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In 2005, one of us proposed that a fungal bloom at the end of the Cretaceous Period would

have favored the selection of the endothermic mammals over ectothermic reptiles, which even-

tually led to the great mammalian radiation and the replacement of the Cretaceous reptilian

megafauna with the mammalian megafauna of the Tertiary or Paleogene Period [1]. This idea,

which we now name the “fungal infection-mammalian selection” (FIMS) hypothesis, sug-

gested a new explanation for how the mammals came to replace reptiles as the dominant large

animals after the Cretaceous Period [2], which ended 66 million years ago with a planetary cat-

aclysm known as the Cretaceous-Paleogene extinction event. At the time, this extinction event

was attributed to volcanism, a bolide impact, or some combination of both. In the ensuing

decade and a half since FIMS was first proposed, considerable progress was made in under-

standing the events following the cataclysm at the end of the Cretaceous Period, which provide

the opportunity to add refinements to this hypothesis. For example, in 2005, there was uncer-

tainty on the temporal relationship between the bolide impact and the mass extinction event,

with some estimates placing it 300,000 years earlier [3]. Today there is a growing consensus for

a temporal and causative relationship between a bolide impact at Chicxulub, Mexico, in the

Yucatan peninsula and the mass extinction event at the end of the Cretaceous Period [4]. This

together with a greater appreciation of the planetary effects following this cataclysm [5] allow

refinements and updates to the FIMS hypothesis.

The FIMS hypothesis

The geologic record is divided into periods of which the Cretaceous is that time between the

Jurassic and Paleogene that spanned a time from 145 to 66 million years ago. The Cretaceous

Period came to an abrupt end with the Cretaceous-Paleogene extinction event, which saw the

demise of nonavian dinosaurs and many ancient species. How did mammals become the dom-

inant large animals in the Paleogene and later periods? A widely accepted view is that the cata-

clysm that marked the end of the Cretaceous Period killed off the dinosaurs creating an

ecologic opening for the mammals. However, that view falters in explanative power when one

considers that many species of reptiles also survived the calamity, and, given that this group of

animals possesses certain advantages over mammals, it does not explain why the survivors

failed to usher a second reptilian age. In this regard, the mammalian lifestyle is significantly

more expensive than that of ectothermic reptiles, with field metabolic rates that are 12 to 20

times higher [6], requiring consumption of much larger amounts of food for homeostasis. The

FIMS hypothesis posits that a fungal bloom following the cataclysm at the end of the
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Cretaceous Period selected for endothermic animals over ectothermic reptiles [1, 2]. The

FIMS hypothesis was assembled from the following facts: (1) the Cretaceous-Paleogene extinc-

tion event was accompanied by planetary deforestation [7] and subsequent fungal proliferation

as ensuing conditions promoted a global compost [8]; (2) the fungal bloom would have gener-

ated an abundance of fungal spores that when aerosolized would have presented large pulmo-

nary innocula for surviving animals; (3) immunologically intact mammals are remarkably

resistant to fungal diseases, which has been attributed to the combination of advanced immu-

nity in the form of innate and adoptive immune arms and higher basal temperatures that

inhibit the majority of fungal species [9]. Mammals also have receptors such as fibrinogen C

containing domain 1 that have recently been shown to help control fungi in epithelial surfaces

[10]. The FIMS hypothesis posits that the remarkable resistance of mammals to fungal diseases

today is a consequence of fungal selection for this lifestyle at the end of the Cretaceous [2].

The postcalamity environment

Today there is widespread agreement that a bolide impact caused the Cretaceous-Paleogene

extinction event and the demise of the dinosaurian megafauna [4, 5]. The bolide struck earth

in the waters off the Yucatan peninsula, setting off a planetary calamity that included blast

effects, giant tsunamis, fires, and blocking of sunlight from atmospheric dust and soot that

resulted in global cooling. Recent modeling of the atmospheric and climate effects following

the impact suggest that continents cooled by as much as 11˚C with photosynthesis being shut

down from 1 to 2 years [5]. The dinosaurian fauna was presumably killed by a combination of

blast effects, tsunamis, massive disruption of the food chain, which affects primarily top feed-

ers, and rapid climate change. These cataclysmic effects could have come in a setting where

many species may have already been struggling from a relatively recent eruption of the Deccan

traps causing basaltic floods before the bolide impact, which could have affected the climate

and released poisonous elements such as mercury [11]. Small animals capable of subterranean

existence and obtaining nutrition from the ensuing detritus would have been more likely to

survive to become the founders of the animal species found in subsequent epochs.

Global cooling favors mammals over reptiles

The postcalamity environment would have presented major challenges to surviving animals,

but those capable of regulating their temperatures could have had significant advantages. The

combination of massive amounts of decaying vegetation, darkness, and cooler temperatures

are conditions known to favor fungal proliferation, for which there is fossil evidence [8]. Fun-

gal proliferation in the form of mushrooms growing in the decayed vegetation could have pro-

vided nutrition for surviving mammals and reptiles, which are known to eat these fungi [12,

13]. We know that mushrooms existed at the time of the bolide calamity because there are

mushroom fossils dating to the early Cretaceous [14]. Insects would also have been available as

a food source. Although food could have been available to temporally survive the shutdown in

photosynthesis, the sudden cooling of the planet could have created major challenges for nutri-

tion acquisition for ectothermic animals, such as reptiles, which rely on higher ambient tem-

peratures for locomotion to find food, feeding, and digestion [15]. In contrast, mammals

would have been able to effectively forage for food during cooler periods given that their

higher internal temperatures permitted locomotion, food acquisition, and efficient digestion.

A mushroom-rich diet may have also enhanced mammalian immunity because fungal cell

walls are rich in beta-glucans, which can stimulate immune function [16]. Reptilian sex ratios

are affected by ambient temperatures as evident by the fact that even a 2˚C drop can skew tur-

tle sex ratios [17]. Global cooling could have played havoc with the sex ratios among surviving
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reptiles, further reducing their reproductive potential. Hence, the ectothermic reptilian physi-

ology would have constituted a severe disadvantage in a rapidly cooling climate, which would

have precluded adaptation. In fact, mammalian endothermy was proposed to evolve as an

adaptation for early mammals to invade the cooler nocturnal niche in search for food [18],

and, if this were the case, they would have been favored in the long cold night that followed the

bolide impact.

The specter of fungal diseases

Malnutrition in surviving animals would have been complicated by the specter of infectious

diseases. The postcalamity fungal bloom would have included not only mushrooms but also

microscopic fungi capable of causing animal diseases. Fungal diseases are common in ecto-

thermic animals such as frogs, salamanders, and snakes, evidenced by concurrent outbreaks

affecting these groups [19], but are relatively rare in mammals as a result of endothermy and

advanced immunity [2]. Fungal proliferation in decaying plant matter would have created the

potential for dense spore aerosols that could have presented overwhelming infectious inocu-

lum for ectothermic animals survivors. We know that current human fungal pathogens such

as Cryptococcus neoformans have pathogenic strategies that emerged in deep time and date to

the Cretaceous [20], implying the existence of fungal species capable of causing animal disease

at the time of the calamity. To compound the troubles facing reptiles and other ectotherms,

these species fight infection with induced fevers [21], in which animals raise their temperatures

by insolation, but there was little or no sun in the postcalamity world as a result of light block-

ing by atmospheric dust, soot, and smoke [5]. Finally, reptilian eggs are susceptible to penetra-

tion and infection by fungi, which would have further decimated surviving species. In this

regard, Fusarium spp. are known to kill developing turtle eggs [22], and fossilized hyphae have

been reported in fossilized dinosaur eggs [23]. Hibernation could have provided a strategy for

capable animals to weather the immediate postcalamity world and wait for the re-establish-

ment of photosynthesis and repair of biosphere cycles. However, as illustrated by the recent

discovery of white nose syndrome in bats, a fungal disease that affects bats in hibernation [24],

hibernating animals with cooler temperatures could have been susceptible to fungal diseases.

Today, the proposal that an increase in fungal diseases among ectothermic hosts at the end of

the Cretaceous Period helped usher the age of mammals echoes with the current ongoing

declines in such species from chytrid mycoses in amphibians and salamanders [25, 26], Ophi-

diomycosis in North American snakes [22, 27], and fusariosis in turtles [22].

Updating FIMS

Since FIMS was first proposed [1], a large amount of data has accumulated that bears on the

hypothesis and arguably buttresses the idea that a fungal bloom at the end of the Cretaceous

Period helped usher the age of mammals (Fig 1). In the updated FIMS synthesis, mammals

survived in disproportionally larger numbers than reptiles in the postimpact world because

their warm body temperatures would have protected them from fungal diseases and permitted

movement in the damaged biosphere to acquire and digest the available foodstuffs, including

mushrooms. In contrast, the rapid global cooling would have presented great challenges to

ectothermic animals such as reptiles because the cold interfered with reproduction, food acqui-

sition, and digestion and the ensuing darkness would have precluded using insolation for

inducing fever. Mammalian embryos were protected from fungal disease by the endothermy

of their mothers, whereas reptilian eggs would be vulnerable to ravages from shell penetrating

fungi, except possibly for buried eggs. The combination of fungal diseases and starvation

would have decimated ectothermic populations while small mammals survived and prospered,
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such that much greater numbers of mammals survived in the postcalamity world and then

populated the biosphere when the planet recovered. These more numerous mammalian survi-

vors founded the species that then became the large mammals that populated the Paleocene,

which in turn moved up in the food chain thus preventing a second age of reptiles.

Fig 1. Schematic representation of the proposed events leading to the fungal selection of mammalian endotherms after the Chicxulub impact.

https://doi.org/10.1371/journal.ppat.1008451.g001
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