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Abstract: The antibacterial activity and biofilm reduction capability of liposome formulations encap-
sulating tobramycin (TL), and Tobramycin-N-acetylcysteine (TNL) were tested against tobramycin-
resistant strains of E. coli, K. pneumoniae and A. baumannii in the presence of several resistant genes.
All antibacterial activity were assessed against tobramycin-resistant bacterial clinical isolate strains,
which were fully characterized by whole-genome sequencing (WGS). All isolates acquired one or
more of AMEs genes, efflux pump genes, OMP genes, and biofilm formation genes. TL formulation
inhibited the growth of EC_089 and KP_002 isolates from 64 mg/L and 1024 mg/L to 8 mg/L. TNL
formulation reduced the MIC of the same isolates to 16 mg/L. TNL formulation was the only effective
formulation against all A. baumannii strains compared with TL and conventional tobramycin (in the
plektonic environment). Biofilm reduction was significantly observed when TL and TNL formulations
were used against E. coli and K. pneumoniae strains. TNL formulation reduced biofilm formation at a
low concentration of 16 mg/L compared with TL and conventional tobramycin. In conclusion, TL
and TNL formulations particularly need to be tested on animal models, where they may pave the
way to considering drug delivery for the treatment of serious infectious diseases.

Keywords: antimicrobial resistance; Escherichia coli; Klebsiella pneumoniae; Acinetobacter baumannii;
liposomes; tobramycin; N-acetylcysteine; multidrug-resistant; resistant genes

1. Introduction

Antimicrobial resistance (AMR) has a substantial impact on human health and is
becoming a major global health concern [1,2]. AMR has increased globally both in the
community and hospital settings, but mainly in intensive-care units (ICUs) [3]. Among
antimicrobial-resistant bacteria, Gram-negative bacteria (GNB) form the most serious
threat due to the continuous emergence of resistance to almost every class of antibiotics [1].
Multidrug resistance (MDR) is the consequence of multiple bacterial-resistance mechanisms,
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such as overexpression of efflux pumps and/or certain outer membrane proteins, as a result
of gene mutations that alter the bacterial membrane permeability [4]. Aminoglycosides
(AG) remain potent antimicrobial agents with a broad-spectrum activity, and are used to
treat severe infections caused by aerobic Gram-negative rods [5,6]. They act by binding
to the 30S or 50S ribosomal subunits, leading to mRNA miscoding and protein synthesis
inhibition [7,8]. Nevertheless, several bacterial species including E. coli, K. pneumoniae and
A. baumannii have developed resistance toward AG’s antibiotics, including tobramycin
(Figure 1) [9,10].

Figure 1. (a) Chemical structure of tobramycin; (b) chemical structure of N-acetylcysteine.

Meanwhile, N-Acetylcysteine (NAC) (Figure 1), an acylated variant of L-cysteine
amino acid, is a known antibiotic adjuvant for treating respiratory infections due to its mu-
colytic activity [11]. Moreover, several reports indicated that NAC has substantial activity
against bacterial biofilms [12–15]. Moreover, NAC might protect against aminoglycoside
toxicity as reported in several research studies [16–19]. It is well known that all AGs,
including tobramycin, are associated with severe nephrotoxicity and ototoxicity [20–22].

Liposomes are nano-scale spherical membranous vesicles composed of lipids and/or
phospholipids; the key characteristic of these structures is their naturally occurring single
or multiple bilayer membranes, which confer protection of the loaded drug [23]. Since the
1970s, liposomes have gained attention for the use as a drug carrier, due to their low toxicity
and ability to encapsulate both hydrophobic and hydrophilic compounds [24]. Currently,
liposomes are versatile drug carriers in pharmaceutical industries. Using liposomes as
delivery systems has many advantages, such as decreasing the side effects of the loaded
drug, improving stability and activity, and enhancing the drug concentrations at the
site of infection [25–30]. Moreover, using liposomes to deliver antibiotics at the site of
infection decreases the total administered dosage, which limits the evolution of resistance
bacteria [24]. The action of the liposomes is quick enough to kill the bacteria even before
it can develop resistance [31–33]. As reported, the encapsulation of aminoglycosides
into liposomes has improved the therapeutic index of these agents, by increasing the
accumulation of the drug in the site of infection [34] and reducing the ototoxicity and
nephrotoxicity of the drug [35]. In this study, we investigated the ability of liposomal-
encapsulated tobramycin and tobramycin-N-Acetylcysteine to overcome resistance in
Escherichia coli, Klebsiella pneumoniae, and Acinetobacter baumannii. This work is the first
study that has examined the antibacterial activity of tobramycin and N-acetylcysteine
entrapped in liposomes against antimicrobial-resistant Gram-negative bacteria with a
known genomic background.

2. Materials and Methods
2.1. Sample Collection, Identification, and Susceptibility Tests

Antimicrobial-resistant E. coli (n = 7), K. pneumoniae (n = 9), A. baumannii (n = 5),
and Staphylococcus aureus ATCC 29213 reference strains were obtained from the Clinical
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Microbiology Laboratory at the Department of Pathology and Laboratory Medicine, King
Abdulaziz Medical City (KAMC), Riyadh. Susceptibility testing was performed using the
VITEK 2 compact automated system (Biomerieux, Lyon, France). The minimum inhibitory
concentration (MIC) of tobramycin was determined using the micro broth dilution method
following EUCAST guidelines [36].

2.2. Whole Genome Sequencing and Bioinformatic Analysis

Prior to the genome sequencing, the bacterial DNA was extracted using the MagnaPure
compact system (Roche, Basel, Switzerland). DNA library was constructed using Nextera
XT Library Prep Kit (Illumina, San Diego, CA, USA). Short-read sequences were generated
using the Illumina MiSeq System (Illumina, San Diego, CA, USA) with the 2 × 300 bp
paired-end protocol. The antimicrobial resistant genes and virulence factors were identified
using ABRicate (version 0.9.8) (Seemann T, Github https://github.com/tseemann/abricate,
accessed on 10 November 2021) [37] with the Megares [38], Resfinder [39] and virulence
factors database (VFDB) [40].

2.3. Preparation and Characterization of the Tobramycin Liposomes (TL) and
Tobramycin-N-Acetylcysteine Liposomes (TNL) Formulations

The liposome nanovesicles were prepared by the rehydration-rehydration vesicles
(DRV) method of Alhariri et al. [41]. Basically, the liposomes were prepared by mixing
1,2-Dimyristoyl-sn-glycero-3-phosphoethanolamine (DMPE), 1,2-Dipalmitoyl-sn-glycero-
3-phosphocholine (DPPC), and cholesterol (UFC Biotechnology, Amherst, NY, USA) in
the molar ratio 4:2:1 in chloroform. A Rotavapor® R-300 (BÜCHI, Flawil, Switzerland)
was used to evaporate the chloroform until a lipid film formed, followed by a stream of
nitrogen gas for 5 min, to flush any traces of chloroform. The liposomal vesicles were
prepared by dissolving 1 mg tobramycin in PBS, pH 7.4, and 1 mg of tobramycin and
50 mM of N-acetylcysteine (NAC) in PBS to form the tobramycin liposome (TL), and the
tobramycin-NAC liposome (TNL) formulations. The formulations were homogenized by
sonication (Ultrasonic processor UPS 125, Maharashtra, India) for 3 min using cycles of a
10 s run and 2 s pause. The Zetasizer (Malvern, UK) was used to determine the size of the
prepared liposomes. The liposomes were washed with PBS by centrifugation for 20 min
at maximum speed, and then lyophilized for 48 h in the CHRIST lyophilizer (Osterode
am Harz, Germany). The liposomes were reconstructed by gradually adding 10% of the
original volume of PBS.

2.4. Tobramycin Encapsulation Efficiency (EE%) of the TL and TNL Formulations

A microbiological assay was used to measure the tobramycin encapsulated inside the
liposomal formulations. Overnight bacterial cultures of S. aureus ATCC 29213 were first
adjusted to 0.5 MacFarland and then diluted at 5 × 105 CFU/mL in 250 mL of Mueller-
Hinton agar (HIMEDIA) and cooled down to 45 ◦C. The suspensions were later poured
into square culture plates. Triton X-100 (UFC biotechnology, Amherst, NY, USA) (0.2%) was
used to lyse the liposomes and release the encapsulated antimicrobial agents for 30 min
at 37 ◦C. After solidification of the seeded plate, 6 mm diameter wells were made and
filled with 20 µL of the liposome lysate. The plates were incubated at 37 ◦C for 24 h, and
the average of the inhibition zones was measured. In addition, the quantification of the
tobramycin was also performed for the confirmation of the results by using an ultra-high-
performance liquid chromatography–tandem mass spectrometer (UHPLC-MS/MS). The
UHPLC system consisted of an LPG-300RS quaternary rapid separation pump with an
integrated degasser, WPS-300TRS autosampler, TCC-300RS Column compartment and
XcaliburTM 4.3 software (Revision A, Thermo Fisher Scientific, Waltham, MA, USA) [42]. All
samples were centrifuged, filtered through 0.22 µm filters and, in some cases, diluted before
analysis. Separation was done with a Thermo ScientificTM SyncronisTM C18 column (100 ×
2.1 mm, 3 µm particle size). The oven temperature was maintained at 40 ◦C, and the mobile
phase was LC/MS grade, water plus 0.1% formic acid (A) and methanol, plus 0.1% formic
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acid (B). A linear gradient program was used at a flow rate of 0.300 mL/min: 0.0–2.0 min 2%
(B), 2.0–5.0 min from 2% to 98% (B), 5.0–6.0 min from 98% (B), 6.5–9.0 min from 98% to 2%
(B), and finally 7.0–10.0 min 2% (B). The identification and quantification of tobramycin was
performed on a triple quadrupole mass spectrometer (TSQ Altis, Thermo Fisher Scientific).
The mass spectrometer was equipped with an electrospray ionization (ESI) source, which
was operated at the following conditions: gas temperature was 300 C, sheath gas 50, aux
gas 10, capillary voltage: 3500 V, and argon gas was used for the collision cell. Tobramycin
was detected in an ESI positive mode at a retention time Rt = 0.59 min and quantified using
selected reaction monitoring (SRM). The transition ions (m/z) associated with tobramycin
were 468→163 (22 eV), 468→205 (21 eV) and 468→324 (14 eV). A standard calibration curve
(R2 = 0.993) was created using eight different concentrations of tobramycin, ranging from
200 to 1000 ppb.

The following equation was used to calculate the encapsulation efficiency:

EE% =
Concentration o f encapsulated drug

Initial concentration o f drug
× 100 (1)

2.5. The Stability of the TL and TNL Formulations in Biological and Storage Conditions

Anonymous patient samples of plasma and sputum were obtained after the routine
work was done, and before discarding the samples from the Medical Laboratory, King
Abdulaziz Medical City, National Guard Hospital, Riyadh, Saudi Arabia. The sputum
samples were diluted 1:10 (w/v) in PBS before autoclaving. The retention of tobramycin in
the prepared liposomes was tested at 37 ◦C in plasma and sputum, and at 4 ◦C and 37 ◦C
in PBS. The samples were collected at the time intervals 0, 1, 6, 12, 18 and 24 h, and were
harvested and centrifuged at 4 ◦C at 20,000 rpm. The concentration of tobramycin in the
supernatants obtained was checked with the agar well-diffusion method, as described in
the encapsulation efficiency (EE%) section.

The following equation was used to calculate the retention of the drugs:

Retention o f encapsulated drug =
Initial concentration− released concentration

Initial concentration
× 100 (2)

2.6. Antibacterial Activity of TL and TNL Formulations

The minimum inhibitory concentration (MIC) and minimum bactericidal concentration
(MBC) of the free form of tobramycin, TL and TNL formulations were tested with the micro
broth dilution method. Serial dilution (range 1024–16) of the free tobramycin, and the
liposomal formulations prepared in the Mueller-Hinton broth were checked on overnight
bacterial cultures that were diluted at 5 × 105 CFU/mL. All samples were seeded on
Mueller-Hinton agar for the next day to determine the MBC.

Decrease % =
Decrease

New number
× 100 (3)

2.7. Biofilm Reduction of TL and TNL Formulations

The biofilm reduction assay was performed as described by Paula-Ramos et al. with
minor modifications [43]. Fresh bacterial cultures, grown in Mueller-Hinton broth, were
adjusted at the 0.5 MacFarland standard, diluted (1:100) into fresh media and then incubated
in flat-bottom 96-well plates for 72 h at 37 ◦C in a shaking incubator at 75 rpm. Planktonic
cells were removed by washing twice with sterile dH2O. After washing, 100 µL of Mueller-
Hinton broth was added to each well and the plates were incubated again for 48 h.

After 72 h of incubation, the planktonic cells were removed by washing twice with
water, and the treatments were added as follows. The biofilms were treated with the MIC
concentration of each isolate and incubated for 24 h at 37 ◦C, and 50 mM of NAC and the
MIC of tobramycin were tested as well.
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The biofilms were stained with 0.1% crystal violet at room temperature for 15 min
and washed with sterile distilled water. The plates were dried at room temperature and
the biofilms were solubilized though incubation with 99% of ethanol for 15 min. The
suspension was transferred to a new plate and the optical density (OD) was measured at
570 nm using a SpectraMax (Molecular Devices, San Jose, CA, USA) plate reader.

The reduction percentage was calculated as follows:

Decrease = Original number (OD) − New number (OD) (4)

The original number was the positive biofilm control (no treatment) and the new
number obtained after the treatment.

2.8. Statistical Analysis

The results were analyzed with XY tables with Graphpad Prism 9 software, (Version
9.3.0) [44]. ANOVA one-way analysis was used to compare the groups and measure the
p-value. Note: no significant (ns) = p > 0.05, significant = * p ≤ 0.05, very significant =
** p ≤ 0.01, and highly significant = *** p ≤ 0.001. All experiments were done in triplicate.

3. Results
3.1. Susceptibility Profiles of the E. coli, K. pneumoniae, and A. baumannii Clinical Isolates

A total of 21 tobramycin resistant clinical isolates were examined in this study. The
isolates included E. coli (n = 7), K. pneumoniae (n = 9), and A. baumannii (n = 5).

The results of the Antimicrobial Susceptibility Testing (AST) using the VITEK 2 com-
pact automated system for E. coli, K. pneumoniae, and A. baumannii are provided in the
Supplementary Materials. All the E. coli isolates were identified as multidrug-resistant
organisms (MDRO) (Table S1 from Supplementary Materials). All the tested K. pneumoniae
isolates were identified as pan-drug-resistant organisms (PDR), except for isolate KP_086
and KP_095, which were classified as extensively drug-resistant organisms (XDR) (Table S2).
Regarding the A. baumannii isolates, all the isolates were completely resistant to all the
tested agents belonging to the third and fourth cephalosporins, beta-lactamase inhibitors,
carbapenems, aminoglycosides and fluoroquinolone classes. All of the A. baumannii isolates
were identified as XDR organisms (Table S3) [45].

3.2. Whole Genome Sequencing and Bioinformatic Analysis

The whole genome sequencing analysis detected the presence of multiple outer mem-
brane proteins, efflux pump genes, and genes involved in the formation and development
of a biofilm in all the tested organisms. Among the detected OMPs, ompA in E. coli, A.
baumannii, and K. pneumonoiae isolates, and omp37 in K. pneumoniae. Furthermore, the efflux
pump gene acrD was detected in all E. coli and K. pneumoniae isolates, with several other
efflux pump genes. On the other hand, the majority of ade efflux pump genes were present
in A.baumannii isolates. Biofilm formation genes were detected as well, including bap, csu,
and PNAG, in A. baumannii, and csg genes in E. coli (Only the major genes are listed in
Table 1, for more details please refer to Table S4).

Moreover, the presence of the aminoglycoside-modifying enzyme genes (AMEs) was
detected in all the tested organisms. One or more of the AMEs, particularly the tobramycin-
modifying enzymes, were detected in the isolates including N-acetyltransferases (ACC),
O-adenyltransferases (ANT), O-phosphotransferases (APH), and methyltransferase armA
and rmtF (for more details please refer to Table S5).
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Table 1. Remarkable detected genes: outer membrane genes, efflux pump genes and biofilm formation
genes in the tested organisms, (Table S4).

Category Escherichia coli Acinetobacter
baumannii

Klebsiella
pneumoniae

Outer membrane
proteins (OMPs) ompA ompA ompA, omp37

Efflux pumps
acrA, acrB, acrD, acre,

acrF, acrS, mdtA-C,
mdtE-K, mdtM-P

adeA-C, adeI, adeK,
adeL, adeR, adeT1,
adeT2, abeM, abeS

acrA, acrB, acrD

Biofilm formation csgB, csgD, csgF, csgG pgaA-D, csuA-D, bap,
csgB, csgD, csgF, csgG -

3.3. TL and TNL Formulation Characterization

In the current study, we succeeded in formulating liposomes with a size less than
bacterium size; the size results illustrated that our prepared TL and TNL formulations were
347.33 ± 62.27 and 229.47 ± 47.57 nm, respectively (Table 2). The polydispersity index
(PDI) of our formulations tended to be more heterogenic in size, as the PDI for TL and TNL
were 0.85 and 0.68, respectively, representing the diverse particle sizes (Table 2).

Table 2. The average of triplicate reads of the particles size and PDI.

Formula Peak PDI

TL 347.33 ± 62.27 0.85

TNL 229.47 ± 47.57 0.68

The encapsulation efficiency percentage (EE%) of tobramycin inside the TL and TNL
formulations were 7.1 and 12.8, respectively. The TNL had a greater encapsulation efficiency
of tobramycin and consequently, a higher released concentration, 127.6 mg/L compared
with 71 mg/L for TL (Table 3).

Table 3. The Encapsulation efficiencies EE% and the released concentrations of the prepared formulations.

Liposomal Formulations Entrapped Concentration (mg/L) EE%

TL 71 7.1

TNL 127.6 12.8
TL: tobramycin liposomes. TNL: tobramycin-N-acetylcysteine liposomes.

3.4. The Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration
(MBC) of Tobramycin against the Clinical Bacterial Isolates

The E. coli, K pneumoniae, and A. baumannii isolates were highly resistant to conven-
tional tobramycin with MICs and MBCs ranging between 32–2048 mg/L (Table 4). The
MIC of the conventional tobramycin against the E. coli isolates of EC_077, EC_089, EC_162,
and EC_219 was at 64 mg/L, and able to eradicate these isolates (MBC) at 128 mg/L.
Moreover, the EC_057, EC_068, and EC_083 E. coli isolates were suppressed and eradicated
by conventional tobramycin at 32 mg/L (MIC) and 64 mg/L (MBC).
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Table 4. The MIC and MBC of tobramycin, TL, and TNL against E. coli, K. pneumoniae, and
A. baumannii.

Isolate ID

Tobramycin TL TNL

(mg/L)

MIC MBC MIC MBC MIC MBC

E. coli clinical isolates

EC_057 32 64 32 64 16 32
EC_068 32 64 32 64 16 32
EC_077 64 128 32 64 16 32
EC_083 32 64 32 64 16 32
EC_089 64 128 8 16 16 32
EC_162 64 128 32 64 16 32
EC_219 64 128 32 64 32 64

K. pneumoniae clinical isolates

KP_002 1024 2048 8 16 16 32
KP_017 512 1024 32 64 32 64
KP_019 32 64 16 32 32 128
KP_026 1024 2048 8 16 16 32
KP_050 1024 2048 8 16 16 32
KP_057 1024 2048 16 32 16 32
KP_059 1024 2048 16 32 16 32
KP_086 256 512 16 32 32 64
KP_095 1024 2048 16 32 32 64

A. baumannii clinical isolates

RAB_005 128 256 128 256 16 32
RAB_009 128 256 128 256 16 32
RAB_014 128 256 128 256 16 32
RAB_030 128 256 128 256 16 32
RAB_055 128 256 128 256 16 32
S. aureus
ATCC
29213 *

4 8

* This was done for validation purposes.

For the K. pneumoniae isolates, the majority of the isolates were extremely resistant to
conventional tobramycin. For instance, the growth of isolates KP_002, KP_026, KP_050,
KP_057 and KP_95 were inhibited (MIC) at 1024 mg/L and eradicated at 2048 mg/L (MBC).
The MIC were 32, 256 and 512 mg/L, for the isolates KP_019, KP_086, and KP_017, the
MBC were 64, 512, and 1024 mg/L, respectively. Lastly, all the A. baumannii isolates were
resistant to the conventional tobramycin at 128 mg/L MIC and 256 mg/L MBC.

3.5. TL and TNL Formulations Stability within Biological and Storage Conditions

The TNL formulation was highly stable, and time seemed to have little or no effect on
the drug release of the liposomes (Figure 2). The TL formulation had a lower stability than
our TNL, but maintained a sustained drug release over the 24 h (Figure 3). Of the tested
environments, plasma had a constant drug release starting at 79% at hour 1, and 80.7% at
hour 24. The same phenomenon was observed with sputum, except for a slight decrease at
hour 6 (77.8%). Regarding the stability of TL in PBS at 37 ◦C and 4 ◦C, the released drug
varied. The highest retention percentage for TL at PBC 4 ◦C was 81.8% at hour 24, and
the lowest was 77.1% at hour 18. For the PBS incubated at 37 ◦C, the highest retention
percentage was 84.18% at hour 18, and the lowest was 77.8% at hour 12. No significant
differences were detected in the stability of all the tested conditions for both TL and TNL
formulations (p value > 0.05).
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Figure 2. Stability of tobramycin-NAC liposomes in different environments; error bars reflect the SEM.

Figure 3. Stability of tobramycin liposomes in different environments; error bars reflect the SEM.

3.6. The Antibacterial Activity of the TL and TNL Formulations against the Genetically Resistant
Clinical Bacterial Isolates

The TL and TNL formulations were tested for their minimum inhibitory and bacterici-
dal activity against the multi-drug resistant E. coli, K. pneumoniae, and A. baumannii. The
TL and TNL formulations reduced the MIC and MBC against the majority of the isolates
(Table 4). The encapsulation of tobramycin inside the TL and TNL formulations improved
its activity against seven isolates of E. coli. The MIC of these isolates decreased one-fold or
two-fold, alternatively, in the cases of EC_057, EC_068, EC_083, EC_162 and EC_219. For
EC_089, the MIC significantly decreased ~3-fold. The encapsulation of tobramycin and
NAC decreased the MIC of E. coli, approximately one-fold against EC_057, EC_068 and
SA0219, and two-fold against EC_089 and EC_162. The isolate EC_089 was positive for
the detected genes, although it did not harbor any of the tobramycin-modifying enzymes.
The MIC of the free tobramycin for this isolate was 64 mg/L, and the encapsulation of
tobramycin in the liposomal formulation TL decreased the MIC three-fold (8 mg/L). The
co-encapsulation of tobramycin and NAC in a liposomal formulation (TNL) decreased
two-fold for this particular isolate (MIC = 16 mg/L).

Overall, the TL had a greater activity against K. pneumoniae than E. coli, which may
be due to the different genetic profile of the two species. The decreased MIC of the TL
against K. pneumoniae was remarkable. Six isolates were highly resistant to tobramycin
(MIC 1024 mg/L) and the MIC decreased six-fold against KP_002, KP_026, KP_050, KP_057,
KP_059 and KP_095. The activity was also observed for the TNL.

All the isolates of A. baumannii were highly resistant to tobramycin, with a MIC
of 128 mg/L. The tested A. baumannii isolates were not affected by the TL formulation
with no improvement, as the MIC results of the TL formulation were comparable to
the conventional tobramycin. The TNL had a great activity against all the A. baumannii
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isolates (MIC = 16 mg/L). This phenomenon could indicate the possible synergy between
tobramycin and N-acetylcysteine, particularly against A. baumannii.

3.7. Biofilm Reduction Activity of TL and TNL Formulations against Clinical Bacterial Isolates

In this study, we tested the reduction activity of the liposomal formulations against
mature biofilms formed by the selected Gram-negative clinical bacterial isolates with
genetical mutations.

The most significant results were observed against biofilms formed by the E. coli iso-
lates. The current study confirmed that treatment with 50 mM of the free form of NAC can
reduce mature biofilms formed by EC_162 (p value = 0.0003) and EC_219 (p value = 0.0008)
isolates by 48.35% and 33.82%, respectively (Figures 4 and 5). However, encapsulating NAC
and tobramycin inside liposomes increased the reduction percentage to 77.18% and 72.04%
against the same isolates. The same was observed for biofilms formed by K. pneumoniae
(Figures 6 and 7). The encapsulation of tobramycin inside liposomal formulations improved
its reduction percentage against all of the tested isolates. For K. pneumoniae biofilms, the
reduction percentage of KP_050 and KP_059, when treated with free NAC, were 36.15% and
14.22%, which increased to 72.71% and 68.20% when treated with TNL, (Figures 6 and 7).
The A. baumannii strains exhibited a higher sensitivity to the TNL formulation, though the
strains remained resistant to conventional tobramycin or encapsulated tobramycin inside a
liposomal formulation (TL). Interestingly, the liposomal formulations that contained the
TNL were able to maintain the biofilms of A. baumannii strains at a very low concentration
(16 mg/L), and the other drug forms did the same, but at higher concentration (128 mg/L)
(Figures 8 and 9).

Figure 4. Biofilm reduction assay for isolate EC_162. (p value = 0.0003, *** highly significant; error
bars reflect the standard error of the mean (SEM)).
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Figure 5. Biofilm reduction assay for isolate EC_219. (p value = 0.0008, *** highly significant; error
bars reflect the SEM).

Figure 6. Biofilm reduction assay of isolate KP_050. (p value = 0.0343, * significant; error bars reflect
the SEM).
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Figure 7. Biofilm reduction assay of isolate KP_059. (p value = 0.0411, * significant; error bars reflect
the SEM).

Figure 8. Biofilm reduction assay of isolate RAB_005. (p value = 0.0027, ** very significant; error bars
reflect the SEM).
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Figure 9. Biofilm reduction assay od isolate RAB_009. (p value = 0.0027, ** very significant; error bars
reflect the SEM).

4. Discussion

Escherichia coli, Klebsiella pneumoniae, and Acinetobacter baumannii are bacterial threats
for public health, due to the raised concern of antibiotic resistance [46–49]. Tobramycin
is a family member of aminoglycoside antibiotics, which have been used for treating
infections caused by the abovementioned pathogens [50–52]. Scientifically, it has been
proven that these bacteria are aggressively resistant to antibiotics in biofilm mode [53–55].
As documented, several research groups have reported the activity of NAC against bacterial
biofilm formation, as well as its antibacterial activities [12–14], [56–59]. Furthermore, it
has been reported by numerous research groups that NAC can be encapsulated inside
liposomal formulations [60–65] Therefore, we considered modifying the conventional
tobramycin formula by using drug delivery systems; we are the first research group to
have developed tobramycin with NAC inside the liposomal formulation. We have reported
here the superior activity of our liposomal NAC formulation (TNL), as an antibacterial
formula that has the mucolytic ability to reduce bacterial biofilm formations and reduce
tobramycin resistance.

In this study, we used the multidrug-resistant organisms (MDRO) of E. coli isolates, the
pan-drug resistant organisms (PDR) of K. pneumoniae isolates, and drug-resistant organisms
(XDR) of A. baumannii isolates. The results shown in the Supplementary Materials sheets
show that the TL and TNL formulations were able to reduce bacterial resistance phenom-
enally, as shown in Table 3. We investigated the genetic variations of these particular
bacteria, in order to explain the antibacterial activity of our liposomal NAC formulations.
We found that the outer membrane proteins (OMPs), including ompA and the efflux pump
acrABD-tolC, were present in all seven E. coli isolates. Notably, the AcrAD-TolC and KDPE,
and MTD efflux pumps were also present in all tested E. coli isolates. These pumps are re-
sponsible for the resistance to multiple aminoglycosides agents, including tobramycin. The
deletion of the transporter gene (arcD) results in a reduction of MIC for the aminoglycoside
agents, including tobramycin, gentamycin, amikacin, kanamycin, and neomycin [66,67].
The whole-genome data revealed that all the tested E. coli isolates were positive for the
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presence of acrD, and all were highly resistant to tobramycin. The operon genes, including
csgA, csgB, csgD, csgF, and csgG, were also detected in all the E. coli clinical isolates, and were
involved in the formation and development of a biofilm. Curli fimbriae (csgA) are surface
protein genes that are essential for many functions, including adhesion, cell aggregation,
and biofilm formation [68]. In addition, mutations of the csgA gene can cause a defect in
the bacterial surface attachment ability and biofilm formation [69]. (Table S4). In addition,
all K. pneumoniae clinical isolates expressed different outer membrane protein (OMP) genes,
such as omp37 and ompA. Many multidrug efflux pump genes were also detected, including
acrA, acrB, acrD, mdt, and emrD. (Table S4).

With regard to the A. baumannii isolates, genetic data revealed that they already
contained all the genes listed above, the same as E. coli and K. pneumoniae, except for one
efflux pump system. (Table S4). Interestingly, we observed that the outer membrane A
genes (ompA), which have a major role in the adherence, invasion, and biofilm formation
of A. baumannii, were present in all the isolates. Moreover, we observed the presence of
two of the three efflux pump systems in all the isolates, namely adeABC and adeFGH. The
AdeABC genes, adeA, adeB and adeC, were present in all the A. baumannii isolates, and all
were associated with a high level of resistance to tobramycin. As mentioned in the Table S4,
the overexpression of these pumps plays a role in biofilm formation in the clinical isolates
of A. baumannii [70].

Furthermore, the presence of the aminoglycoside-modifying enzyme genes (AMEs)
were also detected in the E. coli, K. pneumoniae, and A. baumannii. In the E. coli (Table
S5), one or more of the AMEs, particularly the tobramycin-modifying enzymes, were
detected in the isolates. However, in the isolate EC_089, none of the tobramycin modifying
enzymes were detected, even though this particular strain displayed remarkable resistance
to tobramycin, recorded at 64 and 128 mg/L for MIC and MBC, respectively. Notably, we
detected other aminoglycoside-modifying enzymes for this isolate (EC_089), including
N-acetyltransferases (ACC) aac(3)-IIa and aac(6′)-Ib-cr, O-adenyltransferases (ANT), such
as ant(2”)-Ia, and O-phosphotransferases (APH) which included aph(6)-Id and aph(3”)-
Ib. Similarly, the same occurred in the K. pneumoniae isolates, and all the isolates were
encoded with more than one of the AME genes. The isolates KP_002, KP_019, KP_045,
KP_050, KP_057, KP_059, and KP_095 were encoded with the aminoglycoside resistant
methyltransferase (armA) gene, except for one isolate, KP_017, which harbored the rmtF
gene. (Table S5). Likewise, A. baumannii isolates were not different from the E. coli and K.
pneumoniae isolates. All the isolates harbored the aph(6)-Id, aph(3”)-Ib, and armA (Table S5).

Finally, in terms of the biofilm formation genes, we detected several genes including
the biofilm-associated protein (bap), Csu fimbriae (csuA, csuA/B, csuB, csuC, csuD, csuE),
and PNAG (pgaA, pgaB, pgaC, pgaD). In addition, the bfmRS two-component system and
abaIR quorum-sensing system were present in all three bacterial isolates.

On other hand, the sizes of the liposome formulations were expected to range from
25 nm to 2.5 µm, based on which they were classified as small (≤100 nm), intermediate
(100–250 nm), large (≥250 nm) or giant (>1 µm) [71,72] The average size of bacterial cells is
approximately 1 µm, and for liposomal formulations to fuse properly with the bacterial
membrane and release their contents, they must be smaller than the bacterial cells. The
size of the nanoparticle is an important factor in drug delivery to eukaryotic cells. It
contributes to the tissue distribution, pharmacokinetics, and clearance of these delivery
systems. The size of the nanocarriers differs based on the route of administration, for
example, for intravenous administration, the particle size can be ranged between 200 nm
and 2000 nm [73,74].

As reported by Messiaen et al., 2013, the size of the prepared tobramycin liposomes
were 426.3 (±26.4) and 228.5 (±34.9), making the sizes of the TL and TNL average [71].
However, the size of the TNL liposomes were closer to those described by Hasanin and
others, which had a mean diameter of 200 nm [72,75]. The polydispersity index (PDI), also
known as the heterogeneity index, is a description of the size distribution in the tested
sample. The PDI values range from 0.0 (homogeneity) and 1.0 (heterogeneity) [76,77].
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Our encapsulation concentration was close to the previously reported DPPC/cholesterol-
tobramycin liposomes by Messiaen et al., 2013. Their encapsulation was 141 (±35) ug/mL,
and higher than the liposomes reported by Halwani et al., 2008 (0.2 mg/mL) [30,71]. The
stability tests of the TL and TNL formulations supported a better understanding of the drug
release in different biological and storage environments. Though the stability tests of our
formulation gave us a better understanding of the drug release in different biological and
storage environments, the stability of the TL formulation can be improved by implementing
different preparation methods or changing the physical and chemical conditions of the
current preparation method, such as heat and pH levels, to increase the entrapment of the
drugs [78].

Overall, MIC and MBC of the TL and TNL were significantly decreased compared
with the conventional tobramycin, which indicates that we succeeded in enhancing the
antibiotic activity by using liposomes as a drug vehicle. Prior studies have also succeeded in
improving the delivery of conventional tobramycin [28,76]; for instance, Marier et al., 2003,
used liposomal tobramycin to treat pulmonary infections caused by Pseudomonas aeruginosa
in rats [75]. Moreover, tobramycin liposomes exhibited strong bactericidal activity against
a large range of resistant bacteria, including Gram negative bacteria [79].

This could be due to the presence of the armA gene (the aminoglycoside resistant
methyltransferase), in all the A. baumannii isolates, which confers a high level of resistance
to a wide range of aminoglycoside agents, including tobramycin [80–82]. This gene func-
tions at the target site through methylation, which prevents the drug from recognizing its
target site [80]. Biofilms are a community of bacteria embedded in a self-produced extracel-
lular polymeric substance. The complex structure of biofilms prevents the entry of most
antibiotics, and can mediate the adhesion of bacteria to various surfaces. Bacteria within
biofilm can be up to 1000 times more resistant than its planktonic phenotypes [83]. It is
known that NAC has antibiofilm activity. The activity includes several mechanisms, includ-
ing the reduction of the biofilm formation process, the reduction of the matrix production
or the disruption of the formed biofilms as in the current study [12,58,84,85]. Scientifi-
cally, the N-acetyl cysteine activity may have played a role as an antibiofilm and mucolytic
agent [11,12,19]. The increased reduction activity of the encapsulated tobramycin compared
with free tobramycin was reported by Sans-Serramitjana et al., (2017), who reported that the
encapsulation resulted in a decreased minimal biofilm eradication concentration (MBEC)
of the used drug for all tested P. aeruginosa isolates [86]. These results are compatible with
our results; the encapsulation of tobramycin increased the reduction activity against the
tested organisms. The activity of tobramycin in the liposome forms were also reported
against Burkhoderia cepacia biofilms [71]. A study by Marchese et al., was conducted to
test the antibiofilm activity of NAC alone, or with antibiotics on biofilms formed by E.
coli isolates. The results were similar to the current study [85]. In addition to the NAC
inhibition of the biofilm matrix production in all the tested E. coli isolates, they found that
NAC at concentrations between 2 and 8 mg/mL disrupted mature biofilms. The highest
reduction % against E. coli was 60% [85].

5. Conclusions

The encapsulation of tobramycin and N-acetylcysteine successfully reduced the MIC
of the resistant high-risk Gram-negative pathogens. In comparison with the conventional
form of tobramycin, the encapsulated tobramycin in liposomal (TL) and N-acetylcysteine-
liposomal (TNL) formulations increased the antibacterial activity against the tested pathogens.
The TL and TNL formulations reduced the biomass of the biofilms. Using liposomes as
delivery systems may enhance the treatment of infections caused by multidrug-resistant
high-risk pathogens. In addition, the encapsulation efficiency and the stability of the
prepared formulations can be improved by assessing other preparation methods.
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