of active GO categories (C) that maximizes the

GO Hierarchy

D

B C D C D

D

A

C

Activation Graph

Active GO node
Activation edge

Active gene node
Inactive gene node

GO Nodes
(Latent)

Gene Nodes (Noisy
Observations)

B

E

ABCDE

√

√

(b)(a)

Figure 1. Construction of an activation graph. (a) A diagram showing
a GO hierarchy of four categories and the five genes annotated by these
categories (letters in each rectangle). Because of the ‘true path’ rule,
each gene annotated by a category in the GO hierarchy is also anno-
tated by all its parent categories. (b) The activation graph correspond-
ing to this GO hierarchy when observing three of the genes (A,B,C). In
this graph, we connect a gene node with a GO node if and only if the
gene is annotated by that GO category. For this set of genes the active
category is determined to be the orange category. Note that due to
noise there is a gene that is selected even though it does not belong
to the active category (A). Noise is also responsible for the fact that a
gene belonging to the active category is not selected (D).
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likelihood function (1). This is an NP-hard problem as we
discuss in Supplementary Methods. Thus, we use a simple
and fast greedy search algorithm to look for a local max-
imum of the likelihood function. At each iteration, the
algorithm searches for categories to add to (or remove
from) to the current set of active categories in order to
improve the global likelihood. If such categories exist, the
one leading to the highest improvement in likelihood is
added to (or removed from) to the set and the search
continues. Otherwise the current set is retuned as the opti-
mal set of active categories.
The algorithm is as follows (p and q are fixed in this

part; they can either be optimized in an outer loop as we
discuss below or set by the user in advance.).

Algorithm 1 (Find the best GO set for given parameters)

(1) Initialize C0 to be the empty set
(2) At iteration i, we consider all possible one-step changes

of the current set of active GO categories (Ci), and
compare the likelihood of the resulting sets. Let

ti1 ¼ argmax
t2Ci

LðCinftgÞ and ti2 ¼ argmax
t2TnCi

LðCi [ ftgÞ;

where T is the set of all GO categories. Thus among all
possible reductions of Ci, C

�
i ¼ Cinft

i
1g has the hig-

hest likelihood. Similarly, among all possible expan-
sions of Ci, C

þ
i ¼ Ci [ ft

i
1g has the highest likelihood.

(3) If the likelihood of C�i is higher than that of both Cþi
and Ci, let Ciþ1 ¼ C�i go to Step 2.

(4) If the likelihood of Cþi is higher than the likelihood
of Ci, let Ciþ1 ¼ Cþi go to Step 2. Otherwise go to
the next step.

(5) Return C.

It is important to note that including more GO cate-
gories will not necessarily lead to improved likelihood and
thus the algorithm above does not overfit the data. The
reason for this is that any category that is added must also
account for all genes that are included in that category and
were not selected. Adding a category for which many of its
genes were not selected or if they were selected they are
already explained by other selected categories will usually
lead to reduction in the likelihood.
Once the algorithm terminates, we use the set of active

categories as the final result. For these categories, we com-
pute a P-value using the hypergeometric distribution and
return the list, ordered by the P-value significance score, to
the user. Corrected P-values can also be computed either
by using the Bonferroni correction or by carrying out
randomization tests (16).

Optimizing parameters

There are two parameters in our model, p and q. p is the
probability that an active GO node will activate a gene
belonging to that GO category and q is the probability
that a gene node becomes active without being activated
by any GO node. A higher p means a higher participation
rate of the related genes in the biological process, and/or
less uncertainty in the activation relation between a GO
node and the related GO nodes. A higher q means a larger

portion of the genes are allowed to be explained by back-
ground noise or errors in the current ontology. p and q can
be set manually according to the estimation of noise level.
Alternatively p and q can be learned from the data. See
Supplementary Methods for details. The hyperparameter
� can be chosen by experiments and we found it generally
works well when we set � ¼ 3.

GO annotation data

GO files (release 2007–06) were downloaded from the GO
website (ftp://ftp.geneontology.org/). GO annotations for
humans and yeast were extracted from the Gene2GO
database, which was downloaded from the NCBI
website (ftp://ftp.ncbi.nlm.nih.gov/) on 26 June 2007.
GO categories were filtered such that only those with at
least 5 genes would be used. In this study, we focused on
the biological process categories, but our methodology is
also applicable to Cellular Component and Molecular
Function categories.

Precision/recall curves

Precision/recall plots were done using the ROCR package
in R (http://www.r-project.org/). Each point in the preci-
sion/recall curve corresponds to a score (or P-value)
cutoff. The precision and the recall are defined as follows:

Precision ¼
TP

ðTPþ FPÞ

Recall ¼
TP

ðTPþ FNÞ
;

where TP is the number of true positives (true active cate-
gories below the cutoff), FP is the number of false posi-
tives (inactive categories below the cutoff), and FN is the
number of false negatives (true active categories above the
cutoff).

Precision/recall curves are more informative than recei-
ver operating characteristic (ROC) curves when working
with highly skewed datasets (17). This is exactly the case
when working with GO enrichment analysis in which the
vast majority of categories are not expected to be enriched
for any one dataset.

Comparison

For comparison with the Classic method we used the
hypergeometric p-value analysis from STEM (16). We
used the Parent-Child method implemented by Ontologizer
(http://www.charite.de/ch/medgen/ontologizer/recomb06/
index.html), and the Weight and Elim methods implemen-
ted in the current release of topGO (R 2.5.1, topGO 1.2.1).
For both Classic and Parent-Child methods, P-values are
computed with Bonferroni correction, which is a
commonly used method for multiple testing corrections.

In every GO analysis task we performed for a species,
we used the whole set of annotated genes as the reference
set. To generate the precision/recall curve for a method
in a specific experiment, we followed the strategy in
Grossmann et al. (14) and accumulated all P-values
from 100 random gene sets.
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Ranking induced genes in amino acid starvation

For each yeast gene in the amino acid starvation experi-
ment, we looked at its second highest expression level
throughout the whole time series, and ranked all genes
according to this value.

GO hierarchy figures

GO hierarchy figures were generated with QuickGO
(http://www.ebi.ac.uk/ego/).

RESULTS

Comparison by selecting a subset of categories

We first tested our method (GenGO) using GO data for
yeast and humans. We followed the same procedures in
Grossmann et al. (14) and Alexa et al. (15) for objective
comparison of different GO analysis methods. For each
species, 1, 2 or 5 GO categories were randomly selected as
‘active’, and a subset of genes associated with each active
category were randomly picked (90 or 50% of genes in
each of the selected categories). In addition, we randomly
selected 1 or 15% of the remaining genes (from inactive
categories) and combined the two sets from active and
non-active categories to form the input to the GO analy-
sis. Due to the large run time of some of the methods we
were comparing to (Elim and Weight), for each experi-
ment, 100 random sets were generated using the same
parameters. Supplementary Figures 1 and 2 present results
for tests carried out on a larger random set for the faster
methods.

We used precision/recall curves to compare GenGO
with four other methods (see Materials and methods sec-
tion). These included ‘Classic’ (hypergeometric test) and
the three other methods listed above. The results are
plotted in Figure 2 (yeast) and Figure 3 (human). For
all settings, the performance of GenGO dominates all
other methods. When the noise level is low, the perfor-
mance of GenGO is close to optimal (top rows in
Figures 2 and 3). When the noise level is high, the perfor-
mance drops for all methods, though GenGO is still the
best. Even with high noise and multiple categories (as is
the case for most real experiments) GenGO can achieve
80% precision for high recall levels (60–80%). As for the
other methods, in most cases ‘Weight’ is the second best
and ‘Classic’ is usually the worst, indicating that all meth-
ods previously proposed for the task indeed improve upon
the standard usage of GO.

Note that while the precision usually drops as the recall
increases, there could be cases where the precision actually
improves even though recall is increasing. For example, in
Figure 2a the ‘GenGO’ method correctly assigns the
lowest P-values to some of the selected categories, which
results in a very high precision rate at low recall rates.
However, when the recall increases to 0.1, due to some
non-selected categories that are (incorrectly) assigned a
low P-value, the precision drops to 0.9. As the recall con-
tinues to increase, the precision increases again because
the method recovers the rest of the selected categories
without picking up much non-selected categories.

Analysis of noise datasets

To test the ability of GenGO to overcome the multiple
hypothesis testing problem, 1, 5 and 10% of all human
genes were randomly selected as a test set, and the five
algorithms were run to identify significant categories. The
procedure was repeated 100 times, and the percentages of
sets without any significant GO categories (P-value<0.001
with Bonferroni correction where applicable) are listed for
each of the methods in Supplementary Table 1. Even after
correction the Classic method, which is the most com-
monly used, identified significant categories in all experi-
ments. When 10% of the genes were selected at random, all
methods, except for GenGO identified significant cate-
gories in at least 50% of the experiments. In contrast,
GenGO was able to determine that no such significant
category exists for >98% of tested noise sets.
In addition, we used a similar procedure to test for noise

sets randomly selected from different branches of the GO
hierarchy. 0.1, 0.2 and 0.5%of genes from each of the Level
2 categories (‘biological_process’ being at Level 1) were
randomly selected, and the five algorithms were run to
identify significant categories. The results are presented in
Supplementary Table 2. As the percentage of genes selected
decreases, it becomes easier for all methods to determine
that there are no significant categories. However, even with
0.2% of genes selected in this way, all methods except
GenGO and Parent-Child wrongly identified significant
categories in at least 77% of the experiments.

Comparison on microarray experiment for yeast

Testing GenGO using real expression data is more chal-
lenging since the ‘ground truth’ is unknown in most cases.
Still, when the biological condition is clearly defined, it is
possible to determine whether a set of GO categories pro-
vides a good summary of the experimental setup.

Cell cycle. We have initially applied GenGO to analyze
the well studied cell cycle expression dataset from
Spellman et al. (18). We used the 800 genes determined
to be cycling during the mitotic cell cycle in budding yeast.
Figure 4 plots the location in the GO hierarchy of the top
five categories identified by four of the five methods (see
also, Table 1 and Supplementary Figure 3). The results
highlight the advantages of GenGO. For example, while
both GenGO and Classic successfully identify ‘mitotic cell
cycle’ as the most significant category, the Classic method
returns highly redundant categories including ‘mitotic cell
cycle’, ‘cell cycle process’, and ‘cell cycle’. The Parent-
Child method (14) also returns redundant categories
(‘cell cycle process’, and ‘cell cycle’) though it does a
better job in finding the more specific ‘microtubule-based
process’ which is related to cytoskeleton changes during
cell cycle progression (18). Both Elim and Weight fail to
identify the most appropriate category for this data (cell
cycle) though they do identify a number of relevant spe-
cific categories. In contrast, GenGO contains both the
correct high level categories (‘cell cycle’ and ‘cell division’)
as well as more specific categories (‘chromatin assembly or
disassembly’) that play an important role in DNA replica-
tion and chromosome segregation. Note that cell division
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here is not redundant with cell cycle. While ‘cell cycle’
describes the different phases of the cell cycle, their regula-
tion, and checkpoints, ‘cell division’ refers to the process
of separation of daughter cells following the cell cycle. See
Supplementary Table 3 for additional analysis of genes
associated with specific cell cycle phases.

Amino acid starvation. We repeated the above analysis
using the top 500 induced genes in amino acid starvation
experiments (19). Only GenGO and Weight correctly iden-
tified ‘amino acid biosynthetic process’ as the most signif-
icant category (Supplementary Table 4 and
Supplementary Figures 4–8). The next significant category
identified by GenGO is ‘sulfur metabolic process’. It
includes genes required in recycling sulfur metabolites,
which are known to be highly expressed under amino
acid starvation (20). In addition, an interesting finding
by GenGO is ‘monosaccharide catabolic process’.
During amino acid starvation, besides the lack of amino
acid there is a cellular need to produce energy which is
carried out mainly by this process (21). Another category

identified by GenGO, ‘amino acid catabolic process’,
describes the process that generates amino acids from
existing proteins, which is a known consequence of
amino acid starvation. In contrast, the categories identi-
fied by Elim are too specific: three of the five categories are
subcategories of ‘amino acid biosynthetic process’ and can
be better summarized by the latter. The Classic method
again identifies redundant categories: ‘organic acid meta-
bolic process’, ‘carboxylic acid metabolic process’, and
‘amino acid metabolic process’.

Analysis of human expression data

We repeated the analysis described above using human
immune response experiments from Nau et al. (22). A
total of 977 genes were identified as differentially
expressed when host cells were exposed to one or more
bacterial pathogens. For this set all methods have cor-
rectly identified ‘immune response’ in the top two cate-
gories (Table 2). However, as was the case for yeast, the
Classic method returned many redundant categories.
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(e) Five Selected Categories (p=0.9, q=0.01)

0.0 0.2 0.4 0.6 0.8 1.0

Recall
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
P

re
ci

si
on

(f) Five Selected Categories (p=0.5, q=0.15)

GenGO Weight ElimLegend: Parent-Child Hypergeometric

Figure 2. Comparison using GO for yeast. Performance comparison of GenGO (blue curve) with four other methods on data generated using the
yeast GO database. We use p to represent the fraction of genes that are identified from an active GO category (true positive rate for a category, see
Materials and methods section) and q to represent the fraction genes that are selected but do not belong to any active category. (a) Selecting one
category with p=0.9, q=0.01; (b) Selecting one category with p=0.5, q=0.15; (c) and (d) Same as (a) and (b) but using two categories; (e) and (f)
same with five categories. Note that even when the noise is substantial (using 50% of genes in selected categories and 15% of all other genes, bottom
row) GenGO is still able to accurately recover most of the correct categories. See Supplementary Figure 1 for a more detailed figure.
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Parent-Child returned two very general categories (‘biolo-
gical_process’ and ‘regulation of biology’) which do not
provide insight into the set of genes. Interestingly, both
Elim and Weight identified ‘response to virus’, as one of
the top five categories. Since only bacteria were used in
this study this category should not have been identified.
It was likely selected by these methods due to its overlap
with the more general ‘immune response’ category. In
addition to the ‘immune response’ and ‘wound response’
categories identified by GenGO it also identified ‘taxis’
that is clearly relevant due to the mobility need for macro-
phages during immune response (23). GenGO also identi-
fied ‘regulation of apoptosis’ that plays an important role
in determining the drastically different fates for macro-
phages after infection (24–26). The final category identi-
fied, ‘tRNA aminoacylation’ is the process that joins an
amino acid to its cognate tRNA, which is an important
step in protein translation (27).

Application to ChIP-chip data analysis

ChIP-chip experiments (28) are used to experimentally
identify the targets of transcription factors. These targets

can later be used to shed light on the functional role of
that factor, which can be done by using GO to determine
the function of the resulting gene target set (29). We have
compared the GO enrichment analysis of the different
methods for the targets of transcription factors from
yeast and human.
For yeast, we have looked at Swi6, a cell cycle regulator

of G1 transcription (30). Supplementary Table 5 presents
the results of the five methods for this factor and
Supplementary Figures 9–13 present their GO enrichment
hierarchies. Except for Elim and Weight, which did not
return ‘cell cycle’ in their top five hits, the three other
methods correctly selected this as the top category for
Swi6. However, the hypergeometric and parent-child
again returned a set of redundant categories (‘cell cycle’,
‘cell cycle process’). In contrast, GenGO was able to bal-
ance the more detailed and the more high-level categories.
Specifically it was the only one to correctly identify ‘repro-
duction’ as one of the top categories for Swi6, a role that is
well documented (31).
We have also looked at the analysis of targets of E2F1,

a human cell cycle regulator. Ren et al. (32) have studied
the targets of E2F1 and based on their detailed analysis
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(c) Two Selected Categories (p=0.9, q=0.01)
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(e) Five Selected Categories (p=0.9, q=0.01)
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(f) Five Selected Categories (p=0.5, q=0.15)
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Figure 3. Comparison using GO for human data. Performance comparison of five methods on data generated using human GO database. (a–f) Same
as in Figure 2 for human GO data. See Supplementary Figure 2 for a more detailed figure.
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Figure 4. Cell cycle comparison. Comparison of top five GO categories identified in the yeast cell cycle genes (18) by four methods. (a) Top five GO
categories identified using the Classic method (hypergeometric P-value) are highlighted. Green represents the most significant category identified. The
five categories represent highly redundant view of only two biological processes, as highlighted by the red circles. (b) Parent_Child method (14).
(c) Weight method (15) (see website for the Elim method) and (d) GenGO. See text for discussion.
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determined in their title that ‘E2F integrates cell cycle
progression with DNA repair, replication, and G2/M
checkpoints’. While all GO analysis methods correctly
identified E2F1’s role in controlling various aspects of
the cell cycle, GenGO was only method to rank all three
functions (replication, DNA repair and G2/M checkpoint)
in its top five categories (See Supplementary Table 6 and
Supplementary Figures 14–18).

DISCUSSION

The use of GO to analyze large datasets is rapidly becom-
ing a standard procedure following in many high through-
put experimental studies. The ability to utilize decades of
prior work that have been curated into a single database
allow researchers to gain initial insight regarding their
experiment and can often suggest novel hypothesis for
follow-up work (33,34). However, in many cases the
result of this GO analysis is a long list of significant cate-
gories. This makes it hard to interpret the results and
determine what the most significantly enriched functions
are in the selected set of genes.

In this article, we described a generative model for iden-
tifying a small subset of categories that, combined, explain
the observed set of genes. The algorithm we presented
maximizes a global likelihood function to achieve this
task. Our results suggest that GenGO is effective in mini-
mizing false positives while at the same time it can accu-
rately balance the set of categories it returns, including
both high level and specific categories. GenGO was
shown to work very well on both simulated data and
real data from a number of different experimental techni-
ques and species. Unlike other methods it does not require
an extra step for correcting for multiple hypothesis testing
resulting in categories that are both significant and unique.

We have implemented our method as a website at http://
www.sb.cs.cmu.edu/GenGO. To facilitate interactive use,
the website allows the user to set default values for p and q,
leading to faster analysis. Alternatively, users can let the
software automatically optimize one or both of the para-
meters. The running time depends, of course, on the size of
the input and the species. However, even when the input is
rather large, the running time is very reasonable. For
example, for the 800 yeast cell cycle genes mentioned
above GenGO takes only 3 s on a P4 2.4GHz computer.

The current algorithm treats all GO categories in the
same way regardless of their size or specificity. In future
work we would like to more explicitly address this by

using different values for the penalty term � depending
on the size of the selected category.
As we gain more knowledge regarding the function of

genes and other transcribed elements in the cell these
annotation databases will only become larger leading to
further redundancies and overlaps. We thus believe that
GenGO will be useful for researchers in many different
areas of high-throughput biology for many years to come.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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