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Altered glycosylation in pancreatic cancer and
beyond
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Pancreatic ductal adenocarcinoma (PDA) is one of the deadliest cancers and is projected to soon be the second leading cause
of cancer death. Median survival of PDA patients is 6–10 mo, with the majority of diagnoses occurring at later, metastatic
stages that are refractory to treatment and accompanied by worsening prognoses. Glycosylation is one of the most common
types of post-translational modifications. The complex landscape of glycosylation produces an extensive repertoire of glycan
moieties, glycoproteins, and glycolipids, thus adding a dynamic and tunable level of intra- and intercellular signaling regulation.
Aberrant glycosylation is a feature of cancer progression and influences a broad range of signaling pathways to promote
disease onset and progression. However, despite being so common, the functional consequences of altered glycosylation and
their potential as therapeutic targets remain poorly understood and vastly understudied in the context of PDA. In this review,
the functionality of glycans as they contribute to hallmarks of PDA are highlighted as active regulators of disease onset,
tumor progression, metastatic capability, therapeutic resistance, and remodeling of the tumor immune microenvironment. A
deeper understanding of the functional consequences of altered glycosylation will facilitate future hypothesis-driven studies
and identify novel therapeutic strategies in PDA.

Introduction
For the past 40 yr, survival rates for patients diagnosed with
pancreatic ductal adenocarcinoma (PDA) have remained at <10%
(Abbassi and Algül, 2019). Due to increasing incidence, difficulty
in early diagnosis, and the refractory nature of advanced disease,
PDA is projected to become the second leading cause of cancer
death by 2040 (Abbassi and Algül, 2019). For years, gemcitabine
has been the standard of care for PDA patients, providing
median survival times of ∼6 mo (Abbassi and Algül, 2019).
Although subsequent clinical trials demonstrated improved
survival benefits of FOLFIRINOX (11.1 mo) and gemcitabine/
nab-paclitaxel (8.5 mo), systemic chemotherapeutic regimens
are rarely curative in PDA. Currently, surgical resection re-
mains the only curative option, yet most patients are ineligible
due to regional or distal metastases at the time of diagnosis
(Kleeff et al., 2016).

In a concerted effort to provide more robust survival benefits
for PDA patients, significant research strides in recent years
have contributed substantially to our understanding of PDA.
These studies have identified key driver mutations, signaling
pathways, and tumor-microenvironment interactions that pro-
mote disease progression, regulate metastasis, and drive thera-
peutic resistance. Yet, the impact of glycosylation, one of the

most common post-translational modifications which com-
pounds the complexity of intra- and intercellular regulation,
remains understudied in PDA. The paucity of such research in
this area is driven by the vast aggregate complexity of glycans
and their associated structures, the intricate mechanisms by
which glycosylation and glycan assembly are regulated, and the
lack of models that recapitulate glycosylation in human disease.
For instance, only in recent years has a mouse model of pan-
creatic disease capable of producing the PDA-associated glycan
CA19-9 been developed (Engle et al., 2019), providing evidence
for the functional capacity of a glycan that was heretofore only
considered a correlative biomarker of disease progression.
Understanding the functional roles of glycosylation in PDA will
be crucial for identifying both new diagnostic tools and ther-
apeutic targets.

Landscape of glycosylation
Glycans exist as covalent linkages of saccharides in either free
form or, more commonly, attached to proteins or lipids as gly-
coconjugates, thus forming glycoproteins, glycolipids, and pro-
teoglycans (Ohtsubo and Marth, 2006; Fuster and Esko, 2005).
In mammals, glycans are constructed from a combination of 10
monosaccharides (galactose, glucose, mannose, fucose, xylose,
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N-acetyl-galactosamine, N-acetyl-glucosamine, glucuronic acid,
iduronic acid, and sialic acid), which are attached via α- or
β-glycosidic bonds to form linear or branched structures
(Kudelka et al., 2015). Glycan chain assembly is catalyzed by
glycosyltransferases and glycosidases, which are encoded by
1–2% of the human genome (Taniguchi and Kizuka, 2015). Bio-
chemically, glycans can be classified into families. N-glycans are
linked via an amide bond to asparagine in the consensus Asn-X-
Ser/Thr sequon (where X is any amino acid except proline).
Structurally, N-glycans present as branched oligomannose,
complex, or hybrid moieties. O-glycans are most commonly
linked to the oxygen atom on serine or threonine, and in some
cases tyrosine. These can be further subdivided into O-linked
GlcNAc, as well as secreted or membrane glycoproteins deco-
rated with O-glycans, the most common of which is the mucin-
type (or GalNAc type) O-glycan. In contrast to N-glycans, no
glycosite amino acid sequon has been identified for O-GalNAc-
linked glycans (Kudelka et al., 2015).

Other glycan families include free or proteoglycan-
conjugated long linear repeats of disaccharide units called
glycosaminoglycans, ceramide-linked glycans called glyco-
sphingolipids, and glycosylphosphatidylinositol-linked pro-
teins (Fuster and Esko, 2005). Individual saccharides in glycan
chains can be further modified, e.g., by phosphorylation, sul-
fation, and acetylation, increasing their structural diversity.
Glycans are often found as secreted glycoconjugates or on the
cell surface, forming a multifunctional layer of glycans termed
the glycocalyx. The glycocalyx is responsible for a variety of
biological functions including maintaining vascular permea-
bility (Uchimido et al., 2019), immune cell recognition (Möckl,
2020), and crosstalk with the extracellular matrix (ECM; Kang
et al., 2018).

In contrast to proteins, the sequence of glycan chains is not
genetically encoded. Instead, glycan assembly and the for-
mation of glycoconjugates are regulated by numerous factors,
including the availability of nucleotide sugars that act as do-
nor substrates (e.g., UDP-galactose, UDP-N-acetylglucosam-
ine, GDP-fucose, and CMP-N-acetylneuraminic acid), acceptor
substrates, and cofactors, as well as the glycosyltransferases
and glycosidases necessary to catalyze such reactions. Fur-
ther, each of these elements must be localized appropriately
within the cell and secretory apparatus. This process is gov-
erned by molecular chaperones, endogenous lectins, and nu-
cleotide sugar transporters (Taniguchi and Kizuka, 2015). The
collection of enzymes that comprise the glycosylation ma-
chinery is primarily localized to the Golgi, with some also
present in the endoplasmic reticulum (Taniguchi and Kizuka,
2015).

The vast diversity of the glycome, and the predominant
presence of glycans on membranes and secreted proteins, po-
sitions glycoconjugates as mediators of multiple biological pro-
cesses such as inter- and intracellular signaling, cell adhesion
and motility, and immune regulation. Investigation of the
functional roles of aberrant glycans has been difficult not only in
part due to their complexity and families of glycosyltransferases
with redundant functions, but also because of differences in the
glycome betweenmouse models and humans. For example, mice

endogenously display glycan epitopes not normally observed in
humans, including α-Gal and Neu5Gc epitopes (Saleh et al.,
2020; Altman and Gagneux, 2019). Conversely, sLea (CA19-9)
is frequently upregulated in human pancreatic disease, but its
synthesis is precluded in mice due to Fut3, the only enzyme
capable of transferring the core α-1,4-fucose required for sLea

synthesis, being a pseudogene in mice (Engle et al., 2019). Un-
derstanding glycosylation alterations, the regulatory aberrations
underpinning them, and their consequences in the progression
of malignant disease provide a promising and critical avenue to
identify potential therapeutic vulnerabilities and deepen our
understanding of cancer.

Aberrant glycosylation contributes to pancreatic
cancer phenotypes
Evidence of altered glycosylation in cancer emerged in the 1970s,
when glycopeptides isolated from transformed cell lines were
observed to be larger than those from non-transformed cells
(Buck et al., 1971). Around the same time, it was realized that
many of the oncofetal and tumor-associated antigens used to
detect and track disease progression were in fact carbohydrates
(Feizi, 1985). Since then, substantial profiling of glycosylation
alterations in various cancers has reshaped our understanding of
how extensively glycosylation changes during the onset and
progression of malignant disease (Munkley and Elliott, 2016;
Gupta et al., 2020). Some of the most prevalent glycosylation
irregularities described in PDA include dysregulated O-GlcNAc,
increased sialylation and fucosylation, aberrantly branched
O-glycan structures, and altered mucins (Qorri et al., 2020). In
turn, these alterations impact various pro-tumorigenic signaling
pathways, promote metastatic phenotypes, and remodel the
tumor immunemicroenvironment. In the following sections, we
describe the contributions of altered glycosylation in PDA to
these phenotypes and highlight areas in which therapeutic
vulnerabilities may exist.

Sustaining proliferative and pro-tumorigenic signaling
Intracellular signaling events regulated by glycosylation
Glycosylation-mediated intracellular signaling is primarily
mediated by the O-linked β-N-acetylglucosamine (O-GlcNAc)
modification. Levels of O-GlcNAc are increased in breast, colon,
and pancreatic cancer (Nagel and Ball, 2015). O-GlcNAc modi-
fication alters the localization and activity of metabolic enzymes,
histones, and transcriptional regulators (Fig. 1; Nagel and Ball,
2015). O-GlcNAc modification of transcription factors, including
Sp1, β-catenin, SOX2, FOXO3, and YAP, regulates their nuclear
translocation and activity, subsequently promoting gene ex-
pression programs that confer proliferative and anti-apoptotic
cancer cell phenotypes (Banerjee et al., 2013; Jia et al., 2020;
Sharma et al., 2019; Shin et al., 2018; Peng et al., 2017). Levels of
O-GlcNAc are governed by the balance between O-GlcNAc
transferase (OGT) and O-GlcNAcase (OGA), which add and
remove UDP-GlcNAc to and from acceptor substrates, re-
spectively. In addition to OGT and OGA, O-GlcNAcylation is
sensitive to the nutritional and metabolic status of cells. The
dense fibrotic and hypovascular nature of PDA leads to a hy-
poxic niche, increasing flux through glycolysis and glutamine
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metabolism (Guillaumond et al., 2014), pathways that con-
verge toward the hexosamine biosynthetic pathway (HBP).
The HBP is a branch of glycolysis responsible for the production of
UDP-GlcNAc, a key substrate for glycosylation. HBP activity is
increased in PDA and associated with poor survival (Jia et al.,
2020). O-GlcNAcylation, hypoxia, and HPB converge in PDA.
Hypoxia increases levels of OGT, OGA, and O-GlcNAc, and in-
creases expression of glutamine–fructose-6-phosphate transami-
nase 1 (GFPT1), which catalyzes the first and the rate-limiting step
of the HBP (Guillaumond et al., 2013). Pharmacologic targeting of
the HBP using antagonists of GFPT disrupts O-GlcNAc protein
modification, decreases cell proliferation, survival, and invasion,
and increased starvation-induced apoptosis (Guillaumond et al.,
2013; Jia et al., 2020). Thus, the centrality of the HBP in fueling
aberrant protein glycosylation in cancer presents a promising
therapeutic vulnerability.

In addition to O-GlcNAc, other types of glycosylation also
impact intracellular signaling. Increased O-GalNAcylation, cat-
alyzed by GalNAc transferases that are upregulated in PDA
(Taniuchi et al., 2011; Sutherlin et al., 1997), renders malignant
cells resistant to apoptosis by regulating the processing of
caspase-3, -8, -9, and Bid. In addition to O-glycosylation,
modification and stabilization of other intracellular proteins
with sialic acid have been described, such as sialylation of HIF-
1α (Jones et al., 2018).

Collectively, these studies highlight a dynamic interplay
between the remodeled PDA tumor microenvironment and
metabolically and genetically reprogrammed tumor cells that
influence glycosylation-mediated intracellular signaling events
and promote proliferative and anti-apoptotic phenotypes. By
targeting the metabolic dependencies controlling these pro-
cesses, pro-tumorigenic intracellular signaling mediated by ab-
errant O-GlcNAcylation can be abrogated.

Glycosylation mediated pro-tumorigenic cell surface receptor
signaling
Like intracellular proteins, cell membrane receptor activity is
also tunable via glycosylation modifications. Levels of the en-
zyme ST6Gal-I, which gives rise to α-2,6-sialylation, are in-
creased in acinar-to-ductal metaplasia, pancreatitis, preinvasive
pancreatic intraepithelial neoplasms, and PDA (Schultz et al.,
2016). Increased α-2,6-sialylation of TNFR1 inhibits internali-
zation and stabilizes signaling through AKT and NF-κB, con-
ferring resistance to gemcitabine and TNF-induced apoptosis
(Britain et al., 2017; Holdbrooks et al., 2018; Schultz et al., 2016;
Chakraborty et al., 2018). Dimerization of several receptor ty-
rosine kinases and toll-like receptors are regulated by the sial-
idase neuraminidase 1 (Neu1), which cleaves terminal sialic acid
residues from glycoproteins (Abdulkhalek and Szewczuk, 2013;
Jayanth et al., 2010; Fig. 1). Specifically, ligand binding induces a
receptor conformational change that results in MMP9 and Neu1
activation. This leads to the hydrolysis of terminal α-2,3-sialyl
residues present on receptors, thereby removing steric hin-
drance and allowing RTK dimerization (Gilmour et al., 2013;
Mathew et al., 2015; Mathew et al., 2016). Previous reports in
lung cancer cells demonstrated that increased N-sialylation or
N-fucosylation of EGFR suppresses dimerization and attenuates
the activation of downstream signaling (Liu et al., 2011). Notably,
EGFR activation is required for KRAS-induced pancreatic tu-
morigenesis (Ardito et al., 2012), underscoring a critical role
for glycosylation in regulating epithelial transformation. Neu1-
dependent RTK activation represents a targetable vulnerability,
with aspirin and neuraminidase inhibitors such as Tamiflu capa-
ble of inhibiting Neu1 activity and preventing EGFR phosphoryl-
ation and downstream signaling (Qorri et al., 2020). Additionally,
changes in N-glycosylation branching have been shown to in-
crease metastatic dissemination of multiple cancer types and are

Figure 1. The impact of aberrant glycosyla-
tion on cell signaling in PDA. O-GlcNAcylation of
transcription factors catalyzed by OGT, such as
Sp1, SOX2, β-catenin, YAP, and FOXO3, has been
demonstrated to regulate their nuclear localiza-
tion and activity. At the cell membrane, associa-
tions of mucins such as MUC16, MUC4, and
MUC20 with RTKs such as EGFR, HER2, and MET
have been described to modulate downstream
signaling. Enzymatic activity of Neu1 on cell sur-
face receptors has been further shown to impact
receptor dimerization. Modification of receptor
ligands such as Fibulin-3 (Fbln3) has also been
demonstrated to increase affinity for EGFR.
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correlated with PDA progression (Pan et al., 2014). In PDA, pro-
teins with altered N-glycosylation sites or structures often play
significant roles in pathways that increase metastasis such as the
TGF-β and NF-κB signaling pathways (Pan et al., 2012).

Stabilization of cell membrane receptors is also crucial to
their activity, and it is influenced by high molecular weight
glycoproteins called mucins, which function canonically in lu-
brication, cell signaling, and barrier formation. Mucins have
been reviewed extensively elsewhere (Suh et al., 2017). In PDA,
the global expression of mucins is altered (Yamada et al., 2006).
Mucins potentiate pro-tumorigenic signaling via a variety of
mechanisms (Fig. 1). For instance, MUC16 interacts with EGF
receptors to activate AKT and GSK3β signaling, an effect that can
be reversed using anti-MUC16 antibodies (Thomas et al., 2021).
Similarly, MUC4 interacts with and stabilizes HER2, and MUC4
knockdown in CD14/HPAF and Capan1 cells lead to reduced
phosphorylation of the downstream effectors FAK and ERK
(Chaturvedi et al., 2008). MUC20 interacts with MET, and
knockdown ofMUC20 inHPAC andHPAF-II cells decreasedHGF-
mediated phosphorylation of MET (Chen et al., 2018). Engage-
ment of these mucin-mediated cell signaling programs results in
pro-tumorigenic changes in cell behavior, including increases in
cell viability, pancreatic stellate cell-induced migration and in-
vasion, and in vivo orthotopic tumor growth (Chen et al., 2018).
The resulting impact of mucins on patient outcomes is also clear.
The expression of MUC4, MUC16, and MUC20 are all correlated
with poor survival (Jonckheere and Van Seuningen, 2018; Ohya
et al., 2017; Remmers et al., 2013; Haridas et al., 2011; Nagata et al.,
2007; Ringel and Löhr, 2003; Yonezawa et al., 2002; Yonezawa
and Sato, 1997). Notably, dense O-glycosylated mucins contribute
to glycocalyx formation and can hinder the uptake of chemo-
therapies such as 5-fluorouracil, an effect that can be reversed by
global inhibition of O-glycosylation with benzyl-α-GalNAc (Kalra
and Campbell, 2009; Kalra and Campbell, 2007).

In addition to modifying receptors, the glycan decoration of
ligands serves as another mechanism by which cell surface
signaling is altered in the pancreatic disease. sLea/CA19-9 di-
rectly impacts the activation of EGFR and potentiates down-
stream signaling in pancreatic disease by decorating the EGFR
ligand Fibulin-3 (Engle et al., 2019; Fig. 1). Mice genetically en-
gineered to produce CA19-9 develop severe pancreatitis. In the
KRAS-mutant context, CA19-9 elevation dramatically decreased
survival (Engle et al., 2019). Importantly, pancreatitis severity
and EGFR hyperactivation were attenuated by the treatment of
mice with anti–CA19-9 blocking antibodies, including the fully
human 5B1 clone (Weitzenfeld et al., 2019), highlighting a
glycosylation-based therapeutic vulnerability in pancreatitis
and PDA. 5B1 is currently being evaluated as an imaging mo-
dality and a therapeutic agent in clinical trials (Houghton et al.,
2017; Lohrmann et al., 2019).

Role of glycosylation in PDA invasion and metastasis
Cell surface sialylation and fucosylation-mediated adhesion and
invasion
Early investigations into how glycosylation changes influence
metastasis focused on the sialylated and fucosylated Lewis blood
group antigens that include sialyl-Lewis x (sLex) and sialyl-

Lewis a (sLea, CA19-9). Upregulation of these glycan moieties
in tissue and serum of PDA patients was discovered in the 1980s
(Haglund et al., 1986; Kalthoff et al., 1986; Pour et al., 1988; Singh
et al., 2015; Tang et al., 2015; Balmaña et al., 2015). Several
subsequent ground-breaking publications demonstrated the
potential of these antigens to increase the binding of circulating
tumor cells to E-selectin on endothelial cells, potentially facili-
tatingmetastasis (Fig. 2; Phillips et al., 1990; Iwai et al., 1993; Kaji
et al., 1995; Takada et al., 1991; Takada et al., 1993; Takada et al.,
1995; Sawada et al., 1994). Conversely, engineering cells to divert
glycosylation away from sLea production reduced E-selectin
adhesion and metastases in transplanted mice (Aubert et al.,
2000). Following metastatic progression, cell surface sialyla-
tion is also increased, with metastatic nodules displaying higher
sialylated-GalNAc (sTn, a common antigen in cancer and the
subject of several cancer vaccine studies) levels than the primary
tumor or normal tissue (Itzkowitz et al., 1991; Fig. 2). Glyco-
engineering to increase metabolic flux through the sialic acid
production pathway increases cell surface sialic acid concen-
tration and consequently increases cellular binding to E- and
L-selectin (Almaraz et al., 2012; Mathew et al., 2016), a key step
in circulating tumor cell extravasation into distant tissues.
Conversely, neuraminidase treatment to remove sialic acid on
human PDA cells causes decreased adhesion to ECM (Sawada
et al., 1993). Additionally, increases in tumor cell surface sialy-
lation led to increases in the adhesive and invasive properties of
tumor cells. Elevated expression of fucosyltransferases and sia-
lyltransferases, such as FUT3, -5, -6, ST6Gal1, and ST3Gal3/4,
similarly led to increases in cell motility and metastatic potential
in both cell lines and mouse models (Gao et al., 2019; Bassagañas
et al., 2014a; Bassagañas et al., 2014b; Pérez-Garay et al., 2013;
Pérez-Garay et al., 2010; Hsieh et al., 2017; Britain et al., 2021).

In addition to sialyl Lewis antigens and changes in cell surface
sialylation and fucosylation, alterations of other glycoproteins
and glycan moieties, such as mucins and truncated O-glycan
chains (Tn, sTn), potentiate PDA metastasis (Fig. 2; Gendler,
2001; Kohlgraf et al., 2003; Satoh et al., 2000; Hanson et al.,
2016; Swanson et al., 2007; Mcdermott et al., 2001; Singh et al.,
2007). In PDA, MUC1 interacts with both E- and P-selectins
(Mcdermott et al., 2001) to facilitate extravasation and trans-
mits signals into the cell from the surrounding microenviron-
ment to induce increased invasion through stabilization and
phosphorylation of FRA-1 and c-JUN (Hanson et al., 2016; Besmer
et al., 2011). Similar results have also been reported for MUC16 in
human cell lines (Muniyan et al., 2016). Meanwhile, the elevation
of truncated O-glycan chains such as Tn and sTn occurs because
of aberrations in O-glycosylation extension enzymes such as core
synthase 3 and C1GALT1, resulting in enhanced cellular invasion,
migration, and metastasis (Radhakrishnan et al., 2014; Hofmann
et al., 2015; Chugh et al., 2018; Kuo et al., 2021b).

Collectively, these studies support a causal role for Lewis
antigens, sialylation, fucosylation, mucins, and Tn/sTn in en-
hancing metastatic capability via interactions with ECM and
glycan-binding lectins on the endothelium. However, the nu-
anced impacts of different sialyltransferases on PDA behavior
underscore the complexity of glycosylation events and the need
for careful consideration of how changes in glycosyltransferases
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affect the global glycome and cell function (Holst et al., 2017).
Characterization of discrete glycosyltransferase and glyco-
conjugate contributions to different stages of the metastatic
cascade will prove key to deepening our understanding of how
to combat malignant spread.

Altered glycosylation in the extracellular space influences cell
adhesion and metastasis
Glycoconjugates often impact cellular motility, adhesion, and
invasive capacity through their action in the extracellular space.

For example, glycosaminoglycans (GAGs) are long polysacchar-
ide chains of repeating two-sugar subunits that can have pro-
found impacts on tumor interstitial pressure. The high anionic
charge of GAGs alters the water content, and thus pressure, of
tissues and tumors (Vedadghavami et al., 2020), which has
implications for drug delivery (Provenzano and Hingorani,
2013). Heparan sulfate GAGs (HSGAGs), such as Syndecans
(SDC) and glypicans, are bound to a proteoglycan core attached
to the cell membrane and are involved in tumor development,
cell adhesion, and metastasis (Nagarajan et al., 2018). SDC are

Figure 2. The impact of aberrant glycosylation alterations on cancer progression, cell adhesion, and metastasis. Disease progression in the pancreas
correlates with alterations in core O- and N-glycan moieties. These include truncated O-glycans, increased sialylation, mucin deposition, Lewis blood group
antigen decoration, and tumor microenvironment (TME) lectin expression. These alterations in protein and lipid glycosylation can drive changes in cell adhesion
and metastasis, enabling more efficient colonization of distant organs such as the lung and liver. The secondary metastatic sites often recapitulate the altered
glycosylation landscape of the primary tumor.
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often upregulated in gastric and colon cancers, but Syndecan-1
(SDC1) is upregulated only in pancreatic cancer, where it cor-
relates with invasion of cancer and a poor prognosis (Conejo
et al., 2000; Yao et al., 2019). Increased levels of heparanase
(HPA) in pancreatic cancer increase metastatic potential by fa-
cilitating shedding of SDC1 as well as activation of the PI3K/AKT
pathway and the epithelial-to-mesenchymal transition (Yang
et al., 2007; Chen et al., 2020). Both SDC1 and SDC2 cooperate
with KRAS mutation to promote PDA metastasis through acti-
vation of SRC kinase and phosphorylation of ERK (Yao et al.,
2019; De Oliveira et al., 2012). Membrane-anchored glypicans
modulate chemokine and growth factor signaling (Kleeff et al.,
1998). Glypican-1 increases PDA invasion and metastasis
through the modulation of FGF2 signaling (Aikawa et al., 2008).
Glypican-4 has also been implicated in PDA metastasis and
recurrence by increasing stemness markers through the WNT/
β-catenin pathway within tumors (Cao et al., 2018). The base-
ment membrane HSGAG Perlecan has also been shown to be
upregulated in pancreatic cancer and has a direct effect on
cancer-associated fibroblast populations. The depletion of
Perlecan abrogated the CAF-induced pro-metastatic niche in
mice, resulting in increased survival (Vennin et al., 2019).

Unlike membrane-tethered HSGAGs, hyaluronan (hyalu-
ronic acid or HA) is a secreted GAG that is not bound to the cell
surface. The effects of HA onmigration, invasion, andmetastasis
have been extensively reviewed elsewhere (Sato et al., 2016). HA
binds to its cell surface membrane receptor CD44, which has
many isoforms and splice variants, some of which are only ex-
pressed in cancer (Sato et al., 2016). HA binding of CD44 results
in increased PI3K signaling, invasion, and metastasis (Teranishi
et al., 2009). In PDA, HA contributes to increased interstitial
fluid pressure, which collapses vasculature and creates a barrier
to treatment (Provenzano et al., 2012). Enzymatic ablation of HA
decreases tumor and metastatic burden in KPC mice (Jacobetz
et al., 2013). In light of the significant abundance and potential
contribution to pancreatic cancer of HA, a clinical trial was
initiated to determine whether the disruption of HA could im-
prove patient outcomes. However, therapeutic targeting of HA
in combination with nab-paclitaxel/gemcitabine was insuffi-
cient to improve patient outcomes in a Phase II clinical trial
(Hingorani et al., 2018). The complex interplay between altered
glycoconjugates and the tumor microenvironment will likely
necessitate combinatorial approaches to target key prosurvival
networks in PDA.

The compendium of both free and membrane-bound prote-
oglycans, glycosaminoglycans, glycolipids, and glycosylated
proteins comprises the glycocalyx, which presents as a mesh
that covers the cell and is at the interface of cell–cell and cell–
matrix signaling. The glycocalyx plays key functional roles in
cell morphology, regulation of membrane protein diffusion,
and immune cell regulation (Möckl, 2020). Alterations in the
glycocalyx are capable of contributing to tumor progression by
modulating cell membrane protein turnover, membrane topol-
ogy, and cell morphology to facilitate biophysical interactions
with the surrounding microenvironment (Al-Aghbar et al.,
2022; Cruz-Chu et al., 2014; Möckl, 2020). Changes in the gly-
cocalyx are known to be important in various types of cancers,

yet there is still more to learn regarding its role in pancreatic
cancer. Recently, doxycycline-inducible KRAS mutant cell lines
were utilized to visualize the glycocalyx of PDA cells, demon-
strating a mutant KRAS-dependent increase in glycocalyx size,
potentially decreasing the adhesion of cells to the surrounding
stroma ormatrix (Möckl, 2020). The glycocalyx also has physical
effects on integrins in normal and tumor contexts by changing
pH or physical restriction of integrins to a specific region. While
this phenomenon requires further study in pancreatic cancer, it
is known that integrins are aberrantly glycosylated in cancer and
are critical signaling integration hubs through which cell inter-
actions with the matrix are transmitted. Several studies have
shown that in PDA, altered glycosylation of integrins changes
their adhesion properties. These integrins are no longer able to
bind as effectively to the matrix or E-cadherin, thereby in-
creasing the invasive potential of tumor cells (Kuo et al., 2021a;
Bassaganas et al., 2014).

Glycoconjugates in the PDA immune microenvironment
Aberrant glycosylation facilitates tumor immune escape
Glycans in cancer have long been correlated with suppressed
anti-tumor immune responses (Varki et al., 2015). Glycans and
glycoproteins often lie at the cell–cell interface and frequently
comprise pathogen- and damage-associated molecular patterns
which activate the innate immune system. By altering the cell
surface glycan “code,” transformed cells can evade immune
detection. Indeed, increased expression of ST3Gal1 and -4 leads
to increased sialylation on PDA cells that induces monocyte
differentiation into immunosuppressive tumor-associated mac-
rophages via myeloid receptors Siglec-7 and -9 (Rodriguez et al.,
2021; Fig. 3). Reciprocally, inflammatory cytokines present in
the microenvironmental milieu, such as IL1β, IL6, and TNFα,
upregulate PDA cell expression of ST3GAL3-4, FUT1-2, and
FUT6, resulting in increased sLex, SLey, and α2,6-sialic acid
levels, suggesting that glycosylation of PDA cells is modulated by
inflammatory microenvironments (Bassagañas et al., 2015;
Fig. 3).

MUC1 is overexpressed in colon, breast, ovarian, lung, and
pancreatic cancers (Gendler, 2001; Sharma and Allison, 2015;
Hanson and Hollingsworth, 2016; Apostolopoulos andMcKenzie,
2017). Expression of MUC1 results in elevated expression of
multiple proinflammatory cytokines and concomitant increases
in regulatory T cell and myeloid suppressor cell populations in
pancreatic tumors (Tinder et al., 2008; Fig. 3). Furthermore,
cancer cells that express MUC1 display increased sialyl-Tn an-
tigen (Dalziel et al., 2001; Gill et al., 2011; Reis et al., 1998), and
alterations in MUC1 affect immune detection and increase
macrophage activation through binding to sialylated MUC1,
promoting tumor growth (Saeland et al., 2007; Nath et al., 1999;
Cascio and Finn, 2016). Exposed cryptic peptide epitopes, as a
result of truncated glycosylation, can be recognized by anti-
bodies and are ideal targets for therapy. The potential utility of
various MUC1-based vaccine strategies has shown promise in
eliciting immune responses in preclinical trials, leading to
clinical trials in several cancers, including PDA, that have
demonstrated a range of effects on humoral and T cell responses
and patient survival (Gao et al., 2020).
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Aberrant glycosylation and splicing of mucins can result in
longer glycan chains, physically hindering immune interaction
with cancer cells and supporting tumor progression and
immunosuppression by shielding cancer-associated epitopes
(Fig. 3; Jahan et al., 2018). MUC4 provides steric hindrance via
its bulky, glycosylated extracellular region to mask immune cell
surface antigens and shield tumor cells from immune recogni-
tion, thus enhancing survival and extravasation of metastasized
tumor cells via interaction with macrophages and hematopoietic
progenitors (Rowson-Hodel et al., 2018). Truncated mucin-type
O-glycans are observed in many epithelial cancer cells and

premalignant lesions in adenocarcinomas (Itzkowitz et al., 1991;
Ching et al., 1993; Lyubsky et al., 1988; Kim et al., 2002; Tarp and
Clausen, 2008; Stanley, 2011). In an immunological context, the
truncated glycans Tn and sTn prevent O-linked glycan elonga-
tion beyond the initial GalNAc residue, increasing sensitivity
to NK cell–mediated antibody-dependent cellular cytotoxicity
(ADCC) and cytotoxic T-lymphocyte–mediated killing (Madsen
et al., 2013). Understanding how aberrant glycosylation con-
tributes to the immunosuppressive microenvironment of PDA
will be critical in the design of therapeutic strategies targeting
these alterations.

Figure 3. The impact of glycosylation on the PDA immunemicroenvironment. The steric hindrance from aberrant glycan elongation on the cell surface of
PDA cells prevents interaction with anti-tumorigenic immune cell types, providing one mechanism of tumor cell immune escape (1). Increased expression of
sialyltransferases such as ST3Gal1/4 leads to increases in tumor cell surface sialic acid that act as ligands for Siglec7/9, promoting monocyte differentiation into
tumor-associated macrophages (2). Expression of MUC1 has been demonstrated to promote the release of inflammatory cytokines that play roles in regulatory
T cell and myeloid-derived suppressor cell chemotaxis (3). Conversely, inflammatory cytokine signals from the surrounding microenvironment influence tumor
cell glycosyltransferase expression that subsequently alters glycosylation landscapes, including expression of sialylated epitopes (4).
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Leveraging glyco-epitopes in cancer immunotherapy
Recent years have demonstrated effective reactivation of T cell
immunity via blockade of the immune checkpoint PD-1/PD-L1
pathway, thereby improving survival in patients with various
types of cancer (Chen and Han, 2015; Sharma and Allison, 2015;
Topalian et al., 2016; Qin et al., 2019). Unfortunately, many pa-
tients only partially respond to PD-1/PD-L1 inhibition (Zou et al.,
2016; Topalian et al., 2015). It is critical to understand how post-
translational modifications, such as N-linked glycosylation,
regulate PD-L1. PD-L1 is N-glycosylated in melanoma as well as
breast, lung, and colon cancer (Li et al., 2016). N-linked glyco-
sylation of PD-L1 enhances its protein stability and plays a vital
role in PD-1/PD-L1–mediated tumor immunosuppressive func-
tion (Li et al., 2016; Hsu et al., 2018; Wang et al., 2018; Cha et al.,
2019). Glycosylated PD-L1 suppresses T cell activity, whereas
non-glycosylated PD-L1 exhibits less immunosuppressive activ-
ity, resulting in slower tumor growth (Li et al., 2018). It will be
critical to extend these studies to PDA to understand if altered
PD-L1 glycosylation contributes to immunosuppression and poor
immune checkpoint blockade therapy response rates.

Current strides in immunotherapies and anti-tumoral im-
munity involve utilizing glycosite-targeting antibodies to block
immunosuppressive interactions and glycoepitope-induced
dendritic cell responses to boost T lymphocyte activation in
PDA and other cancers. To determine how O-glycosylation im-
pacts steric hindrance by mucins, the binding of an anti-MUC1
monoclonal antibody HMFG-2 was assessed in breast, colon, and
pancreatic cancer cell lines. HMFG-2 reactivity against MUC1
increased following inhibition of O-glycosylation using benzyl-
α-N-acetylgalactosamide to prevent glycan chain elongation. De-
sialylation of cell surfaces also improved access to MUC1 (Ho
et al., 1995). The immunodominant DTR (Aspartic Acid-Threo-
nine-Arginine) motif of MUC1, which comprises part of the ex-
posed core peptide resulting from aberrantly truncated glycan
chains on MUC1, has been the primary target of many immu-
notherapeutic interventions, and prior work had uncovered
enhanced antibody binding to peptides O-glycosylated with
GalNAc in the DTRmotif (Thr-10) compared to non-glycosylated
peptides (Karsten et al., 1998; Karsten et al., 2004). Pankomab, an
antibody targeting this carbohydrate-induced conformational
tumor-associated epitope on MUC1, features the highest glyco-
sylation dependency and strongest additive binding effect com-
pared to past MUC1 antibodies (Danielczyk et al., 2006). Upon
binding, it induces an elevated cytotoxic T-lymphocyte response
on tumor cells, and MUC1–chimeric antigen receptor T cells
show target-specific cytotoxicity and tumor inhibition in pan-
creatic cancer xenograft models (Cai et al., 2015).

Immunotherapeutic strategies that target other glycoproteins
are also showing promise. CD24, a cell surface sialoglycoprotein
expressed by most B lymphocytes, is overexpressed in many
human carcinomas. Prior studies have shown that CD24-specific
monoclonal SWA11 therapy effectively impeded lung and pan-
creatic tumor growth in xenotransplanted mice (Bretz et al.,
2012). Furthermore, SWA11 therapy not only decreased lung
and ovarian carcinoma tumor cell proliferation and affected the
tumor microenvironment cytokine milieu in mice, but also re-
sults in increased tumor infiltration of macrophages (Salnikov

et al., 2013). The cumulative tumor-promoting and restraining
effects of CD24 targeting by monoclonal therapy will be critical
to explore in autochthonous mouse models of cancer in the
context of standard chemotherapeutic intervention.

Other novel approaches to cancer immunotherapy involve
postsurgical vaccination with tumor antigen-loaded dendritic
cells (Palucka and Banchereau, 2013; Dodson et al., 2011). Fucose-
rich glycovariants of bile salt–dependent lipase (BSDL) are ex-
pressed during pancreatic tumorigenesis (pBSDL-J28; Mas et al.,
1997). Treating mice with dendritic cells loaded with pBSDL-J28
induced T-lymphocyte activation, prevented Panc02 tumor de-
velopment, and provided long-term protection against Panc02
tumor formation (Collignon et al., 2015). Overall, glycosylation
alterations have enormous potential in immunotherapy, but
further exploration is necessary to understand how to leverage
these targets for the treatment of PDA.

Conclusions looking forward
Immense strides in glycobiology research have expanded our
understanding of glycosylation in cancer biology and have ce-
mented aberrant glycosylation as a key feature in tumor onset
and progression. Associations between the presence of aberrant
glycan moieties and malignant disease progression are well-
documented, with some demonstrating clinical relevance serv-
ing as biomarkers of disease progression. Given the dynamic and
complex mosaic of glycans and glycoconjugates and their mul-
tifaceted regulation, continuing research is required to further
understand their functional and causative roles during discrete
stages of disease progression. This understanding will reveal
vulnerabilities in proliferative signaling, metastatic capabilities,
and immune escape that can serve as promising combinatorial
therapeutic targets. The emergence of model systems that
faithfully recapitulate the human glycome and the heterogeneity
observed across patients, such as mouse models of pancreatic
disease that produce CA19-9, tissue slices, and human patient-
derived organoids, will be crucial in this effort and may reveal
critical avenues for therapeutic intervention.
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Pérez-Garay, M., B. Arteta, E. Llop, L. Cobler, L. Pagès, R. Ortiz, M.J. Ferri, C.
De Bolós, J. Figueras, R. De Llorens, et al. 2013. α2,3-Sialyltransferase
ST3Gal IV promotes migration and metastasis in pancreatic adenocar-
cinoma cells and tends to be highly expressed in pancreatic adenocar-
cinoma tissues. Int. J. Biochem. Cell Biol. 45:1748–1757. https://doi.org/10
.1016/j.biocel.2013.05.015
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