
A New Approach to Produce HIV-1 Envelope Trimers
BOTH CLEAVAGE AND PROPER GLYCOSYLATION ARE ESSENTIAL TO GENERATE
AUTHENTIC TRIMERS*
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Background: HIV-1 envelope trimer is a candidate for designing an effective HIV vaccine.
Results: gp140 attached to Strep-tag through a long linker is used to purify HIV trimers. Cleaved, uncleaved, and fully and
partially glycosylated trimers are characterized.
Conclusion: Cleaved and glycosylated gp140 assembles into authentic propeller-shaped trimers.
Significance: This system could generate HIV-1 trimers for clinical trials and vaccine manufacture.

The trimeric envelope spike of HIV-1 mediates virus entry
into human cells. The exposed part of the trimer, gp140, consists
of two noncovalently associated subunits, gp120 and gp41 ect-
odomain. A recombinant vaccine that mimics the native trimer
might elicit entry-blocking antibodies and prevent virus infec-
tion. However, preparation of authentic HIV-1 trimers has been
challenging. Recently, an affinity column containing the broadly
neutralizing antibody 2G12 has been used to capture recombi-
nant gp140 and prepare trimers from clade A BG505 that natu-
rally produces stable trimers. However, this antibody-based
approach may not be as effective for the diverse HIV-1 strains
with different epitope signatures. Here, we report a new and
simple approach to produce HIV-1 envelope trimers. The C ter-
minus of gp140 was attached to Strep-tag II with a long linker
separating the tag from the massive trimer base and glycan
shield. This allowed capture of nearly homogeneous gp140
directly from the culture medium. Cleaved, uncleaved, and fully
or partially glycosylated trimers from different clade viruses
were produced. Extensive biochemical characterizations
showed that cleavage of gp140 was not essential for trimeriza-
tion, but it triggered a conformational change that channels
trimers into correct glycosylation pathways, generating com-
pact three-blade propeller-shaped trimers. Uncleaved trimers
entered aberrant pathways, resulting in hyperglycosylation,
nonspecific cross-linking, and conformational heterogeneity.
Even the cleaved trimers showed microheterogeneity in gp41
glycosylation. These studies established a broadly applicable
HIV-1 trimer production system as well as generating new
insights into their assembly and maturation that collectively
bear on the HIV-1 vaccine design.

AIDS, caused by HIV-1, is a global epidemic. More than 30
million people worldwide currently live with HIV infection, and
nearly 2 million people die of AIDS every year. Nine genetic

subtypes and numerous circulating recombinant forms have
been identified. Coupled with this diversity is the extraordinary
evolution of the viral envelope protein (Env) in response to host
immune pressures. Designing an Env immunogen that can
stimulate antibodies (Abs),2 which in turn can block entry of
genetically diverse HIV-1 viruses, has remained as the “holy
grail” of the HIV vaccine field (1, 2).

The trimeric Env spike of the HIV-1 virion is the virus entry
machine. It is a trimer of heterodimers composed of the glyco-
proteins gp120 and gp41 produced by cleavage of the precursor
protein gp160 (3, 4). Entry involves a series of well orchestrated
interactions between these proteins and the receptor molecules
present on the target cell (5). The first step might be the capture
of the virus through interactions between the V1V2 domain of
gp120 and a surface molecule, such as the �4�7 integrin of the
mucosal T lymphocytes (6, 7). This might bring the virus into
close proximity to CD4, the primary receptor. Binding to CD4
causes a conformational change in gp120, exposing a site in the
V3 domain that binds to the chemokine co-receptor CCR5 or
CXCR4 (8 –13). A series of conformational changes ensue,
resulting in the insertion of the gp41 fusion peptide into the
host cell membrane (14). The viral lipid bilayer fuses with the
plasma membrane, releasing the nucleocapsid core into the tar-
get cell (15). Therefore, Env-specific Abs that can interfere with
any of the steps common to diverse HIV-1 viruses can prevent
transmission of HIV into the host.

Several human monoclonal Abs (mAbs), referred to as
broadly neutralizing Abs (BnAbs), have been discovered that
can neutralize infection of a large spectrum of genetically
diverse HIV-1 viruses. These include, for instance, BnAbs b12
and VRC01, which bind to the CD4 binding site of gp120; 2F5
and 4E10, which bind to the membrane-proximal external
region (MPER) of gp41; and PG9 and PG16, which bind to the
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V1V2 domains of the trimer (16 –19). Most of these Abs recog-
nize conformational epitopes and are produced either by “elite
controller” individuals with chronic HIV infections or by selec-
tion of rare B cell clones present in HIV-1-infected individuals
(20). They also exhibit unusual features, such as the presence of
a long heavy chain 3 complementarity-determining region cov-
ering a large area of the epitope as well as dozens of somatic
mutations introduced by a process known as “affinity matura-
tion” driven by the evolving envelope protein (21). Attempts to
induce such BnAbs in animal models or in humans by vaccina-
tion with recombinant Env immunogens have thus far failed
(22–25).

One reason for this failure may be that the subunit Env
immunogens do not recapitulate the trimeric structure of the
native Env spike present on the HIV-1 virion (26). It has been
hypothesized that exposure to “native” trimers could lead to
activation and expansion of rare B cell clones of the right BnAb
lineage (27). Furthermore, such a trimer can also be used as a
scaffold to engineer variants that represent a common structure
present in diverse HIV-1 strains. However, production of Env
trimers that mimic the native spike has remained a challenge, in
part because the recombinant trimers either are unstable or
aggregate. Recently, Ringe et al. (26) discovered that an HIV-1
subtype A isolate BG505 naturally produces relatively stable
trimers. By further stabilizing the trimer with mutations that
cross-link cleaved gp120 and gp41 through a disulfide bond
(SOSIP), they could produce “native-like” trimers. These were
then captured by the BnAb 2G12 and purified (26, 28). The
structures of the trimers complexed with various BnAbs have
been determined by cryo-EM and x-ray crystallography (29,
30). However, the Ab-based approach is not as effective with
diverse HIV-1 strains that might differ in the epitope signature.
For instance, the wild-type BG505 gp140 was mutated by
changing Thr-332 to Asn to create the epitope binding site for
2G12 (26, 31). It is, however, possible, in principle, to use a
trimer-specific BnAb, such as PGT145, to selectively capture
the trimers from diverse HIV-1 strains (32).

Our laboratory has been investigating the design of HIV-1
Env immunogens and efficient vaccine delivery systems (33–
35). Here, we report a new system to isolate and characterize
Env trimers, potentially from any HIV-1 virus strain. First, we
show that by attaching a highly specific 8-amino acid (aa) Strep-
tag II separated from the C terminus of gp140 by a long �20-aa
linker, the Env protein can be efficiently captured by Strep-
Tactin directly from the culture supernatant. The bound pro-
tein can then be dissociated under mild conditions to generate
�95% pure Env in a single step. Second, a screening strategy
was developed to optimize any Env recombinant construction
for maximal trimer production. The JRFL Env gp140 selected
by this approach produced �70% of gp140 as trimers. Third,
the cleaved JRFL Env trimers exhibited the classic three-blade
propeller shape (36), and their biochemical and antigenic prop-
erties are consistent with the native trimers. Fourth, we found
that both cleavage and proper glycosylation are critical for mat-
uration of gp140 into authentic trimers. Although gp140 could
trimerize without cleavage, uncleaved trimers entered aberrant
pathways, generating hyperglycosylated and conformationally
heterogeneous particles. Finally, the trimers, including the

cleaved propeller trimers, showed microheterogeneity in the
extent of gp41 glycosylation. These studies established a
broadly applicable system for production and characterization
of HIV-1 trimers and generated new insights into the assembly
and maturation of HIV-1 trimers that will have implications for
the design of an effective HIV vaccine.

Materials and Methods

Antibodies—The following reagents were obtained through
the National Institutes of Health AIDS Reagent Program, Divi-
sion of AIDS, NIAID: HIV-1 gp120 monoclonal antibody
(2G12) (37– 41) from Dr. Hermann Katinger, HIV-1 gp120
mAb (VRC01) (17) from Dr. John Mascola, PGT 121 (catalog
no. 12343) (42), HIV-1 gp41 monoclonal antibody (F240) (43),
and HIV-1 gp120 monoclonal antibody (F105) (44 – 47) from
Dr. Marshall Posner and Dr. Lisa Cavacini. The PG9 (19), PG16
(19), PGT145 (42), PGT151 (48), and b6 (16) were obtained
from the Scripps Research Institute and International AIDS
Vaccine Initiative Neutralizing Antibody Center. Polyclonal
Abs against HIV-1 JRFL gp140 were raised in mice in our
laboratory.

Clone Constructions—The furin-expressing plasmid, Furin:
FLAG/pGEM7Zf(�), was obtained from Dr. Gary Thomas
(Vollum Institute, Portland, OR). The furin fragment from this
plasmid was subcloned into pcDNA3.1(�) (Life Technologies,
Inc.) using EcoRI and HindIII restriction sites.

Codon-optimized gp140 DNAs from JRFL-FD, SF162-FD,
and CONPEP-FD were provided by Dr. Peter Kwong (Vaccine
Research Center, National Institutes of Health). These DNAs
contained the sequence corresponding to gp120 and gp41 ect-
odomain up to aa 683. In addition, they have the human CD5
secretion signal at the 5�-end, furin cleavage-resistant mutation
SEKS at the junction of gp120 and gp41, and FD followed by the
hexahistidine tag at the C terminus (49). Using the JRFL-FD as
the starting template, a series of additional mutations were
introduced. These include, for instance, SOSIP mutations (50,
51), stabilizing mutations (52), enhanced furin cleavage site
RRRRRR (53), and various truncations shown in Fig. 2 and
described under “Results.” The JRFL gp120 clone was also con-
structed from the same template by PCR amplification of the
appropriate sequence corresponding to gp120.

The BG505 (BG505.W6M.ENV.C2) (28, 54) gp140 envelope
sequence was codon-optimized and the optimized sequence
was synthesized using the GenArt Strings technology (Life
Technologies). During this process, a series of mutations were
also introduced, as follows: Asn at aa 332 to introduce an
N-linked glycosylation site that allows binding of BG505 gp140
to 2G12 (55) BnAb; SOSIP (28); RRRRRR (53); and various
other mutations described under “Results.”

A series of modified pcDNA3.1(�) vectors were constructed,
each containing the CD5 secretion signal, a linker containing
three alanines, and various Strep-tag II and octahistidine tags
described under “Results.” Restriction sites NheI and NotI were
introduced between the CD5 signal and the alanine linker.
These plasmid vector DNAs isolated from 5-� competent
E. coli cells (New England BioLabs, Inc.) were digested with
NheI and NotI and dephosphorylated with FastAP alkaline
phosphatase (Life Technologies).
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The gp140 (and gp120) clones were constructed by either
overlap extension PCR (56) or gene assembly PCR (57) using
appropriate sets of primers. Restriction sites for NheI and NotI
were introduced into the end primers. The amplified DNAs
were digested with NheI and NotI and purified by agarose gel
electrophoresis. The DNAs were then ligated with the NheI-
NotI-digested and dephosphorylated pcDNA3.1(�) plasmid
DNA. Directional insertion of gp140 DNA resulted in the in-
frame fusion of gp140 with CD5 signal peptide at the N termi-
nus and the alanine linker followed by various tags at the C
terminus (see “Results”).

The gp140 (and gp120) clones were transformed into 5-�
competent E. coli cells (New England BioLabs, Inc.), and the
plasmid DNAs were purified using the GeneJET plasmid mini-
prep kit (Life Technologies). The DNAs were then sequenced
to confirm 100% accuracy of the cloned gp140 DNA. For trans-
fection into mammalian cells, the plasmid DNAs were purified
using the GeneJET Plasmid Midiprep kit (Life Technologies) as
per the manufacturer’s instructions.

Small Scale Transfection—Suspension cells HEK293F (Life
Technologies) and HEK293S GnTI� (ATCC CRL-3022) were
maintained in FreeStyle 293 expression medium (Life Technol-
ogies). The cells were incubated in a Multitron Pro shaker
(Infors HT) at 37 °C in 8% CO2. In the case of HEK293S GnTI�,
the growth medium was supplemented with 1% heat-inacti-
vated fetal bovine serum (FBS, Quality Biologicals). For trans-
fection, cells were grown overnight to a density of 1 � 106 cells/
ml. Two h prior to transfection, 6-ml cultures were centrifuged
at 100 � g for 5 min and resuspended in fresh medium to a
density of 2 � 106 cells/ml in the absence of FBS. Three ml of
cells were then transferred to each well of a 16.8-ml 6-well Clear
Not-treated plate (Corning Inc.). For cleavage resistant (CR)
(and gp120) DNA, 6 �g of gp140 plasmid DNA was added to the
cells followed by the addition of linear polyethyleneimine
(PEI25k, Polyscience Inc.) at a PEI/DNA (w/w) ratio of 3:1. For
cleavage-proficient (CP) DNA, the cells were co-transfected
with 3 �g of furin plasmid DNA. The cells were then incubated
at 37 °C in 8% CO2 while shaking at 130 rpm overnight. After
12 h, 2 ml of fresh medium, 1 ml of HyClone SFM4HEK293
medium (GE Healthcare), and protein expression-enhancing
sodium butyrate (58) solution (Sigma-Aldrich) to a final con-
centration of 2 nM were added to the cells. On day 5, the super-
natant was harvested and clarified using a 0.2-�m filter
(Corning).

Large Scale Transfection—Transfection was carried out in a
manner similar to the small scale transfection, but it was scaled
up to 1.2-liter cultures in a 2.8-liter flask and incubated at 37 °C
in 8% CO2 while shaking at 90 rpm.

Small Scale gp140 Purification—To inactivate biotin present
in the supernatant, 20 �l of Bio-Lock biotin blocking solution
(IBA Life Sciences) was added to 5 ml of the supernatant con-
taining the secreted gp140 (or gp120). After a 30-min incuba-
tion at 4 °C, 100 �l of Strep-Tactin beads (Qiagen) were added
and allowed to rotate overnight at 4 °C. The bead mixture was
spun down at 200 rpm to pellet the beads. The beads were then
applied to a spin column (Pierce), briefly centrifuged to remove
residual supernatant, and then washed twice with 50 mM Tris-
HCl, pH 8, and 300 mM NaCl. The bound gp140 or gp120 pro-

teins were eluted with 200 �l of Strep-Tactin elution buffer (2.5
mM D-desthiobiotin (Sigma), 25 mM Tris-HCl, pH 8, and 150
mM NaCl).

Large Scale gp140 Purification—To prevent nonspecific pro-
tease degradation, protease inhibitor tablets (Roche Diagnos-
tics) were added to the clarified supernatant according to the
manufacturer’s instructions. To inactivate free biotin present in
the culture medium, BioLock-biotin blocking solution (IBA
Life Sciences) was added, and the medium was incubated at 4 °C
for 30 min. The gp140 was purified by Strep-Tactin affinity
chromatography followed by size exclusion chromatography
(SEC). The supernatants were loaded onto a 1-ml Strep-Tactin
column (Qiagen) at 0.7 ml/min using the ÄKTA Prime-Plus
liquid chromatography system (GE Healthcare). Nonspecifi-
cally bound proteins were washed off by passing at least 20
column volumes of wash buffer (50 mM Tris-HCl, pH 8, and 300
mM NaCl) until the absorbance reached the baseline level. The
Strep-tagged gp140 proteins were then eluted with elution
buffer (2.5 mM D-desthiobiotin (Sigma), 25 mM Tris-HCl, pH 8,
and 150 mM NaCl) at a flow rate of 1 ml/min. The peak fractions
were pooled and concentrated using 100,000 molecular weight
cut-off Amicon Ultra-4 centrifugal filter units (Millipore). The
samples were then applied to a Hi-Load 16/600 Superdex-200
(preparation grade) size exclusion column (GE Healthcare)
equilibrated with the gel filtration buffer (25 mM Tris-HCl, pH
8, 150 mM NaCl). Chromatography was done using the ÄKTA
FPLC system (GE Healthcare), and fractions were collected and
stored in 10% glycerol at �80 °C.

The gp140 clones fused to hexahistidine or octahistidine tags
were purified by HisTrap affinity chromatography followed by
SEC. The culture supernatant was loaded onto a 1-ml HisTrap
HP column (GE Healthcare) at a flow rate of 0.7 ml/min using
the ÄKTA Prime-Plus liquid chromatography system (GE
Healthcare). Nonspecifically bound proteins were removed
using a buffer containing 50 mM Tris-HCl, pH 8, 300 mM NaCl,
and 20 mM imidazole until the absorbance reached the baseline
level. The proteins were then eluted using a 20 –500 mM imid-
azole gradient. The peak fractions were then applied to a Hi-
Load 16/600 Superdex-200 (preparation grade) size exclusion
column (GE Healthcare) and purified as described above.

SDS-PAGE and Blue Native PAGE (BN-PAGE)—SDS-PAGE
analyses were performed using 4 –20% gradient Tris-glycine
gels (Life Technologies) or homemade 10% gels in the presence
(reducing) or absence (non-reducing) of DTT. The BLUEstain
protein ladder 11–245 kDa (Gold Biotechnology) was used as a
molecular mass marker. BN-PAGE was performed using the
Novex NativePAGE BisTris gel system in 4 –16% gradient gels
according to the manufacturer’s instructions (Life Technolo-
gies). In the case of JRFL-FD, a native 4 –12% gradient Tris-
glycine gel (Life Technologies) was used with Tris-glycine
buffer (Bio-Rad). The NativeMark unstained protein standard
(Life Technologies) was used as the molecular mass marker. All
gels were stained with Coomassie Blue R-250 solution.

Protease Cleavage—SEC-purified gp140 trimers were incu-
bated with 10-fold serial dilutions (1– 0.01 �g/ml) of Pro-
teinase K (Thermo Scientific) at 37 °C for 1 h. The same
preparation incubated at 37 °C without protease was used as
a negative control. The samples were electrophoresed on
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reducing SDS gels for CR gp140 and non-reducing SDS gels
for CP gp140.

Deglycosylation—For Strep-Tactin-purified gp140, 1 �l (500
units) of PNGase F (New England BioLabs, Inc.) was used to
deglycosylate 10 �g of protein in the absence of DTT following
themanufacturer’sinstructions.ForSEC-purifiedtrimers,degly-
cosylation was performed under native conditions using 3 �l
(1,500 units) of PNGase F per 10 �g of protein and by incubat-
ing for 5 h at room temperature.

Strep-Tactin ELISA—Strep-Tactin-coated microplates (IBA
Life Sciences) were coated with 1 �g/ml SEC-purified gp140
trimers in a volume of 100 �l/well of buffer (25 mM Tris-HCl,
pH 7.6, 2 mM EDTA, and 140 mM NaCl) and incubated for 2 h at
room temperature. Following three washes with PBST (0.05%
Tween 20 in PBS), 100 �l of serially diluted Abs (10 – 0.001
�g/ml) in PBS were added to the wells, and the plates were
incubated for 1 h at 37 °C. After three washes with PBST, the
plates were incubated with 100 �l of rabbit anti-human Ab HRP
conjugate (Santa Cruz Biotechnology) diluted 1:3,000 in PBS
for 30 min at 37 °C. The plates were then washed three times
with PBST, and the peroxidase substrate was added to develop
the color reaction (TMB microwell peroxidase substrate sys-
tem, KPL). The reaction was terminated by adding 100 �l of
BlueSTOP solution (KPL), and OD650 was recorded using a
VersaMax ELISA Microplate Reader (Molecular Devices).

Western Blotting—Polyclonal mouse Abs against HIV-1 JRFL
gp140 were used as the primary Ab, and rabbit HRP-conjugated
anti-mouse IgG (H�L) was used as the secondary Ab (Novex,
Life Technologies). For Strep-tag II detection, StrepMAB-Clas-
sic HRP-conjugated Ab (IBA Life Sciences; dilution 1:1,000 in
PBS) was used. Band intensities were measured using the Bio-
Rad Gel Doc XR� system and Image Lab software.

Negative Stain EM—Samples were diluted to 20 –30 �g/ml
and added to a glow-discharged carbon-coated grid. Samples
were left on the grid for 2 min, blotted with a filter paper, and
stained with Nano-W (Nanoprobes, Yaphank, NY) for 30 s,
with two cycles of rinsing followed by stain application. After

the last round of staining, the grid was blotted and allowed to
dry completely before being imaged. Grids were imaged on an
FEI Tecnai T12 microscope operating at 120 kV. Images were
captured at a nominal magnification of �67,000 on a Gatan
UltraScan CCD using a dose of 20 electrons/Å2. Particles were
selected semiautomatically using e2boxer within EMAN2 with
a box width of 200 Å. Reference-free two-dimensional class
averages were generated using EMAN2 (59). Briefly, several
particles were manually picked to initiate automated particle
picking using e2boxer within EMAN2. After automated parti-
cle picking, reference-free two-dimensional class averages were
generated using e2refine2d within EMAN2. Each sample went
through 15 iterations of two-dimensional classification, and 32
classes were generated per sample.

Results

Conventional Strategies Have Not Been Very Effective at Pro-
ducing HIV-1 Env Trimers—We have tested several codon-op-
timized gp140 constructs from HIV-1 strains JRFL, SF162
(clade B viruses), and CONPEP (clade C) for production of Env
trimers. The gp140 DNA containing gp120 and gp41 ectodo-
main sequences truncated at aa 664 or 683 (HXB2 numbering)
was cloned under the control of the CMV promoter (Fig. 1A)
and transfected into a variety of mammalian cell lines (293F,
293T, 293EXPI, CHO, and GnTI�). With a signal peptide fused
to the N terminus, gp140 was secreted into the culture medium,
and the efficiency of production was quantified. Both CR and
CP clones were tested. For CR gp140, the furin cleavage site
REKR between gp120 and gp41 was mutated to SEKS, and for
CP gp140, it was mutated to RRRRRR and co-transfected with a
second furin-containing plasmid to enhance cleavage (53).

Of the three signal peptides tested, CD5, tissue plasminogen
activator, and Gaussia Luciferase, CD5 showed consistently
better expression. Fusing a hexahistidine (His) tag at the C ter-
minus of gp140 did not affect expression, whereas an N-termi-
nal tag showed poor expression probably because the hydro-
philic tag affected cleavage of the adjacent, largely hydrophobic,
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signal peptide. However, the C-terminal tag bound poorly, if at
all, to nickel-agarose.

Clones were also constructed by inserting the 27-aa phage
T4 fibritin trimerization motif (foldon, or FD) (49) between
the C terminus of gp140 and the His tag (e.g. JRFL; Fig. 1A).
These produced a mixture of trimers and higher oligomers
but no protomers (monomers or dimers). These, however,
bound to nickel-agarose and could be further purified by
SEC, which resolved the oligomers, but the elution profiles
overlapped (Fig. 1, B–D). These results are consistent with
the foldon-based trimers reported by other investigators (26,

60, 61) (also see Table 1). Further, our biochemical analyses
showed that the protomers of these trimers are nonspecifi-
cally cross-linked with disulfide bonds (see below).

We also constructed recombinants without any tag and cap-
tured gp140 using lectin beads (Galanthus nivalis lectin or conca-
navalin A). The protein was then purified by SEC. However, the
yields of the trimers varied either by direct application of the cul-
ture supernatant or after 2–3� concentration by tangential flow
filtration. We also encountered aggregation of some of the gp140
during lectin chromatography, and furthermore, the binding
potency of lectin diminished progressively after each use.

TABLE 1
Comparison of various approaches used for the purification of HIV-1 trimers
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Negative stain EM of trimers produced by the above
approaches showed heterogeneous mixtures of particles. Rela-
tively few were classic three-blade propeller-shaped, and some
(e.g. the JRFL foldon trimers) showed variably shaped particles
(Fig. 1, E and F), similar to that reported by Georgiev et al. (61),
although all of these preparations behaved as “true” trimers by
SEC and BN gel electrophoresis (Table 1).

Extended Strep-tag II Allows Efficient Isolation of gp140 —
We concluded that an approach that allows selective capture of
gp140 directly from the culture medium would be most desir-
able for the production of trimers. Previous attempts to achieve
this by fusing gp140 with a tag, such as the His tag, have failed.
We hypothesized that these failures stemmed from the possi-
bility that the tag, when attached to the base of the gp140 struc-
ture, was probably occluded, a problem further compounded by
the presence of glycan shield, with up to 12 glycans attached to
the C-terminal heptad repeat 2 (HR2) helices (see below). If our
hypothesis was correct, extending the tag away from the base
should make it more accessible for binding. The finding that the
insertion of a 27-aa foldon sequence between the C terminus of
gp140 and the His tag allowed efficient binding to nickel-aga-
rose supported this reasoning.

We constructed a series of 36 recombinant clones by fusing
the gp140 C terminus to Strep-tag II and octahistidine tag with
various linkers in the middle (Fig. 2, A and B). Strep-tag II is an
8-aa peptide (WSHPQFEK) that binds to modified streptavidin,
namely Strep-Tactin, at micromolar affinity and stringent spec-
ificity. However, the complex can be dissociated with desthio-
biotin, a mild condition. We chose clade B JRFL gp140 as a

template to evaluate this approach, but we also constructed, in
parallel, clade A BG505 gp140 clones for comparison. Three
“SOSIP” mutations and five “stabilizing” mutations were intro-
duced to stabilize JRFL trimers (50, 51). The A501C and T605C
mutations create an intraprotomer disulfide bond between
gp120 and gp41, and the I559P mutation in the HR1 helix
strengthens intersubunit (gp41) interactions, whereas the five
mutations in or near HR1 (I535M, Q543L, S553N, K567Q, and
R588G) strengthen gp120 and gp41 interactions at the interface
(50 –52).

Our data demonstrate that the Strep-tag II approach is highly
effective to capture gp140 from the culture medium. Strep-
tagged gp140 with a short Ala3 (or Gly-Ser-Gly-Ser) linker
bound poorly to Strep-Tactin (Fig. 2C, lane 3), whereas the
Twin Strep-tag containing 23-aa linker was efficiently captured
(lane 4), although both clones expressed gp140 at similar levels
(lanes 1 and 2). Bound gp140 could be specifically dissociated
with 2.5 mM desthiobiotin, and the eluted protein was �95%
pure (e.g. Fig. 2D, lanes 1 and 2). An HRV 3C protease cleavage
site engineered between the gp140 C terminus and the linker
was not cleaved, consistent with our hypothesis that a large
protease molecule would encounter clashes with the protomer
base. Various forms of gp140 could be efficiently captured (Fig.
2D): uncleaved (lanes 1– 8) or cleaved (lanes 9 –16); truncated
at aa 664 (lanes 1– 4 and 9 –12) or aa 683 (lanes 5– 8 and 13–16);
tagged with octa-His with a flexible linker (lanes 4, 8, 12, and 16)
or a rigid linker (lanes 3, 7, 11, and 15); clade A (BG505) and
clade B (JRFL) viruses (Fig. 2G). In addition, we have also puri-
fied trimers from SF162 (clade B) and 40007 (clade CRF01 A-E)
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viruses3 (40007 gp140 sequence was kindly provided by Drs.
Stovanabutra Sodsai, Jerome Kim, and Merlin Robb, HIV
Medical Research Program, Walter Reed Army Institute of
Research, Silver Spring, MD). Furthermore, unlike the lectin
or 2G12 BnAb columns, our approach captures the full-
length gp140 molecules and excludes gp120 and the trun-
cated molecules that are often generated by nonspecific pro-
teases (Table 1).

Strep-tagged JRFL gp140 Produces Abundant Amounts of
Trimers—The CP and CR gp140 produced cleaved and
uncleaved trimers, respectively. Cleavage by furin was nearly
complete in CP gp140 (Fig. 2E, lane 5), whereas little or no
cleavage was evident in CR gp140 (lane 3). The cleaved gp120
and gp41 subunits are covalently associated through the SOS
disulfide bond, as evident from the appearance of a single 140-
kDa band under non-reducing conditions (Fig. 2E, lane 6) and
two bands (gp120 and gp41) under reducing conditions (lane 5).
However, a ladder of five gp41 bands was also seen (blue arrows
in lane 5), probably corresponding to glycosylation of 0 – 4
N-linked glycosylation sites (see below). The CR gp140, on the
other hand, showed a single 140 kDa band under both reducing
and non-reducing conditions (lanes 3 and 4) (the lack of cleav-
age of CR gp140 was further confirmed by Western blotting
using a highly sensitive Strep-tag-specific mAb) (Fig. 2F).
Whether the CR gp140 also formed the SOS bond could not be
determined. Varying levels of higher oligomers were also seen
in all preparations (including gp120), probably due to nonspe-

cific disulfide cross-linking of the protomers under non-reduc-
ing conditions but much less so with the cleaved gp140 (Fig. 2E,
red arrows, lanes 2, 4, and 6). About two-thirds of the Strep-
tagged JRFL CP664-gp140 assembled into trimers (Fig. 2G, lane
1), whereas CR664-gp140 produced more dimers than trimers
(lane 2). Similar patterns were also seen with Strep-tagged
BG505 gp140. However BG505 produced higher levels of
uncleaved trimers (lane 4, compare with lane 2), and the trimer
bands were more diffused than JRFL, indicating more extensive
glycosylation, as also evidenced by slightly higher Mr of these
bands (lanes 3 and 4, compare with lanes 1 and 2).

Truncation of Cleaved gp140 beyond aa 664 Results in Poor
gp140 Production—We developed a rapid screening strategy to
optimize various parameters for maximal trimer production,
using any HIV-1 Env sequence (Fig. 3A). More than 40 different
Strep-tagged gp140 clones were constructed, and each was
transfected into a small volume (6 ml) of cells. The secreted
gp140 was captured by adding Strep-Tactin beads directly to
the culture medium, and the efficiency of expression (Fig. 3B),
cleavage (Fig. 3D), and trimer production (Fig. 3E) was ana-
lyzed. The efficiency expression was further assessed by directly
using the supernatant without Strep-Tactin purification (Fig.
3C). Different parameters tested include point of truncation,
importance of SOSIP mutations and cleavage, production in
293F or GnTI� cells (GnTI� cells lack N-acetylglucosamin-
etransferase 1 and cannot introduce complex glycosylations),
and clade B (JRFL) or A (BG505) gp140 (an N-glycosylation site
was introduced into BG505 at aa 332 to make it equivalent to
JRFL gp140) (62).

3 N. Ananthaswamy, W. Alsalmi, M. Mahalingam, and V. B. Rao, manuscript in
preparation.
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We observed similar patterns with both JRFL and BG505
gp140s expressed in 293F or GnTI� cells. SOSIP mutations
proved essential because without them, most of the protein
aggregated and could not be captured by Strep-Tactin. Unex-
pectedly, however, we found that cleaved gp140 truncated
beyond aa 664 produced lower amounts of gp140 in the culture
medium (Fig. 3, B and C). The aa 672 and aa 683 constructs
produced 3–5 times lower amounts, whereas further trunca-
tion resulted in nearly complete loss of gp140 production (Fig.
3C). This was not due to poor cleavage because 683-gp140 was
efficiently cleaved, producing, as expected, slightly larger gp41
ladder bands (Fig. 3D, lane 2, compare with lane 1). In contrast,
production of uncleaved 683-gp140 was not significantly
affected. Unlike the cleaved 683-gp140, which was expressed at
lower levels (Figs. 2D (compare lanes 9 –12 with lanes 13–16)
and 3B (lanes 2 and 6)), the expression of uncleaved 683-gp140
was nearly as high as 664 (Fig. 3B, lanes 3 and 7 versus lanes 4
and 8). Finally, the aa 683 protein showed a tendency to aggre-
gate, as shown by its appearance largely as a high Mr smear in
the BN gel (Fig. 3E, lane 3).

The above results suggest that cleavage triggers a conforma-
tional change in the MPER, which might lead to exposure of
some of the hydrophobic residues, leading to aggregation. This
hypothesis is consistent with the previous reports by Klasse et
al. (63) and Ringe et al. (26), which showed that the cleaved aa
681 (from KNH1144) and aa 683 (from BG505) gp140 proteins
formed micelles at the MPER, presumably through interaction
of the exposed hydrophobic residues of MPER with the lipid
components.

Cleavage Is Essential for Production of Authentic HIV-1
Trimers—Strep-Tactin-purified gp140 was �95% pure (Fig.
4A.1), but it contained a mixture of trimers and protomers as
well as some high Mr species (Fig. 4A.3, lane S). SEC separated
these into three major fractions (Fig. 4A.2): (i) a high Mr frac-
tion that eluted immediately after the void volume and
migrated as a diffuse band on BN gel (A.3, lane 1); (ii) trimers,
which eluted as a relatively sharp peak and migrated as a com-
pact band on BN gel (lane 2); and (iii) two overlapping peaks of
protomer dimers and monomers (lane 3). To determine which
of the trimers were authentic, cleaved or uncleaved, 293F-pro-
duced (complex glycans) or GnTI�-produced (high mannose,
no complex glycans) trimers were expressed on a large scale
(1– 4 liters) and purified by Strep-Tactin capture and SEC. The
yields of gp140 were as follows: 293F CR, �20 mg/liter; CP, �12
mg/liter; GnTI� CR, �3 mg/liter; CP, �1 mg/liter. Each SEC
fraction was then analyzed by SDS-PAGE under reducing con-
ditions to assess purity and cleavage (Fig. 4, B, C, D, and E)
(panels 2), BN-PAGE to assess oligomeric state (panels 1), neg-
ative EM to assess the shape of the trimer (panels 3–5), and
antigenicity to assess conformation (see below). These analyses
showed that the trimers were purified to near homogeneity, up
to 2–3 mg/liter (CP trimers), as well as establishing the criteria
for their authenticity. First, we observed that in the case of JRFL
Env, the fraction of gp140 recovered as trimers was 3–5-fold
greater with cleaved gp140 than with uncleaved gp140 (com-
pare lanes S and 5–7 of B.1 with D.1). Second, the uncleaved
trimers were of poor quality when compared with the cleaved
trimers. Unlike the CP trimer fractions that showed a sharp

band on the BN gel (B.1, lanes 3–7), the CR trimer fractions
contained significant levels of diffused and high Mr species
(D.1, lanes 3–7). The latter represented conformationally het-
erogeneous molecules, as was also evident from their poor reac-
tivity with the conformation-specific BnAb PGT145 (Fig. 5).
The reactivity was lowest with fractions containing the highest
amount of these species. Third, the protomers of the uncleaved
trimers as well as the foldon trimers were nonspecifically cross-
linked through disulfide bonds, whereas the cleaved trimers
showed much less cross-linking (Fig. 6). Fourth, the uncleaved
trimers were more susceptible to nonspecific proteolysis, as
evidenced by greater proteolysis of the CR trimers by Protein-
ase K than the CP trimers (Fig. 7). Finally, negative stain EM
showed that the cleaved trimers appeared as three-blade pro-
peller-shaped particles (Fig. 4, B and C, panels 3 and 4; refer-
ence-free two-dimensional class averages are shown in panels
B.6 and C.7), whereas the CR fractions showed fewer such par-
ticles (D and E; panels 3–5), and most were irregularly shaped.
Overall, the above results are consistent with the behavior of
the uncleaved and cleaved trimers generated by the 2G12
approach (see Table 1) (26).

Uncleaved Trimers Are Hyperglycosylated—We observed
that GnTI� cells produced better quality trimers than the 293F
cells, although the yields were lower in GnTI� cells (Fig. 4,
compare panels in C and E with the same panels in B and D). For
instance, the diffused high Mr species described above were not
seen in the CR trimers produced by GnTI� cells (compare D.1
and E.1, lanes 1–7). Negative stain EM showed a higher number
of propeller-shaped trimers in the GnTI�-produced CR trimers
than in the 293F-produced trimers (compare panels 3–5 in D
and E), which, in part, was due to heterogeneity in glycosyla-
tion. GnTI� cells predominantly add Man5GlcNAc2, which is
further processed by complex glycosylation in 293F cells. The
presence of Strep-tag II at the C terminus of gp41 allowed eval-
uation of glycosylation using Strep-tag-specific mAbs. A ladder
of five gp41 bands appeared when CPgp140 trimers were elec-
trophoresed under reducing conditions. Of these, band 3
showed maximum intensity (Fig. 8, A.1 and A.2). Because the
JRFL gp41 ectodomain contains a cluster of four predicted
N-linked glycosylation sites near its C terminus, these bands
probably corresponded to glycosylation of 0 – 4 sites. This was
confirmed by deglycosylation with PNGase F, which converted
the ladder to a single species that migrated to the same position
as the lowest band in the ladder, the unglycosylated gp41 (Fig.
8A.3, lanes 2, 4, 6, and 8). Although a similar pattern was
observed in both 293F and GnTI� cells, the fully glycosylated
293F-gp41 bands were more diffused than the same from
GnTI�-gp41 (Fig. 8A.3, compare lanes 1–3 and 5–7), presum-
ably due to complex glycosylation. BG505 CP-gp140 showed
similar banding patterns except that it appeared to undergo
more extensive glycosylation. These results demonstrate
“microheterogeneity” in gp41 glycosylation, albeit to a higher
extent in 293F cells than in GnTI� cells. Heterogeneity of gp41
glycosylation was also inferred in previous reports (64, 65).

The heterogeneity was more severe with the uncleaved trim-
ers. Indeed, the uncleaved trimers produced by 293F cells were
“hyperglycosylated.” Under non-reducing conditions, both the
CP gp140 and CR gp140 were expected to migrate at the same
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position. They indeed did so when gp140 was produced by the
GnTI� cells (Fig. 8B.1, lanes 3 and 4). The 293F gp140 migrated
slower than the GnTI� gp140 (compare lane 1 with lane 4 and
lane 2 with lane 3), which was expected because gp140 under-
goes complex glycosylations in 293F cells. Unexpectedly, how-
ever, the 293F-produced CR gp140 migrated slower than CP
gp140 (compare lanes 1 and 2). Upon deglycosylation with
PNGase F, all gp140 bands, whether uncleaved or cleaved, pro-
duced in 293F or GnTI� cells, migrated at the same position
(Fig. 8B.2). The same pattern was also observed with the BG505
gp140 tested in parallel (see BG505 lanes 5– 8 in Fig. 8). These

results demonstrated that the 293F uncleaved trimers were
hyperglycosylated when compared with their cleaved
counterparts.

Antigenic Signatures Discriminate between Uncleaved and
Cleaved Trimers—We have used an ELISA platform that can
differentiate the structural and conformational states of cleaved
and uncleaved trimers. Purified gp140 proteins were coated on
Strep-Tactin plates through the C-terminal Strep-tag and incu-
bated with mAbs that recognize different conformational sig-
natures (Fig. 9). Because coating was done at neutral pH (unlike
at pH 9 in traditional ELISAs), it would cause minimal, if any,
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structural perturbation. Moreover, the trimers were immobi-
lized at a defined point; therefore, all immobilized molecules
should be exposed in a similar orientation, in some ways mim-
icking the Env spikes displayed on the HIV-1 virion. Finally, the
23-aa flexible linker should make the trimer more accessible to
Ab binding.

We first tested the reactivity of the trimers to BnAbs 2G12,
VRC01, and PGT121. 2G12 recognizes a discontinuous epitope
consisting of three or four high mannose glycans in the gp120
domain (66, 67). VRC01 is a potent BnAb that binds to the CD4
binding site and neutralizes �90% of the primary HIV-1 iso-
lates (17). PGT121 primarily recognizes the complex glycan
attached to Asn-332 (62). Consistent with the published data
indicating that the conformational epitopes recognized by
these Abs are well exposed in trimers as well as in gp120, both
our cleaved and uncleaved trimers reacted strongly and equiv-
alently to these Abs (Fig. 9) (23, 26, 28, 31, 68).

The BnAb PGT151 recognizes a conformational epitope
containing aa residues and glycans present at the interface of
gp120 and gp41 that is better exposed in the cleaved trimers (69,
70). Our results showed that the cleaved gp140 trimers exhib-
ited stronger reactivity to PGT151 than the uncleaved trimers,
suggesting that our cleaved trimers achieved native-like
conformation.

The BnAbs PG16 and PG9 are quaternary Abs that neutralize
70 – 80% of the primary HIV-1 viruses. The quaternary speci-
ficity stems from their long hammerhead-shaped complemen-
tarity-determining region, which asymmetrically interacts with
the V1, V2, and V3 loops of two protomers of the same trimer.
The contact regions include, primarily, the V1V2 loop glycans
Asn-160 and Asn-156/173, and residue Lys-168 of one
protomer and glycans Asn-160 and Asn-197 (V3 loop) of the
adjacent protomer (29, 71, 72). PGT145 is also a quaternary
BnAb, however less well characterized, and it, like PG9 and
PG16, recognizes the Asn-160 and Asn-156/173 glycans (42,

2G12

PGT145

100 

JRFL CR  Fractions  
2 3 4

50 

0 
2 3 4

2 3 4

%
 B

in
di

ng 5

5 5

FIGURE 5. Conformational heterogeneity of uncleaved trimers pro-
duced in 293F cells. SEC fractions 2–5 from Fig. 4D.1 were coated on
Strep-Tactin plates at a fixed protein concentration of 1 �g/ml, and ELISAs
were performed using the BnAbs 2G12 (black bars) or PGT145 (blue bars).
Inset, Coomassie Blue-stained BN gel of fractions 2–5 depicting the pres-
ence of various amounts of smear in the fractions. The smear represents
differential migration of conformationally heterogeneous trimers on the
BN gel. Note the poor reactivity of fraction 2 containing an extensive
smear to the conformation-specific PGT145 BnAb when compared with
fraction 5 with a lesser smear. On the other hand, the 2G12 BnAb, which is
not dependent on the conformation of the trimer, reacted equivalently to
both fractions 2 and 5.

75

25

100
135
180

63
48
35

20
17
11

M

Non-reducing SDS-PAGE 

PNGase F - + - + - + 
CP CR FD 

gp140
DG gp140

1 65432

A

kDa

75

25

100
135
180

63
48
35

20
17
11

M

Reducing SDS-PAGE 

PNGase F - + - + - + 
CP CR FD 

gp140

DG gp140

PNGase

gp120

DG gp120

gp41
DG gp41

7 12111098

B

kDa

FIGURE 6. The protomers of uncleaved trimers are nonspecifically cross-
linked with disulfide bonds. The SEC-purified JRFL trimers (Strep-tag
uncleaved (CR), foldon-uncleaved (FD), and Strep-tag cleaved trimers (CP))
were electrophoresed under non-reducing (A) or reducing (B) conditions
without (lanes 1, 3, 5, 7, 9, and 11) or with (lanes 2, 4, 6, 8, 10, and 12) PNGase F
treatment. Note the presence of a ladder of high Mr bands in the FD
uncleaved and Strep-tag uncleaved trimers (red arrows in lanes 1 and 3) but
not in the cleaved trimers (lane 5). That these bands correspond to nonspe-
cific disulfide cross-linked protomers, but not to differences in glycosylation,
was shown by electrophoresis under reducing conditions and treatment with
PNGase F. All of the high Mr bands were converted to a single band under
reducing conditions (lanes 7 and 9), but the ladder remained after PNGase
treatment (lanes 2 and 4), although the deglycosylated (DG) bands migrated
faster due to the removal of glycans (when compared with lanes 1 and 3). The
cleaved trimers did not show the high Mr ladder bands under non-reducing
conditions (lane 5) and, as expected, converted to a faster-migrating DG band
after PNGase F treatment (lane 6). Under reducing conditions, as expected,
the cleaved trimers gave rise to gp120 and a ladder of gp41 bands (lane 11)
and faster-migrating DG gp120 and single DG gp41 band (lane 12) after
PNGase F treatment.

gp140

37oC 1 0.1 0.01Proteinase K µg/ml

Uncleaved

JRFL

 Trimers

gp140

Cleaved

0.75 0.5 0.25 0.075 0.05 0.025

Proteinase K µg/ml

0.0

0.5

1.0

0.0 0.75 10.50.25

A

B
 cleaved 
 uncleaved 

Un
di

ge
st

ed
 g

p1
40

cleaved
uncleaved

FIGURE 7. Proteinase K sensitivity of cleaved and uncleaved JRFL trimers.
A, SEC-purified trimers from 293F or GnTI� cells were treated with Proteinase
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gested gp140 bands from A.
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71). Consistent with the expectation that a compact trimer
would react better with the quaternary Ab, the cleaved trimers
reacted more strongly with PG9, PG16, and PGT145 BnAbs
than the uncleaved trimers (Fig. 9).

Finally, the reactivity of our trimers with the non-neutraliz-
ing Abs (NnAbs) b6, F105, and F240 was tested. F105 and b6
recognize an epitope that includes the CD4 binding site,
whereas F240 binds to the immunodominant loop of gp41 (aa
592– 604) (16, 43, 73–75). Our CR and CP trimers as well as our
protomers reacted similarly with these NnAbs, although the
reactivity with F240 was poor overall, probably because its
epitope is partially occluded (Fig. 9, green epitope signature).

Collectively, these data demonstrate that our trimers display
antigenic signatures that are consistent with their cleaved or
uncleaved states. Differential reactivity with the quaternary
epitopes provides the best benchmark to ascertain the antigenic
signature of compact, native-like trimers.

Discussion

The trimeric envelope spike of HIV-1 virion makes the first
contact with the host cell. It triggers fusion of viral and host
membranes and delivers the nucleocapsid core into the cell.
Trimer-specific Abs could disable Env function and block
transmission of HIV. Development of a recombinant trimer
immunogen, therefore, is one of the highest priorities in the

hunt for an effective HIV vaccine (26, 32, 76). However, a myr-
iad of variations reported in the literature led to confusion and
controversy, and none could be effectively applied to diverse
strains of HIV. For instance, recently, a procedure that pro-
duced native-like trimers from A-clade BG505 by using 2G12
BnAb to capture gp140 was not as effective with the B-clade
JRFL trimers (26, 76). Hence, another procedure was developed
in which lectin capture and negative selection by F105 NnAb
was used to purify trimers (76). These Ab-based approaches
have inherent limitations because the epitope signatures might
vary from one HIV clade to another. In fact, it was necessary to
mutate the wild-type BG505 gp140 in order to create the 2G12
binding epitope and allow for its purification by the 2G12 BnAb
(26, 31). Here, we report a new approach that allows production
of HIV Env trimers from potentially any HIV-1 clade or strain.
We further present systematic analyses to optimize trimer pro-
duction and biochemical characterizations to define the signa-
tures of trimers.

A key feature of our approach is to selectively capture gp140
Env directly from the culture supernatant under mild condi-
tions that cause minimal, if any, perturbation to the structure or
oligomeric state of the protein. Attempts to achieve this using
an affinity tag have thus far failed because the tag was not acces-
sible for interaction with its binding partner. In accordance
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with the recent x-ray structures, the C-terminal aa 664 would
not be accessible because it is the last residue of the long HR2
helices that encircle the base of the gp140 trimer (29, 70). It is
further shielded by as many as 12 glycans emanating from these
helices (29, 70). Therefore, it was essential not only to incorpo-
rate an exquisitely specific Strep-tag II but also to separate the
tag from the base by a �20-aa-long linker. These modifications
avoided clashes with the trimer base and allowed purification of
nearly homogeneous protein in a single step. A variety of gp140
variants, cleaved, uncleaved, GnTI�-glycosylated, and 293F
glycosylated from clades A, B, and A-E viruses, could be puri-
fied by this approach.

The Strep-tagged gp140 proteins behaved similarly to the
native gp140. For instance, the CP gp140 was nearly completely
cleaved to gp120 and gp41, and the CR gp140 remained
uncleaved. SOSIP mutations were essential; otherwise, most of
the gp140 aggregated into a high Mr fraction. Curiously, gp41
glycosylation was heterogeneous, showing five gp41 bands cor-
responding to glycosylation of 0 – 4 sites of the four N-linked
glycosylation sites clustered in or near the 34-aa-long HR2
helix. This microheterogeneity, which was observed in both
JRFL and BG505 gp140, might reflect a competition between
the rate of glycosylation and the rate of folding of this tran-
siently exposed structural element.

Our results show that cleavage is not essential for trimeriza-
tion per se, but it is essential for maturation into propeller-
shaped particles. Uncleaved gp140 produced such native-like
particles but in fewer and variable numbers. Maturation might
involve two, probably sequential, events, conformational tran-
sition and complex glycosylation (77). A cleavage-triggered

conformational transition can be deduced from our experi-
ments. Truncated CP gp140 constructs beyond aa 664 (e.g. aa
683) produced 3–5 times lower amounts of gp140, whereas the
same truncation in a CR background was not significantly
affected, and much of the aa 683 protein aggregated. Thus, the
conformation of MPER where these residues are located must
be different in the cleaved and uncleaved states. These results
are consistent with the previous reports by Klasse et al. (63) and
Ringe et al. (26), which showed that the cleaved aa 681 and aa
683 proteins formed micelles at the MPER. Perhaps some of the
residues in the hydrophobic residue-rich MPER are better
exposed in the cleaved state and associate with the membrane.
Structural studies suggest that the MPER forms an L-shaped
bent helix, and the residues 675– 683 contact the virion
membrane (78). Second, cleaved trimers exhibited greater
stability and are less susceptible to proteolysis than the
uncleaved trimers, suggesting that cleavage renders the
trimers more compact and less accessible to protease.
Finally, negative stain EM showed compact, propeller-
shaped trimers in the cleaved state and irregularly shaped
“blobs” in the uncleaved state, as was also observed by Ringe
et al. (26) with the 2G12 produced trimers (Table 1).

Careful analysis of glycosylation patterns showed that cleav-
age channels trimers into the correct glycosylation pathway.
Without cleavage, trimers from both JRFL and BG505 enter an
aberrant pathway, resulting in hyperglycosylation, which traps
the trimers in a loosely associated state. Consequently, the
uncleaved trimers, including the foldon trimers produced by
293F cells, are conformationally heterogeneous, nonspecifically
cross-linked, more susceptible to proteolysis, and irregularly

FIGURE 9. Antigenic signatures of uncleaved and cleaved JRFL trimers. The epitope signatures recognized by various Abs are shown in the three-
dimensional context of the gp140 trimer structure (Protein Data Bank code 4TVP; the model was generated by PyMOL) (70, 81). These are color-coded and
include amino acid residues as well as glycans. Purified cleaved and uncleaved gp140 trimers were coated on Strep-Tactin plates through the C-terminal
Strep-tag II and incubated with various mAbs shown in the top left corner of each panel, and ELISAs were performed. The protein concentration of the trimers
per well was kept constant at 1 �g/ml. Each panel shows the binding curve from three replicates at the indicated concentrations of the mAb. Orange curves,
cleaved trimers. Black curves, uncleaved trimers. The p value as determined by the unpaired two-tailed t test is �0.05 for PGT151, PGT145, PG9, and PG16 at 1
�g/ml Ab. Repetition of ELISAs several times with independently purified trimers yielded similar results.
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shaped. The presence of a diffuse smear in the native gel, poor
reactivity with the conformation-specific PGT145 BnAbs, and
heterogeneity in gp41 complex glycosylations provide further
evidence of this phenotype. Finally, the uncleaved trimers from
GnTI� cells that are unable to carry out hyperglycosylations
showed a higher percentage of native-like trimers, further
underscoring the negative effects of hyperglycosylation.

The strong reactivity of our CR and CP trimers with the
BnAbs 2G12, VRC01, and PGT121 confirmed that the Strep-
tagged trimers have correctly folded gp120 and gp41 ectodo-
mains, exposing the respective conformational epitopes. Pref-
erential reactivity of the cleaved trimers with the PGT151 BnAb
further confirmed the integrity of the conformational epitope
that emerges at the interface of gp120 and gp41 following cleav-
age. Strong reactivity with cleaved trimers, but not with
uncleaved trimers, of the quaternary BnAbs PG9 and PG16
demonstrated that our CP gp140 protomers assembled into
correct quaternary structure. Contrary to some reports that the
CR trimers, but not the CP trimers, react with the NnAbs, both
of our CR and CP trimers reacted similarly with the NnAbs b6,
F240, and F105 (31). Careful examination of the published
reports, however, showed that the reactivity depended on the
type of assay platform used, and the sequences of the CR and CP
trimers compared were not identical (Table 2). On the other
hand, our data were generated using identical CP and CR
sequences (except for the cleavage site), and our Strep-Tactin-
based ELISA platform is not expected to introduce significant
structural perturbations into the trimeric antigens. Further-
more, the HIV Env trimer is a dynamic structure and probably
oscillates between “closed” and “open” states, allowing the
NnAb to interact with the trimer when it opens transiently (79,
80). Thus, strong reactivity to the quaternary-specific BnAbs,
such as PG9 and PG16, is the most reliable benchmark to assess
the authenticity of the native-like trimers.

In conclusion, we have developed a new system to produce,
optimize, and characterize pure and native-like HIV-1 Env
trimers. Both cleavage and proper glycosylation are critical to
generate compact, three-blade propeller shaped particles,
whereas without cleavage, the trimers are heterogeneous in
conformation, nonspecifically cross-linked, and hyperglycosy-

lated, properties consistent with their irregular shape. The
GnTI� cells produced better quality trimers than the 293F cells.
However, the 293F trimers might better recapitulate the native
structure because GnTI� cells lack complex glycosylations.
The caveat, however, is that we do not know the glycan struc-
tures introduced by the 293F cells and whether these are the
same as that present on the HIV-1 virion. Microheterogeneity
of glycosylation might also be a concern. Three criteria, namely
�95% cleavage, nearly 100% propeller-shaped particles, and
strong reactivity to quaternary BnAbs, define authentic HIV-1
trimers. We believe that the Strep-tag approach provides sev-
eral useful features (Table 1) and is broadly applicable to gen-
erate trimers from potentially any HIV-1 virus for basic
research as well as for human clinical trials and vaccine manu-
facture. The well behaved JRFL trimers described here might
serve as a good scaffold for further engineering to generate a
trimeric immunogen that can elicit transmission-blocking Abs
against diverse HIV-1 strains.
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