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SHORT COMMUNICATION

Plasmodium falciparum parasites overexpressing farnesyl  
diphosphate synthase/geranylgeranyl diphosphate synthase  
are more resistant to risedronate
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Farnesyl diphosphate synthase/geranylgeranyl diphosphate synthase (FPPS/GGPPS) is a key enzyme in the synthesis of 
isoprenic chains. Risedronate, a bisphosphonate containing nitrogen (N-BP), is a potent inhibitor of blood stage Plasmodium. 
Here, we show that P. falciparum parasites overexpressing FPPS/GGPPS are more resistant to risedronate, suggesting that this 
enzyme is an important target, and bisphosphonate analogues can be used as potential antimalarial drugs.
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It has been estimated that more than 200 million cas-
es of malaria occur annually, resulting in over 400,000 
deaths.(1) Among the five Plasmodium species that infect 
humans, P. falciparum results in most cases of morbidity 
and mortality. Chemotherapy is an important component 
of control strategies, and the looming resistance against 
artemisinin and its derivatives, which are the most effec-
tive antimalarial drugs, is a serious challenge to the goal 
of the World Health Organization for the reduction of ma-
laria cases and deaths.(1) Isoprenoid synthesis is a meta-
bolic pathway essential for parasite survival during the 
erythrocytic cycle and is therefore a potential target for 
the development of antimalarial drugs.(2-3) An essential 
step in the synthesis of all isoprenoids is the elongation of 
the isoprene chain by prenyltransferases, which are clas-
sified according to the chain length of the final product 
and the stereochemistry of the double bond formed by 
condensations. Among the prenyltransferases, farnesyl 
diphosphate synthase (FPPS) and geranylgeranyl diphos-
phate synthase (GGPPS) are the most studied isoprenoid-
modifying enzymes in Plasmodium.(4-5)

The biosynthesis of farnesyl diphosphate (FPP) and 
geranylgeranyl diphosphate (GGPP) is catalysed by a sin-
gle bifunctional enzyme (FPPS/GGPPS) in P. falciparum 
and Toxoplasma gondii.(4-6) The metabolites generated 
are the main precursors of all secondary products from 
isoprenoid pathways such as those for vitamin E,(7) vita-
min K,(8) carotenoids,(9) ubiquinones,(10) and dolichols.(11)

Bisphosphonates are inhibitors of bone resorption ap-
plied for the treatment and prevention of osteoporosis.(12) 
Risedronate, a bisphosphonate containing nitrogen (N-BP), 
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inhibits P. falciparum FPPS/GGPPS enzymatic activ-
ity in vitro and has potent activity against blood stages 
when added to parasites during in vitro cell culture.(4) 
The inhibitory effect induced by risedronate can be par-
tially reversed by the simultaneous addition of FPP or 
GGPP during P. falciparum culture treatment.(13) A simi-
lar inhibitory effect was reported in vivo against murine 
malaria parasites. In the same study, it was also dem-
onstrated that risedronate was not toxic for animals.(13) 
In addition, a synergistic effect with nerolidol, a terpene 
approved by the Food and Drug Administration (FDA) 
as a food-flavouring agent, demonstrated the potential 
use of risedronate in combination therapies.(14-15) It has 
recently been demonstrated that FPPS/GGPPS presents 
different binding sites for promising new drugs against 
malaria.(16) In this study, we engineered P. falciparum 
parasites that overexpress FPPS/GGPPS and evalu-
ated its sensitivity to risedronate to investigate whether 
FPPS/GGPPS is its main target in P. falciparum.

Since FPPS/GGPPS is constitutively expressed in P. 
falciparum,(4) initial attempts aimed to overexpress FPPS/
GGPPS-green fluorescent protein-haemagglutinin (FPPS/
GGPPS-GFP-HA) under the control of the EF1-a pro-
moter. Stably transfected parasites were never recovered, 
suggesting that overexpression of FPPS/GGPPS-GFP-HA 
might be toxic. Previous studies have demonstrated toxic 
effects due to the overexpression of enzymes that use GPP 
or FPP as substrates,(17-18) caused mainly by the depletion 
of FPP substrate. In order to keep the overexpression to 
minimum during the selection of transfected parasites, 
FPPS/GGPPS was cloned into pRM2-GFP-HA-DD24 
(Fig. 1A).(19) The expression as a fusion with HA and the 
destabilisation domain (DD) would target the fusion pro-
tein for degradation, which could only be prevented by 
the presence of the ligand Shld-1.(20) This strategy was 
successful, and stable transfection in 3D7 strain parasites 
generated the transgenic line FPPS/GGPPS-DD-epi.

Given that the transgene in pRM2-derived vectors is 
under the control of the MSP2 promoter, which is strong-
ly active in schizonts, both RNA and proteins were ex-
tracted from transgenic and wild-type (WT) parasites at 
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this stage to compare their expressions. FPPS/GGPPS 
transcript levels were compared by real-time quantita-
tive-polymerase chain reaction (RTq-PCR) (Fig. 1B). As 
expected, the extra copies of FPPS/GGPPS gene in the 
transgenic line resulted in significant overexpression, 
with transcript levels being about 2-fold higher than 3D7 
parasites (Fig. 1B). To verify that DD/Shld-1 regulation 
played a role, protein was extracted from parasites cul-
tured with (400 nM) or without Shld-1 and analysed by 
western blotting using antibodies against the HA epitope 
(Sigma-Aldrich, St. Louis, MO, USA), or PTEX150,(21) 
which was used as an internal control. FPPS/GGPPS-
HA-DD24 was only detected in the sample extracted 
from parasites maintained on Shld-1, demonstrating that 
the ligand was required to stabilise the protein (Fig. 1C). 
Due to the lack of a specific antibody, it was not possible 
to compare FPPS/GGPPS expression between transgen-
ic and WT parasites at the protein level. However, con-
sidering the increased transcript levels and that FPPS/
GGPPS-GFP-HA can be easily detected from parasites 
cultured on Shld-1, this enzyme was likely expressed 
at higher levels in the transgenic parasites cultured on 
Shld-1 than in WT parasites.

To investigate whether FPPS/GGPPS expression 
correlates with resistance to risedronate, 3D7 WT and 
transgenic parasites at the ring stage were cultured with 
different concentrations of the drug for 48 h to deter-
mine the IC50 (Fig. 2). Growth was determined by fluo-
rescence method(22) and confirmed by microscopic ex-
amination.(23) Shld-1 (400 nM) was added after 24 h to 
stabilise the FPPS/GGPPS-HA-DD24 fusion since it was 
supposed to be expressed in schizonts. The IC50 of 3D7 
and transgenic parasites cultured without Shld-1 was 
about 20 µM, suggesting that the transfection process 
and expression of the selectable marker hDHFR did not 
affect sensitivity to risedronate. However, in the pres-
ence of Shld-1, the IC50 of transgenic parasites increased 
1.7-fold to about 34 µM, while the sensitivity to risedro-
nate of 3D7 parasites was not affected. Sensitivity to the 
unrelated drug chloroquine was neither affected by the 
ligand nor by FPPS/GGPPS overexpression (Supplemen-
tary data). Lower Shld-1 concentrations did not affect 
the IC50, and higher concentrations were not evaluated 
since they were toxic to the parasites, thereby reducing 
their growth by about 11% per reinvasion cycle.(19)

Although FPPS/GGPPS-DD-epi parasites have an 
IC50 significantly higher than that of WT parasites, the 
resistance phenotype was subtle when compared to the 
phenotype of other transgenic lines. Overexpression 
of octaprenyl pyrophosphate synthase/phytoene syn-
thase (OPP/PSY) caused a 5-fold increase in the IC50 to 
squalestatin.(24) It was possible that the achieved FPPS/
GGPPS overexpression was not as strong as the OPP/
PSY overexpression, which could be due to incomplete 
protein stabilisation in the presence of Shld-1 or lower 
plasmid copy number.

The results presented here corroborates previous find-
ings that FPPS/GGPPS is an important target of risedro-
nate in P. falciparum, suggesting that this compound or a 
more potent analogue could be developed as an antimalar-
ial drug or be applied in combination therapies in future.

For the plasmid construction, the FPPS/GGPPS cod-
ing sequence (PlasmoDB ID: PF3D7_1128400) was syn-
thesised by GenScript, and FPPS/GGPPS was cloned in 
pRM2-GFP-HA-DD24,(19) replacing the GFP gene with 
the XhoI/MluI restriction site to generate pRM2-FPPS/
GGPPS-HA-DD24. Cultures of P. falciparum clone 3D7 
were grown as described previously,(25) except that human 
serum was replaced with Albumax I (0.5%; Invitrogen/
Life Technologies, Carlsbad, CA, USA). Parasite multi-
plication was monitored by microscopic evaluation of Gi-
emsa-stained thin smears. Schizont stages were purified 
with magnetic columns [magnetically activated cell sort-
ing (MACS) separation columns; CS; Miltenyi Biotec].(26) 
Parasites were transfected as previously described(27) using 
the electroporation conditions established elsewhere.(28)

For the cDNA preparation, the RNA was extracted using 
TRIzol LS (Invitrogen) following the manufacturer’s in-
structions. Oligonucleotides (GAGTGGGAAAAAGTG-
GCTTG and CACATCATTCACCGCATTCT) for the 
detection of FPPS/GGPPS were designed using Primer3 

Fig. 1: overexpression of farnesyl diphosphate synthase/geranylgera-
nyl diphosphate synthase-destabilisation domain-epi (FPPS/GGPPS-
DD-epi). (A) Schema of plasmid construction used for transfection. 
(B) Real-time-polymerase chain reaction (RT-PCR) showed overex-
pression of FPPS/GGPPS-DD-epi compared with wild-type 3D7. (C) 
Western blot analysis showing the expression of FPPS/GGPPS protein 
only when Shld-1 was added. Antibody for a constitutively expressed 
protein (PTEX150) was used as an internal control. Band intensities 
were measured by ImageJ, density values were evaluated by one-way 
analysis of variance (ANOVA), and p values are indicated.
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(http://frodo.wi.mit.edu/). The internal control transcript 
used for calibration throughout the experiments was locus 
seryl t-RNA transferase (PlasmoDB no. PF3D7_0717700), 
previously shown as a reliable control.(29) The relative 
mRNA expression was obtained using the formula 2−ΔCT. 
All experiments were performed in duplicate.

In the inhibition tests, risedronate was dissolved in 
water, resulting in 25 mM stock solutions.(13) WT and 
transgenic parasites at the ring stage were cultured in 
different concentrations of the drug (200, 20, 2, 0.2, and 
0.02 µM) for 48 h. Growth was determined by the SYBR 
Green method(22) and confirmed by microscopic exami-
nation.(23). Shld-1 (400 nM) was added after 24 h to sta-
bilise the FPPS/GGPPS-HA-DD24 fusion. All tests were 

performed in triplicates from three independent experi-
ments. The IC50 for growth inhibition was calculated by 
nonlinear regression in GraphPad Prism 5.0 (GraphPad 
Software, Inc., San Diego, CA, USA).

For western blot analyses, synchronous cultures of 
3D7 and transfected parasites with and without Shld-1 
at schizont stages were treated with 0.15% saponin in 
RPMI media and washed twice with PBS. Proteins were 
extracted from the parasite pellets after resuspending in 
buffer containing 0.05 M Tris-HCl (pH 6.8), 10% glyc-
erol, 2 mM EDTA, 2% SDS, 0.05% bromophenol blue, 
and 50 mM dithiothreitol(30) for separation by sodium 
dodecyl sulphate-polyacrylamide gel electrophoresis 
(SDS-PAGE). The α-HA monoclonal antibody (1:500 
dilution; Sigma-Aldrich) was used, and α-PTEX150 
(1:1000)(21) was used as a control.
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