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ABBREVIATIONS

ADE antibody-dependent enhancement
cDNA complementary DNA
CM convoluted membrane
CS complementary sequence
DALYs disability-adjusted life years
DENV dengue virus
DF dengue fever
DHF dengue hemorrhagic fever
dsRNA double-stranded RNA
DSS dengue shock syndrome
E protein envelope protein
ER endoplasmic reticulum
GWAS genome-wide association studies
HI hemagglutination inhibition
HLA human leukocyte antigen
MBFV mosquito-borne flaviviruses
NS nonstructural
NTPase nucleoside triphosphatase
ORF open reading frame
RC replication complex
RdRp RNA-dependent RNA polymerase
RNA ribonucleic acid
RTPase RNA nucleoside 50 triphosphatase
SSL side stem loop
TBFV Tick-Borne Flaviviruses
TGF tumor growth factor
TNF tumor necrosis factor
UAR upstream AUG region
UTR untranslated region
VPs vesicle packets
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INTRODUCTION

Dengue viruses (DENVs) form dengue complex in genus Flavivirus,
family Flaviviridae, and consists of four antigenically related but dis-
tinct DENV serotypes (DENV-1, DENV-2, DENV-2, DENV-3, and
DENV-4). These DENV can cause a spectrum of illness ranging from
asymptomatic dengue infection to dengue fever (DF) to dengue hemor-
rhagic fever (DHF) to dengue shock syndrome (DSS). It is estimated
that close to 3.6 billion are at risk with 390 million infections of which
96 million are symptomatic. Among the 96 million symptomatic cases, 2
million end in severe form of infections, that is, DHF and DSS, and
around 21,000 fatal cases occur annually around the world. Most of
these infections occur in the developing and underdeveloped countries
where the surveillance network for infectious diseases are not robust
which means there is a possibility of gross underreporting of dengue. In
this chapter we will discuss the evolution of virus and its vector, epide-
miology of dengue, molecular and genomic structure of DENV, their
pathogenesis, immune response of the host to the infection, laboratory
diagnosis, management, and recent developments in dengue drug and
vaccine development.

EVOLUTION AND DISCOVERY OF DENGUE VIRUS

All four DENV original serotypes have similar natural histories,
including an enzootic cycle involving nonhuman primates and canopy-
dwelling mosquitoes in Asia, and an urban cycle involving humans as
the primary vertebrate host and Aedes mosquitoes of the subgenus
Stegomyia as the primary mosquito vectors globally in the topics. Some
authors speculated an African origin and subsequent distribution
around the world with the slave trade (Ehrenkranz et al., 1971; Smith,
1956a). It has also been proposed that the viruses may have originated
in a forest cycle involving lower primates and canopy-dwelling mosqui-
toes in the Malay Peninsula (Halstead, 1992; Smith, 1956a). Recent stud-
ies based on sequence data of dengue and other flaviviruses have
suggested an African origin of the progenitor flavivirus, which ulti-
mately branched into three genera, Flavivirus, Pestivirus, and Hepacivirus.

The DENVs belong to the genus Flavivirus, which branched into four
subgroups: (1) the insect-specific viruses that have only been isolated
from various mosquito species; (2) the vertebrate viruses that have no
known arthropod vector, and which have been isolated only from
rodents and bats; (3) the mosquito-borne viruses; and (4) the tick-borne
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viruses (Cook et al., 2012; Crabtree et al., 2005; Kuno et al., 1998;
Uzcategui et al., 2003). It seems plausible that the ancestral flavivirus
was a mosquito or tick virus that diverged by adapting to a variety of
vertebrate hosts, including rodents, birds, bats, and nonhuman primates.

That the tick-borne and mosquito-borne viruses had a common ances-
tor is supported by the fact that several mosquito-borne flaviviruses
(MBFV) [Koutango, Saboya, West Nile, and yellow fever (YF)] have all
been isolated from ticks (Attoui et al., 2000). Also, it has been reported
that some tick-borne viruses replicate in mosquitoes or mosquito cell cul-
tures (Clifford et al., 1971). It is not known whether the divergence of the
four Flavivirus subgroups occurred in Africa, in Asia, or in both areas.

The Asian origin of DENVs is supported by both ecological and phy-
logenetic evidence (Vasilakis et al., 2008) Thus all four dengue serotypes
have been documented in a sylvatic cycle involving nonhuman primates
and arboreal mosquitoes in the Malay Peninsula (Marchette et al., 1978),
whereas only DENV-2 has been documented in a similar cycle in Africa
(Robert et al., 1993).

These data collectively suggest that the DENVs most likely evolved as
viruses of mosquitoes before becoming adapted to lower primates and
then to humans, an estimated 1500�2000 years ago (Moncayo et al., 2004;
Wang et al., 2000a). DENVs are highly adapted to their mosquito hosts,
being maintained by vertical transmission in mosquito species responsible
for sylvatic cycles, with periodic amplification in lower primates.

Hotta and Kimura were the first to isolate the virus in 1943, by intra-
cranial inoculation of serum from an acutely ill patient into suckling
mice (Hotta, 1952, 1953). Sabin et al. similarly isolated viruses from US
soldiers stationed in India, New Guinea, and Hawaii in 1944 (Sabin and
Schlesinger, 1945). Some virus strains from all three geographic loca-
tions were antigenically similar. This virus was called dengue 1. Several
isolates of another antigenically distinct virus strain from New Guinea
were called dengue 2.

Two more serotypes, dengue 3 and dengue 4, were subsequently iso-
lated from patients with a hemorrhagic disease during an epidemic in
Manila, the Philippines, in 1956 (Hammon et al., 1960b) The recent iso-
late from Malaysia, however, may increase the dengue complex to five
serotypes (Normile, 2013).

EVOLUTION AND SPREAD OF DENGUE VIRUS
VECTOR

Aedes aegypti is most likely of African origin for the following reasons.
First, there are no closely related Stegomyia species in the Americas,
whereas there are numerous such species of the same subgenus in both
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the Ethiopian and Oriental regions. Second, A. aegypti occurs in Africa
as a widespread feral species, breeding in the forest, independent of
humans. It is primarily an urban species in both of these regions and
only rarely occurs in the absence of man. Current thinking is that A.
aegypti had an African origin and had adapted to the peridomestic envi-
ronment, breeding in water storage containers in West African villages
prior to the slave trade, which provided the mechanism for the species
to be introduced to the New World. By 1800, A. aegypti had already
become established in many large tropical cites around the world, espe-
cially in port cities in Asia and the New World. A. aegypti did not
become the predominant Stegomyia species in many noncoastal cities
until during and after the Second World War (Smith, 1956b).

It is clear that the species is very strictly limited by latitude and
rarely persists for any time beyond 45�N and 35�S. In the 18th and 19th
centuries, A. aegypti commonly expanded its geographic distribution to
more northern and southern latitudes during the warm summer
months, breeding in stored water containers aboard river boats, ships,
and other means of transportation, ultimately infesting northern cities
in North America and Europe and frequently transmitting epidemic
dengue and YF (Kuno, 2012).

During the winter months, the species would disappear from areas
above and below the January and July isotherms of 10�C in the northern
and southern latitudes, respectively. Secondary mosquito vectors of
human infections include Aedes albopictus, which was most likely the
original epidemic vector of DENVs (Smith, 1956a). An Asian mosquito,
it was the predominant day-biting Stegomyia species in Asian villages
and cities until the Second World War. DENVs are transmitted in syl-
vatic cycles in Asia and Africa. The principal sylvatic cycle occurs in the
Malay Peninsula, where all four serotypes are transmitted to nonhuman
primates by species of the Aedes (Finlaya) niveus complex (Marchette
et al., 1978).

Evolution and Spread of Vector

At some point in the past 2000�4000 years, DENVs moved out of the
Asian jungle and into rural villages, where they were, and still are,
transmitted to humans by peridomestic mosquitoes such as A. albopic-
tus. Migration of people and commerce ultimately moved the viruses
into larger villages, towns, and cities of tropical Asia, where the viruses
were most likely transmitted sporadically by A. albopictus and possibly
other closely related peridomestic Stegomyia species (Halstead, 2007).
The slave trade and the resulting commerce were responsible for the
introduction and the widespread distribution of an African mosquito,
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A. aegypti, into the New World, most likely during the 17th century.
This species became highly adapted to humans and the urban environ-
ment, and was ultimately spread throughout the tropics by the shipping
industry. The species most likely first infested port cities and then
moved inland as urbanization expanded (Gubler, 2012).

First reports of major epidemics of an illness compatible with and
thought possibly to be dengue was published during the Jin Dynasty
(CE 265-420), this encyclopedia was formally edited in CE 610 (Sui
Dynasty) and again in CE 992 during the Northern Sung Dynasty. The
disease was called “water poison” by the Chinese and was thought to
be somehow connected with flying insects associated with water
(Gubler, 2014).

It is uncertain that the epidemics in Batavia (Jakarta), Indonesia, and
Cairo, Egypt, in 1779 were dengue. Serologic studies have identified
DENV-1 as the predominant virus in the Philippines and Greece in
the 1920s and in the South Pacific in the 1930s (Halstead and
Papaevangelou, 1980; Simmons, 1931; Rosen, 1986). It was this serotype
that also caused the major regional epidemic that occurred in the Pacific
and Asia during the Second World War (Hotta, 1953; Kuno, 2009; Sabin
and Schlesinger, 1945).

A particular virus serotype persisted in some geographic regions for
several years, emerging periodically to cause epidemics, as herd immu-
nity in the human population waned, and as new epidemic strains of
virus emerged. This is supported by recent studies that have shown that
a single serotype and genotype have remained dominant in a country
causing periodic epidemics for as long as 20 years (Gubler, 2014). It has
also been documented that some virus subtypes persist in urban com-
munities with “silent” transmission, causing mild nonspecific febrile ill-
ness not recognized as dengue (Gubler et al., 1978; Yoon et al., 2012).

The most likely origin of the word dengue is from Swahili. In both
the 1823 and 1870 epidemics of dengue-like illness in Zanzibar and the
East African coast the disease was called Ki-Dinga pepo, which meant
“a disease characterized by a sudden cramp-like seizure, caused by an
evil spirit.” During the 1828 epidemic in Cuba, the illness was first
called Dunga but was later called dengue, the name by which it has
been known ever since (Gubler, 2014).

Mosquito Transmission of Dengue Viruses

With documentation that YF was transmitted by mosquitoes (Reed
et al., 1900), many early workers suspected that DF was also a
mosquito-borne disease. It was the first documentation that mosquitoes
could transmit DF (Graham, 1903). This work was followed, which
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showed conclusively that A. aegypti could transmit the disease to volun-
teers following a 10-day incubation period after the mosquitoes had fed
on a person acutely ill with DF.

Factors Responsible for the Global Resurgence of Dengue

Disease such as dengue was not considered a major public health prob-
lem in the first place, and this led to policy changes, a redirection of
resources and decay in the public health infrastructure to deal with infec-
tious disease in general and vector-borne diseases in particular (Gubler,
1989b, 1994, 1998b, 2001). In addition to the lack of political will, success-
ful mosquito control programs were replaced by emergency response pro-
grams that relied on high-technology outdoor space spraying with
nonresidual insecticides. Although very popular politically, these pro-
grams were never effective in interrupting transmission because they
were usually initiated too late and in geographically limited areas.
Moreover, the insecticide did not reach its targets, the adult A. aegypti,
which were resting in secluded places inside houses (Gubler, 2011).

The failure to control the mosquito vectors of dengue unfortunately
coincided with a period of dramatic urban growth, globalization, and
changing lifestyles. Contributing to the problem were water storage
practices in the cities where water supplies were unreliable, the use of
nonbiodegradable containers for packaging consumer goods, and the
rapidly growing automobile industry. Water storage containers such as
plastics and used automobile and truck tyres provided ideal oviposition
sites and larval habitats for A. aegypti mosquitoes (Gubler, 1994). Most
mosquito control efforts since the early 1970s were directed toward
adult mosquitoes using expensive methods that were ineffective, while
changing lifestyles were providing increasingly more larval habitats.
The result was large mosquito populations and crowded human popu-
lations living in intimate contact with each other and increased dengue
transmission. Urban growth has been dramatic since the early 1960s,
driven primarily by economic expansion, the cities of tropical develop-
ing countries exploded, with millions of susceptible people migrating
from rural areas (Gubler, 2011).

In 1999 global urban population was estimated to be 5 billion people
and currently the population has crossed 7.6 billion; it is projected that
6.3 billion people will live in urban areas. Economic growth has also
been the principal driver of globalization. Intercontinental travel now
poses a major risk for pandemic spread of pathogens, as illustrated by
the recent spread of dengue, influenza, and severe acute respiratory
syndrome (SARS)-coronaviruses (Gubler, 2011). In this era, major cities
of the tropical world have crowded human populations, no effective
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mosquito control, and are hyperendemic, with multiple DENV sero-
types cocirculating. The DENVs have fully adapted to humans, no lon-
ger requiring the sylvatic cycles for survival (Gubler, 1998a). The large
crowded tropical cities of the world, all of which have modern airports,
provide the perfect environment for the maintenance, propagation, and
spread of dengue and other A. aegypti�transmitted diseases.

DF/DHF is the most important arboviral disease of humans occur-
ring in all major tropical areas of the world, with over 3.6 billion people
living in areas at risk for infection. An estimated 390 million infections
and 96 million symptomatic cases of dengue, including more than 2 mil-
lion cases of DHF and 15,000 deaths (range: 6100�24,300), occur annu-
ally (Bhatt et al., 2013). The case-fatality rate of DHF averages B5%;
World Health Organization estimates more than 20,000 deaths each year
(Bhattacharya et al., 2013). The estimated lifetime number of infections
per person in Southeast Asia was estimated at 3.3, with an overall
annual infection rate of 5% (12.5% annual infection rate among children
under 15 and 2.8% among adults).

The current global pandemic of DF/DHF began in the Asia during
the Second World War, when both the viruses and the mosquito vec-
tor, A. aegypti, were spread widely throughout the regions (Halstead,
1992). During the war, existing water systems were destroyed, and
water was stored for domestic use as well as for fire control. Military
equipment and junk were left behind, making ideal larval habitats for
A. aegypti. The movement of equipment and other war activities
resulted in the transport of mosquitoes and their eggs to new geo-
graphic areas (Guzman et al., 2010). The result was a greatly expanded
geographic distribution and increased densities of A. aegypti and
increased epidemic dengue activity (Bhatia et al., 2013). The economic
expansion was the driving force of unprecedented urban growth that
continues today (Ferreira, 2012). Housing, water, sewer, and waste
management were inadequate. The vector population thus increased
dramatically in the crowded, unhygienic cities of Asia, as mosquito
control measures was not effective. The economic expansion also led
to increased movement of people (along with them the viruses also
moved among cities and countries in the region). Those countries that
did not already have hyperendemic rapidly became hyperendemic
(Gubler, 2011).

The first recorded epidemic occurred in Manila, the Philippines, in
1953/54, followed by another in 1956 (also in Manila) and a third epi-
demic in Bangkok in 1958 (Hammon et al., 1960a). During the 1960s and
1970s the disease caused outbreaks in India, Malaysia, Singapore,
Vietnam, Indonesia, and Myanmar. From the 1970s to the present time,
there has been a dramatic geographic expansion of epidemic DHF in
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the countries of Asia and from there to the Pacific and the Americas
(Bhatia et al., 2013). Japan routinely experienced dengue epidemics in
its southern islands of Okinawa and Formosa (Taiwan), but the
Japanese mainland was not affected until the Second World War (Hotta,
1953). Following the Second World War, the isolation of the Pacific
resulted in the disappearance of DENVs from the area for 20 years. In
the late 1971, explosive epidemics of DF were caused by DENV-2
(Moreau et al., 1973). In 1974 DENV-1 was reintroduced into the Pacific
from Asia and rapidly spread throughout the islands in a pattern simi-
lar to that of DENV-2 (Kuberski et al., 1977). DENV-4 (1979) and
DENV-3 (1980) were also introduced from Asia and spread in a similar
fashion.

The first reports of DF in Australia were in the late 1800s and, from
1880 to 1955. Although A. aegypti was probably never eradicated from
Northern Queensland, a combination of improved water systems and
control programs reduced the populations to very low levels during the
1960s and 1970s, when dengue transmission was not reported. After an
absence of 26 years, dengue reappeared in Northern Queensland in
1981/82 with DENV-1 causing an outbreak in several cities (Kay et al.,
1984). In the Americas, from 1946 to 1963, there was no evidence of den-
gue epidemic, and this quiescence was due to several factors, but of
importance was the A. aegypti eradication program by Pan America
Health Organization which was aimed at reducing the YF outbreaks
(Gubler, 2014). The eradication program was discontinued in the early
1970s because urban epidemics of dengue and YF were no longer a
problem. Failure to eradicate A. aegypti from the whole region, however,
resulted in repeated reinvasions by this mosquito into those countries
that had achieved eradication. During the 1970s, support for mosquito
surveillance and control programs waned, and by the end of the decade,
many countries had been reinfested with A. aegypti (Gubler, 1989a). In
2012 A. aegypti had a distribution similar to that in the 1940s, before
eradication was initiated; only Bermuda and Chile remain free of this
mosquito. A characteristic of dengue in the Americas from 1963
through the early 1980s was hypoendemicity, that is, only a single
serotype was present at any one time in most countries (Gubler,
1989b). Thus reinvasion of Central and South America by A. aegypti
in the 1970s and 1980s, combined with increased urbanization and
movement of people, and with them DENVs and mosquito vectors,
which spread via commerce, resulted in most countries evolving from
nonendemicity (no viruses present) or hypoendemicity (one virus
present) to hyperendemicity (multiple virus serotypes present) (Rigau-
Pérez et al., 1998).
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Surveillance for dengue in Africa was exceptionally poor during the
20th century, and endemic transmission of DENV-1 and DENV-2 was
documented in Nigeria. Reports of epidemic DF have increased dramat-
ically since 1980. Outbreaks have occurred in both East and West Africa
(Amarasinghe et al., 2011; Were, 2012).

To summarize, the current dengue pandemic was originated in
Southeast Asia following the Second World War. During the postwar
years, when the DHF syndrome was first described, the severe disease
was sporadic and localized in a few Southeast Asian countries. In the
1970s, however, the disease began to spread, first within Asia and then
to the Pacific and tropical America. Due to factors such as lack of politi-
cal will, successful mosquito control programs were replaced by emer-
gency response programs that relied on high-technology outdoor space
spraying with nonresidual insecticides. Although very popular politi-
cally, these programs were never effective in interrupting transmission,
because they were usually initiated too late, and in geographically lim-
ited areas. Moreover, the insecticide did not reach its targets, the adult
A. aegypti, which were resting in secluded places inside houses (Gubler,
2011; Murray et al., 2013).

The failure to control the mosquito vectors of dengue unfortunately
coincided with a period of dramatic urban growth, globalization, and
changing lifestyles. Contributing to the problem were water storage
practices in the cities where water supplies were unreliable, the use of
nonbiodegradable containers for packaging consumer goods, and the
rapidly growing automobile industry. Water storage containers such as
plastics and used automobile and truck tyres provided ideal oviposition
sites and larval habitats for A. aegypti mosquitoes. Most mosquito con-
trol efforts since the early 1970s were directed toward adult mosquitoes
using expensive methods that were ineffective, while changing lifestyles
were providing increasingly more larval habitats. The result was large
mosquito populations and crowded human populations living in inti-
mate contact with each other, and increased dengue transmission
(Banerjee et al., 2015) (Fig. 16.1).

ECONOMIC BURDEN

Dengue represents a substantial economic and disease burden to
communities and health systems in endemic countries, with a 30-fold
increase in reported cases since the early 1960s. Factors that contribute
to the increased incidence of dengue include the following: a rise in
global commerce and tourism, population growth and rapid urbaniza-
tion, inadequate water, sewer, and waste management systems, and
inadequate vector control policies (Shepard et al., 2014). The expansion
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FIGURE 16.1 Global dengue burden. Source: Adapted from Bhatt, S., Gething, P.W., Brady, O.J., Messina, J.P., Farlow, A.W., Moyes, C.L., et al.,
2013. The global distribution and burden of dengue. Nature 496 (7446), 504507. Available from: https://doi.org/10.1038/nature12060.

https://doi.org/10.1038/nature12060


of dengue poses a serious economic and disease burden in more than
100 countries across the world. Economic burden estimation of dengue
is critical to provide policymakers, researchers, developers, and drug
and vaccine manufacturers, and donors with reliable and comparable
measures to inform decisions about health policy, research, and health
service priorities. Disease burden refers to the impact of a disease
on mortality and morbidity in a population and is represented by
disability-adjusted life years (DALYs), a nonmonetary index that
estimates a person’s years of life lost due to premature mortality.

The economic burden of dengue has three main components: (1) ill-
ness costs are costs directly related to the disease; (2) surveillance and
control costs are costs related to dengue surveillance, vector control,
and other preventive activities; and (3) other costs, which are harder to
measure, encompass the effects of seasonal clustering of dengue on
health systems, decreases in tourism during dengue outbreaks (Shepard
et al., 2014) or comorbidities and complications associated with dengue
infection (Davis and Bourke, 2004; Laoprasopwattana et al., 2010; Seet
et al., 2007a; Wills et al., 2009) The economic cost of dengue can be esti-
mated as the total number of dengue episodes times the unit costs per
episode.

Surveillance systems in most countries are passive, that is, they are
dependent on the case presenting to the healthcare system. While pas-
sive surveillance systems are adequate for monitoring general trends in
dengue infections and promptly detecting dengue outbreaks, they usu-
ally underreport the total episodes of symptomatic dengue. Common
limitations of passive surveillance systems include variations in the defi-
nitions of reportable dengue, misdiagnosis of dengue episodes, unrecog-
nized dengue symptoms, misinterpretation of diagnostic tests, reliance
on reports by healthcare professionals and laboratory staff, limited sur-
veillance budgets, and variability in reporting rates between inpatient
and outpatient settings, public or private facilities, or between epidemic
and nonepidemic cycles (Beatty et al., 2010; Gubler, 2002; Kuno, 2007;
Siqueira et al., 2004a).

Direct unit costs include direct medical costs such as diagnostic tests,
drugs and medications, and medical personnel salaries and fringe bene-
fits. Nonmedical costs include costs such as transport, lodging, or food.
The main source of indirect costs of dengue is work-time loss (i.e.,
productivity loss) caused by disability and, in some cases, death. The
resources and time spent by the patients’ caregivers are also included
in the nonmedical direct and indirect unit costs of dengue (Shepard
et al., 2014).

Unfortunately, there are only a few studies that estimate the eco-
nomic and disease burden of dengue by region. There are areas of
uncertainty in measuring the economic loss associated with dengue.
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First, estimating the total episodes of dengue is difficult due to paucity
of data. Second, there is some evidence suggesting that the rate of
underreporting varies by the severity of dengue, with better reporting
for more severe cases of dengue (Duarte and Franca, 2006). Third, most
estimates of the economic cost of dengue only include the febrile (1�7
days) and subsequent critical phase of dengue, totaling B12 days (Lum
et al., 2008; Suaya et al., 2009). But dengue leads to substantial reduction
in the patients’ quality of life during and after the febrile period. Last,
there is considerable uncertainty in the burden of dengue in large parts
of the world, including the Western Pacific, South Asia, and Africa.
While there have been several reports of dengue outbreaks occurring in
these regions, many countries do not have surveillance systems to moni-
tor and report dengue episodes, or lack accurate identification methods.
Another area of uncertainty includes population’s health-seeking behav-
ior and the multiplicity of sites for treatment with privately treated
patients having modest rate of reporting and near nil reporting from
patients seeking alternate method of treatment such as pharmacy or
traditional medicine (Suaya et al., 2009).

Currently, there is no effective dengue vaccine or specific antiviral treat-
ment for dengue. The only way to prevent and control the spread of den-
gue infection is to suppress the vector population through an active vector
control system, based on a strong and active surveillance system (Gubler
and Clark, 1995). Surveillance and early detection of dengue cases are the
first line of defense against potential epidemic. They guide health agencies
response, optimize the use of scarce resources by focusing on infected
areas, and generate invaluable information for both health providers and
policymakers (Guzman et al., 2010). The cost of dengue vector control and
surveillance encompasses the following: cost of surveillance, clean-up cam-
paigns, fumigation, inspection, and education of general public.

Traditional dengue control strategies focus on reducing mosquito
abundance, reducing adult mosquitoes life span, and preventing mos-
quito�human contact through: (1) source reduction (locating and
destruction of mosquito breeding sites); (2) use of larvicides to control
juvenile mosquitoes (life stages that occur in water); and (3) use of ultra-
volume aerosolized adulticides to control adult mosquitoes (Baly et al.,
2012; Massad and Coutinho, 2011). However, integrated vector manage-
ment is the recommended strategy for all vector-borne diseases, includ-
ing dengue. This strategy involves social mobilization, environmental
management, epidemiological and entomological surveillance, and
chemical and biological control (Tapia-Conyer et al., 2012a). However,
due to budget constraints and competing priorities, effective mosquito
control is weak in most dengue-endemic countries (Tapia-Conyer et al.,
2012b), resulting in a “crisis mentality” focusing on implementing emer-
gency control methods in response to epidemics (Gubler, 2002).
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Vector control is currently the only intervention against dengue.
However, ineffective vector control programs allowed the spread of
Aedes mosquito species and with it dengue illness. Community-based
dengue control programs alone or in combination with other control
activities can enhance the effectiveness of dengue control programs
(Heintze et al., 2007). In addition, insecticide resistance is a challenge
that can lead to failure of dengue control programs and complicates
the control activities further by increasing the magnitude of future
dengue epidemics. Economic analysis of other dengue control tech-
nologies under development, such as genetics-based sterile insect
methods, infection of mosquitoes with Wolbachia, and vaccination,
are important to guide investment for these technologies, policy for-
mulation, adaptation, and adoption of these technologies, and
thereby mitigate the economic and burden of dengue illness in the
future (Luz et al., 2011).

Another technology that might prove to be more effective is a human
dengue vaccine. Immunization was the most cost-effective at US$2435
per DALY averted, compared to US$3368 per DALY averted for vector
control of adult A. aegypti, and US$6883 per DALY for immunization,
case management, and environmental control—all costs (Shepard et al.,
2004). This analysis concluded that vaccination, when available, will be
the most cost-effective policy. In addition, it is much more favorable
than the US$3368 per DALY saved from environmental management
(Zeng et al., 2018). The incremental cost-effectiveness ratio for a dengue
vaccine in Southeast Asia, estimated at US$62.47 per DALY saved (in
2011 US$), is comparable to most favorable public health programs for
children, which cost on average ,US$100 per DALY saved (in 2011 US$)
(Shepard et al., 2012). The economic burden of dengue in the absence of
any effective vaccine for the cohort was US$123.70 per 1000 population
per year, of which 67% is due to DHF. The situation with the highest
incidence of DHF and lower vaccine price in the public sector makes the
vaccine the most cost-effective (Shepard et al., 2004).

A drug that would help reduce symptoms and possible mortality
would be a valuable and complementary tool for reducing the health
and economic burden of dengue. Researchers have been testing several
antiviral drugs. While the latest published results—like earlier ones—
have proved disappointing, there have been notable advances in recent
years. Although the need for such therapeutic agents would be reduced
if effective preventive measures (vaccination and vector control) are
developed and implemented, the remaining need and demand are
still substantial. This quantification of the economic burden will contrib-
ute toward better decisions about the current, and promising new pre-
ventive and curative approaches to reduce the burden of dengue
(Shepard et al., 2014).
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TAXONOMY AND EVOLUTIONARY RELATIONSHIP
OF DENGUE WITH OTHER FLAVIVIRUSES

The flaviviruses form a well-defined genus based on shared antigenic
and genetic properties. Many flaviviruses are important human patho-
gens, and most of these are zoonotic; in addition to dengue (DENV), the
genus contains YF virus (YFV), Japanese encephalitis virus, West Nile
virus (WNV), and tick-borne encephalitis viruses. The Flavivirus genus
is classified in the family Flaviviridae, which it shares with two other
recognized genera, Pestivirus and Hepacivirus, and a newly proposed
genus consisting of G Barker Virus (GBV) isolates. The family is defined
by similar morphology, genome organization, and replication, although
each genus is distinct in antigenic and other biological properties. The
genus Flavivirus is officially divided by the International Committee on
Taxonomy of Viruses (ICTV) into 14 serogroups, consisting of 53 for-
mally recognized species but up to 74 reported viruses (Adams et al.,
2017; Wylie et al., 2017). For example, the dengue serotypes 1�4 are
considered a single species even though they are genetically and anti-
genically quite distinct, because they have similar geographic distribu-
tions, host/vector associations, and disease syndromes.

GENUS-LEVEL MORPHOLOGICAL
AND GENOMIC PROPERTIES

All the Flaviviridae are spherical enveloped viruses with single-
protein capsids, two to three membrane proteins (two in the flaviviruses,
envelope and membrane), and single-stranded positive-sense ribonucleic
acid (RNA) genomes lacking poly A tails at the 30 end. The Flaviviridae
genome has single open reading frame (ORF) which is translated single
complete polyprotein, with RNA helicase and RNA-dependent RNA
polymerase (RdRp). The ORF is flanked by two noncoding regions. The
flavivirus genome is B11 kb in length. The coding region of flaviviruses
includes, in the following order of three structural genes encoding for the
proteins capsid (C), precursor membrane (prM, cleaved to membrane
protein M during maturation) and envelope (E), and seven nonstructural
(NS) genes encoding for NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5.
NS2B and NS3 form the protease, and NS3 also has helicase and RNA tri-
phosphatase activity; NS5 is the RdRp and also has methyltransferase
activity (Bennett, 2014).

Flavivirus genomic RNA serves as the only viral messenger RNA.
Translation of the complete polyprotein begins at the first or a second
AUG codon of the ORF. The polyprotein is cleaved at conserved sites
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by either the viral serine protease (NS2B/NS3), a host-derived signalase,
except for pr/M, which is cleaved after assembly by host-derived furin
or a furin-like protease.

REPLICATION STRATEGY OF FLAVIVIRUS

Flavivirus replication ensues in the cytoplasm on host endoplasmic
reticular (ER) membranes that are modified into vesicular packets
where replication probably occurs. Full-length complementary negative-
sense RNA strands are produced that serve as templates for the
positive-sense genome copies. Flavivirus assembly into virus particles
probably occurs on the rough ER (RER), where they acquire their mem-
branes. Virus particles mature as they pass through the host secretory
system and exocytosis pathway by the cleavage of prM to M, eventually
budding off the host cell. Interestingly, virions may be released that are
coated with a mixture of both mature (cleaved) and immature
(uncleaved) M/prM proteins.

Flaviviruses are defined by their antigenic relatedness, among other
things, and all exhibit various degrees of cross-reactivity profiles in
serological tests (Mansfield et al., 2011). Flaviviruses were first grouped
together as Group B arboviruses based on cross-species hemagglutina-
tion inhibition (HI) and later divided into eight serocomplexes com-
prised of 49 viruses on the basis of cross-neutralization tests (Calisher
et al., 1989). Serocomplexes correspond to amino acid distances over
the E protein. Serocomplexes themselves exhibit varying degrees of
antigenic similarity.

Phylogenetic structure across the highly ecologically diverse flavi-
viruses based on the entire coding region reflects the antigenic groups
as well as host and/or vector associations. Three main clades emerge
from the flaviviruses recognized by the ICTV the MBFV, the tick-borne
flaviviruses (TBFV), and those restricted to vertebrate hosts or with no
known vector (NKV). The most divergent taxon represented in the phy-
logeny of the flaviviruses is another candidate flavivirus, Tamana bat
virus (Adams et al., 2017).

Most flaviviruses are zoonotic, transmitted to humans from animals
via vectors such as ticks or mosquitoes, suggesting that they retain the
evolutionary capacity to host-switch in spite of phylogenetic patterns
(Mackenzie and Williams, 2009). Genome observations for the different
flaviviral groups further support host- and/or vector-specific adapta-
tions. Within the TBFV, viruses cluster according to antigenic groups
and host associations, which are tightly correlated. Associated more
closely with the TBFV than the MBFV is the lineage of flaviviruses
restricted to vertebrates or with NKV. Within the MBFV, viruses are
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phylogenetically subdivided largely in keeping with their antigenic
groups.

Within the dengue serocomplex of currently described serotypes
1�4, the E protein consists of conserved and variable regions, with up
to 37% amino acid divergence (Heinz and Stiasny, 2012). The presence
of conserved regions accounts for the brief (in the order of months)
cross-protection between serotypes (Sabin, 1952) and the diminishing
and/or weakly neutralizing cross-reactive antibodies that contribute to
severe disease in dengue through antibody-dependent enhancement
(ADE) of infection (Bashyam et al., 2006; Halstead and Simasthien, 1970;
Mady et al., 1991). In the end, the degree of variability in the E protein
and resulting serological distinctiveness among dengue serotypes
means there is no cross-protection for second, third, or fourth infections,
although clinical illness is mild in third and fourth infections (Halstead
et al., 1973a,b,c,d; Halstead and Palumbo, 1973).

The E protein is the primary target for neutralizing antibody forma-
tion due to its critical role in host cell receptor�mediated endocytosis
and fusion. Epitopes have been mapped to all three of the E protein
domains, I, II, and III: domain II near the fusion loop and the lateral
ridge of domain III are both important neutralization targets (Ansarah-
Sobrinho et al., 2008; de Alwis et al., 2011; Wahala and Silva, 2011).

MOLECULAR ARCHITECTURE OF DENGUE VIRUS

In recent years a great deal of research on DENV biology has pro-
vided an enormous amount of information about molecular aspects of
its replication. Studies on molecular virology of viruses have been made
possible by the use of full-length complementary DNA (cDNA) clones,
genomic RNA with reporter genes and replicons. Full-length cDNA
clones of four serotypes of dengue have been constructed and is being
used to study their molecular biology (Kapoor et al., 1995; Kinney et al.,
1997; Lai et al., 1991; Suzuki et al., 2007). These infectious clones have
been used to genetically manipulate different regions of the viral RNA
to define functions of viral proteins and RNA structures, to study vir-
us�cell interactions, and to generate live-attenuated vaccine candidates.
Another important advance has been the development of genomic and
subgenomic DENV RNAs containing reporter genes, such as luciferase
or green fluorescent protein (GFP) (Schoggins et al., 2012; Zou et al.,
2011). These tools have been used to study functions of viral proteins
and RNAs in each step of the viral life cycle (Samsa et al., 2012). Also
reporter-containing viruses have been employed to study viral functions
and host�virus interactions during viral entry, viral translation, RNA
synthesis, and formation of infectious viral particles. Replicons are yet
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another useful tool to evaluate translation and viral RNA amplification,
which can be followed by measuring reporter activity as a function of
time after RNA transfection.

Mature DENV particles have a diameter of B500 Å with an electron-
dense core surrounded by a lipid bilayer, in which two transmembrane
viral proteins are inserted forming a glycoprotein shell. The core con-
tains the nucleocapsid formed by the viral RNA genome in complex
with multiple copies of the capsid protein. The glycoprotein shell is
well defined and consists of 180 copies of the envelope (E) and mem-
brane protein (prM/M). The E protein is found as 90 head-to-tail homo-
dimers that lie flat on the viral surface forming a smooth protein shell
(Kuhn et al., 2002). The M protein is a small proteolytic fragment of its
precursor prM that after cleavage of “pr” peptide during viral matura-
tion remains as a transmembrane protein beneath the E protein shell.
Inside the lipid bilayer, there is a low-density gap of B12 Å followed by
the density contributed by the capsid protein with the viral genome.

Viral particles are initially assembled as immature virus with a dis-
tinct structural organization. In immature viral particles, the E glycopro-
tein is associated with the glycoprotein prM forming heterodimers
(Zhang et al., 2003). The immature particle is converted into an infec-
tious form by cleavage and release of “pr” peptide of the prM protein
during viral.

OVERVIEW OF THE VIRAL LIFE CYCLE

DENV enters host cells by receptor-mediated endocytosis, which
involves binding of E to cellular receptors. DENV must recognize a
ubiquitous cell surface molecule or utilize multiple receptors for cell
entry. The interaction of E with glycosaminoglycans, such as heparan
sulfate, at the cell surface and also several other surface proteins is
implicated in the process of internalization such as heat-shock proteins
90 and 70, GRP78 (BiP) (Jindadamrongwech et al., 2004), neolactotetrao-
sylceramide (Aoki et al., 2006), the lipopolysaccharide receptor CD14
(Chen et al., 2008b), and the 37/67 kDa high-affinity laminin (Thepparit
et al., 2004), C-type lectins such as dendritic cell (DC)-specific intercellu-
lar adhesion molecule-3-grabbing nonintegrin (SIGN), the mannose
receptor (Miller et al., 2008) and C-type lectin domain family 5, member
A (Chen et al., 2008a) DENV enters mosquito and human cells through
clathrin-mediated endocytosis (Krishnan et al., 2007).

DENV particles diffuse along the cell surface toward a preexisting
clathrin-coated pit. With the aid of dynamin, the clathrin-coated pit
evolves to a clathrin-coated vesicle, and this virus-containing vesicle is
delivered to early endosomes, which subsequently mature into late
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endosomes. Upon internalization and acidification of the endosome,
fusion of viral and vesicular membranes mediated by conformational
changes in the E protein (Modis et al., 2004; Nayak et al., 2009) allows
the release of the nucleocapsid.

After the nucleocapsid is delivered into the cytoplasm, uncoating
of the genome, which involves dissociation of the capsid protein from
the RNA, takes place by an unknown process. The positive-sense viral
RNA is released in the cytoplasm to function as mRNA. Translation
of the single ORF at the RER produces a large polyprotein, which dis-
plays a complex topology on the ER membrane. The viral polyprotein
is cleaved co- and posttranslationally into at least 10 mature proteins.
The N-terminus of the polyprotein encodes three structural proteins
(capsid, prM, and E), and the rest of the ORF encodes the seven NS
proteins (NS1�NS2A�NS2B�NS3�NS4A�NS4B�NS5). Polyprotein
maturation is carried out by host and viral proteases. The host signal
peptidase at the ER lumen is responsible for the N-terminus cleavage
of prM, E, NS1, and NS4B, whereas the processing of most of
the other NS proteins, as well as the C-terminus of the capsid protein,
is carried out by the viral protease NS2B3 in the cytoplasm of infected
cells (Falgout et al., 1991). Finally, furin is the protease responsible
of processing prM in the Golgi apparatus during viral particle
maturation.

After the viral proteins have been translated and processed, virus-
induced hypertrophy of intracellular membranes occurs, creating
structures known as convoluted membranes (CMs) and vesicle packets
(VPs). RNA synthesis takes place in close association with cellular
membranes inside VP in the so-called viral replication complexes
(RCs).

The process of replication begins with the synthesis of a comple-
mentary negative-strand RNA, which serves as template for the ampli-
fication of additional positive-strand genomic RNA. The enzymatic
reaction is catalyzed by NS5, in association with NS3, other viral NS
proteins, and presumably host factors. The newly synthesized gen-
omes can be used for translation of more viral proteins or associate
with capsid to generate new viral particles. Capsid distributes between
ER membranes, nucleus, and the surface of lipid droplets (Samsa
et al., 2012).

Once formed, the nucleocapsid buds into the ER lumen acquiring the
lipid bilayer, together with the viral E and prM proteins. The newly pro-
duced particles travel through the secretory pathway. Furin-mediated
proteolysis of prM in the trans-Golgi network triggers rearrangement,
homodimerization of E, and formation of mature viral particles (Yu et al.,
2008). Secreted viruses are a mixture of mature, immature, and partially
mature particles.
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Genomic Structure of Dengue Virus

The DENV genome consists of a single, positive-strand RNA of
B11 kb. A type I cap is present at the 50 end, followed by the conserved
dinucleotide 50-AG-30 (Cleaves and Dubin, 1979). The 30 end of the
genome lacks a polyadenylate tail and terminates in a conserved 50-CU-
OH 30 (Wengler and Wengler, 1981). The genome encodes a single ORF
flanked by highly structured 50 and 30 untranslated regions (UTRs). The
50and 30 terminal RNA sequences of the genome form large stem loop
structures known as stem loop A (SLA) and 30 stem loop (30 SL), respec-
tively, both essential for viral replication. The 50 UTR sequences of the
four DENV serotypes (DENV-1 to DENV-4) are between 95 to 101
nucleotides long, while the 30 UTRs range from 470 nucleotides in the
case of DENV-1 to B385 nucleotides in DENV-4. An important feature
of DENV and other flavivirus genomes is the presence of inverted com-
plementary sequences (CSs) at the ends of the RNA. These sequences
mediate long-range RNA�RNA interactions and cyclization of the viral
genome (Villordo and Gamarnik, 2009) (Figs. 16.2 and 16.3).

Inverted CSs have been suggested to allow the ends of the genome to
associate through base pairing, leading to circular conformations of the
RNA. DENV-50 CS element was found within the coding sequence of
capsid, and its CS 30 CS was identified within the 30 UTR, just upstream
of the conserved 30 SL. Additional inverted complementary nucleotides,
besides the original 50�30 CS, were noticed using folding prediction
algorithms (Leyssen et al., 2001; Thurner et al., 2004). A sequence
located just upstream of the translation initiator AUG at the 50 UTR of
DENV was found to be complementary to a region present within the
stem of the 30 SL. This pair of CSs was named cyclization sequence

FIGURE 16.2 Schematic representation of predicted RNA elements at the 30 UTR of
the DENV genome. DENV, Dengue virus; RNA, ribonucleic acid; UTR, untranslated
regions. Source: Adapted from Iglesias, N.G., Byk, L.A., Gamarnik, A.V., 2013. Molecular virol-
ogy of dengue virus. In: Ooi, A.P.E.E., Gubler, D.J., Vasudevan, S., Farrar, J. (Eds.), Dengue and
Dengue Hemorrhagic Fever. CAB International. pp. 334�365 (Iglesias et al., 2013).
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FIGURE 16.3 (A) Structural elements located at the 50end: SLA, SLB, UAR, oligo(U)
spacer, translation initiator AUG, cHP, and the 50 CS element are indicated. Regions within
the SLA including the TL, stem S1, stem S2, stem S3, and the SSL are shown. (B)
Schematic representation of differences found between Side Stem Loop (SSL) DENV-2 and
other DENV. cHP, Capsid region hairpin; CS, complementary sequence; SLA, stem loop A;
SLB, stem loop B; SSL, side stem loop; TL, top loop; UAR, upstream AUG region. Source:
Adapted from Iglesias, N.G., Byk, L.A., Gamarnik, A.V., 2013. Molecular virology of dengue virus.
In: Ooi, A.P.E.E., Gubler, D.J., Vasudevan, S., Farrar, J. (Eds.), Dengue and Dengue Hemorrhagic
Fever. CAB International. pp. 334�365.
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50�30 UAR (the name stands for upstream AUG region) (Alvarez
et al., 2005a).

More recently, complementary nucleotides located between 50�30 UAR
and 50�30 CS were found to be also important for efficient DENV replication.
These sequences were named 50�30 downstream AUG region (Friebe et al.,
2012). Atomic force microscopy showed that long-range RNA�RNA interac-
tion occurs in DENV genome (Alvarez et al., 2005b), also it showed that full-
length DENV genomic RNA occurred in linear and circular conformations.

50 Untranslated Region

Alignment of the 50 UTRs from different DENV serotypes shows high
sequence conservation. RNA-folding predictions of these sequences indi-
cate the formation of a large 50 terminal SLA followed by a smaller stem
loop structure [stem loop B (SLB)]. SLB ends in the translation initiation
AUG codon and contains the CS 50 UAR. These two stem loop structures
are separated by a short oligo(U) sequence. SLA portion of DENV genome
shows three helical regions (S1, S2, and S3), a side stem loop (SSL) and a
top loop (TL), and these structures play important role in viral replication.
Between the SLA and the SLB structures, there is an oligo(U) track con-
served in DENV and other flavivirus genomes that functions as spacer that
enhances viral RNA synthesis (Lodeiro et al., 2009). The 50 UTR is followed
by a structured RNA region in the coding sequence of capsid. This region,
which is B100 nucleotides long, contains three important RNA elements:
(1) the highly conserved 50 CS, which is complementary to the 30 CS pres-
ent at the viral 30 UTR; (2) a stable hairpin known as capsid region hairpin
(cHP); and (3) an RNA element that modulates DENV replication in mos-
quito and mammalian cells (Fig. 16.3).

The 50 CS is 11 nucleotides long (134-UCAAUAUGCUG) and is abso-
lutely conserved among the four DENV serotypes. This region mediates
long-range RNA�RNA interactions between the ends of the genome
and is essential for viral RNA replication. The cHP was originally
described as an element that regulates the start codon selection during
protein synthesis. RNA structures located within the protein coding
sequence were found to play a regulatory role in DENV replication
(Polacek et al., 2009). Mutations and deletions within a predicted
hairpin (CCR1) resulted in important defects in DENV replication in
mosquito and mammalian cells (Fig. 16.3).

30 Untranslated Region

The 30 UTRs of the four DENV genomes contain highly conserved
RNA elements (Shurtleff et al., 2001). However, the length of this region
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is different for the four serotypes. In the case of DENV-1 the 30 UTR is
B470 nucleotides long, 450 nucleotides for DENV-2, 430 nucleotides for
DENV-3, and the shortest is for DENV-4 with 385 nucleotides 30 UTR
can be divided in three domains (Proutski et al., 1997; Rauscher et al.,
1997). Domain I is located immediately after the stop codon of NS5 and
is considered the most variable region within the viral 30 UTRs. Domain
II is of moderate conservation, comprising several hairpin motifs,
including a characteristic dumbbell structure in DENV-1, DENV-2, and
DENV-3, and a turret structure proposed in DENV-4 (Shurtleff et al.,
2001; Silva et al., 2008). Domain III is the most conserved region of the
30 UTR, bearing a conserved sequence (CS1) followed by the terminal
stem loop structure (30 SL). CS1 contains the cyclization sequence 30 CS
involved in long-range RNA�RNA interactions (Hahn et al., 1987).
Between serotypes there are few nucleotide variations in this region.
Altered sHP formation impaired DENV replication (Villordo et al.,
2010). The TL of the large terminal stem loop in DENV has a highly
conserved ACAGAAC sequence.

In DENV the 30 SL contains a total of 93 nucleotides. The long stem is
interrupted by mismatches in conserved locations, a six-nucleotide
bulge is predicted near the top, and the loop contains seven nucleotides.
Between serotypes there are few nucleotide variations in this region.
Specific nucleotides of the 30 SL interact with other RNA elements of the
viral genome to provide the correct conformation for initiation of RNA
synthesis. It is also possible that the 30SL provides a recognition site for
protein binding during assembly of the RNA RC (Fig. 16.1).

The 50 and 30 ends of the flavivirus RNA genome contain comple-
mentary ribonucleotide sequences that lead to cyclization of the genome
(Alvarez et al., 2006) (Fig. 16.4).

VIRAL REPLICATION

Replication of DENV is associated with a dramatic rearrangement of
host cellular membranes (Mackenzie et al., 1996; Uchil and
Satchidanandam, 2003; Welsch et al., 2009). At least three different
membranous structures have been described in flavivirus-infected cells.
These structures were originally described as CM, paracrystalline
arrays, and VPs. Most current studies support the ER origin of the VPs
and CMs induced during DENV infection. CMs have been proposed as
putative sites for flavivirus polyprotein processing. Role of CMs as stor-
age site for proteins and lipids involved in viral replication has been
proposed. Intermediate forms of RNA replication and most of the NS
viral proteins have been observed inside VPs by electron microscopy (EM)
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and confirmed by biochemical analysis (Mackenzie et al., 1996; Welsch
et al., 2009; Westaway et al., 1997).

Viral RNA replication begins with the synthesis of a negative-
strand RNA, which then serves as a template for the synthesis of
additional positive strands. This process occurs in close association
with cellular membranes (likely VPs) in the so-called viral RCs. The
enzymatic reaction is catalyzed by the RdRp activity of NS5, together
with NS3, other viral NS proteins, and presumably host factors. RNA
synthesis is semiconservative and asymmetric, leading to 10-fold
excess of positive over negative strands (Cleaves and Dubin, 1979).
Three species of viral RNA can be metabolically labeled: (1) a
ribonuclease-resistant double-stranded RNA (dsRNA) called replica-
tive form; (2) a form partially resistant to ribonucleases, likely com-
posed by RNAs with complementary nascent elongating strands,
known as replicative intermediates; and (3) the genomic RNA that is
fully sensitive to ribonucleases.

FIGURE 16.4 Long-range RNA interactions between the ends of the DENV genome.
DENV, Dengue virus; RNA, ribonucleic acid.
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Studies show that viral proteins NS1, NS2B, NS3, NS4A, NS5, and for
some viruses NS4B colocalize with dsRNA (Mackenzie et al., 1996;
Welsch et al., 2009; Westaway et al., 1997). RNA synthesis occurs within
the lumen of the vesicles, and the newly synthesized RNA genome exits
via the identified pores that communicate with the cytosol.

Two viral proteins, NS5 and NS3, bear enzymatic activities directly
involved in RNA replication. These proteins interact with different
viral and host components and display multiple functions during
viral infection. NS1, NS2A, NS2B, NS4A, and NS4B are also a part of
the RCs involved in viral RNA amplification (Mackenzie et al., 1996;
Westaway et al., 1997).

Upon entry, the viral genome is directly used as messenger for
protein synthesis associated with the RER. The mature viral proteins
reorganize cellular membranes to generate structures known as VPs,
which will contain the RCs. After sufficient viral proteins are synthe-
sized, translation stops, and the RNA is transported to the VPs by an
unknown mechanism. It is possible that accumulated viral proteins
or host factors induced by these proteins coordinate the switch from
translation to RNA synthesis. Inside the VPs, the viral proteins
NS4A, NS4B, and likely NS2A bind to the internal side of the mem-
brane, while NS1 stays in the outer side (corresponding to the ER
lumen). The viral polymerase NS5 and NS3 must be transported
inside the VPs, presumably bound to the viral RNA. RNA transport
could be mediated by NS proteins and possibly host factors. For
RNA synthesis, NS5 specifically interacts with the SLA promoter at
the 50 end of the genome. Base pairings between the ends of the
RNA and cyclization of the genome allows relocation of NS5 to the
30 end of the molecule to initiate RNA synthesis. Hybridization
between CSs 50�30 UAR opens the bottom half of the highly struc-
tured 30 SL allowing initiation of negative-strand synthesis. NS5
synthesizes a dinucleotide CU de novo, which serves as the primer
for RNA elongation. It has been proposed that the negative-strand
RNA remains bound to the positive strand in a dsRNA form. The
negative strand then serves as a template for positive-strand amplifi-
cation. Multiple copies of positive-strand RNA are made from the
negative strand, leading to an excess of positive versus negative
strands.

The newly made genomes exit the VPs by pores that connect to the
cytoplasm. These molecules either associate with the reorganized ER,
presumably in CM structures, to mediate new rounds of translation of
viral proteins, or associate with the capsid protein to form the nucleo-
capsid. The nucleocapsid then buds into the ER to generate a new viral
particle (Fig. 16.5).

304 16. DENGUE VIRUS

EMERGING AND REEMERGING VIRAL PATHOGENS



Nonstructural Proteins

NS1 (48�50 kDa glycoprotein) (Muller et al., 2012) is found to
interact with virus-induced vesicles inside the cell, secreted to the
cell surface, or released into the bloodstream of infected individuals
(Flamand et al., 1999; Winkler et al., 1988). It is thought to play an
important role in virus replication because it is shown to colocalize
with the viral RNA RC. Secreted NS1 (sNS1) is highly immunogenic
and is involved in stimulating protective response against DENV
(Mackenzie et al., 1996). It has been implicated in the early stages of
flavivirus RNA synthesis (Lindenbach and Rice, 1997). This protein
exists in multiple oligomeric forms and is found in different cellular
locations. It can be associated with vesicular compartments, found in
the cell surface or secreted and colocalizes with the RCs together
with dsRNA, NS2A, NS3, NS4A, NS4B, and NS5 in VPs (Mackenzie
et al., 1996; Westaway et al., 1997).

FIGURE 16.5 The DENV life cycle. Source: Fischl, W., Bartenschlager, R., 2011.
Exploitation of cellular pathways by dengue virus. Curr. Opin. Microbiol. 14 (4), 470475.
Available from: https://doi.org/10.1016/j.mib.2011.07.012.
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NS1 can exist in different oligomeric states. When it is associated
with membranes, that is, in virus-induced vesicles or cell plasma mem-
brane, NS1 exists in a dimeric form When NS1 is secreted out of the
cell, sNS1 becomes a hexamer (Gutsche et al., 2011). The structure is
B10 nm in diameter and 9 nm in height and exists as a barrel-like struc-
ture with dimers of sNS1 arranged as trimers and contain triglycerides,
cholesterol, and charged lipids such as phosphatidylcholine and
phosphatidylethanolamine (Muller et al., 2012).

NS2A (B22 kDa) is a small hydrophobic integral membrane protein
that has been implicated in viral RNA synthesis, viral particle assembly
(Xie et al., 2013). NS2A is an essential component of the replicase and
also an inhibitor of interferon (IFN) production. Two forms of this pro-
tein (NS2A and NS2Aa) are observed as a result of an internal cleavage
by the viral NS2B�NS3 protease. This suggests a physical interaction
between NS2A and NS3. Interactions between NS2A and NS5 and with
RNA transcripts of the 30 UTR have also been suggested (Lindenbach
et al., 2007).

NS2B protein has 130 residues produced by posttranslational cleav-
age of the NS2B�NS3 protease at its terminal ends. NS2B is predicted
to comprise three hydrophobic regions that span the membrane. In
addition, a short and highly conserved hydrophilic stretch of residues
(amino acids 49�95) is involved in the catalytic activation of the NS3
protease by acting as a cofactor (D’Arcy et al., 2006) and is essential for
viral polyprotein processing (Anglero-Rodriguez et al., 2014).

NS3 protein (69 kDa) has various enzymatic activities essential for
replication of viral genomic RNA: viral polyprotein proteolytic proces-
sing via its serine protease N-terminal domain, RNA helicase, nucleo-
side triphosphatase (NTPase), and RNA nucleoside 50 triphosphatase
(RTPase) via its C-terminal domain. To be catalytically active, the N-
terminal domain of NS3 must associate with a hydrophilic domain of
the membrane-associated NS2B protein that acts as a cofactor. NS3
represents an important target for the development of specific antiviral
inhibitors (Patkar and Kuhn, 2008; Reiser et al., 2005). NS3 bears multi-
ple essential enzymatic activities. Besides the N-terminal two-compo-
nent serine protease domain necessary for polyprotein processing, it
contains three different enzymatic activities in the C-terminal domain:
NTPase, RNA triphosphatase (RTPase), and RNA helicase (Benarroch
et al., 2004; Yon et al., 2005). Other possible functions include unwind-
ing dsRNA intermediates that arise during RNA amplification, destabi-
lizing secondary structures of the RNA to increase polymerase
processivity, participating in RNA recruitment at specific subcellular
locations, acting as RNPases stripping proteins from the viral RNA, and
remodeling RNA structures that may function as modulators of the viral
processes. NS4B with NS3 was found to induce NS3 dissociation from
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ssRNA and promote dsRNA unwinding activity (Umareddy et al.,
2006). NS3 has been implicated in infectious viral particle formation
(Patkar and Kuhn, 2008).

NS4A, a small transmembrane hydrophobic protein, is one of the
least characterized proteins of the RC and is involved in the formation
of VPs and CMs (Miller et al., 2007). NS4B contains several hydrophobic
regions and colocalizes with dsRNA in DENV-infected cells (Miller
et al., 2006). A topology model was proposed in which the N-terminal
region of NS4A localizes in the cytoplasm while the remaining contains
three transmission electron microscopy (TM) segments (Miller et al.,
2007).

NS4B is a hydrophobic protein of B28 kDa. NS4B partially blocks
activation of STAT1 and IFN-stimulated genes (ISGs) in cells stimulated
with IFN.

NS5 is the viral enzyme responsible for RNA capping and RNA syn-
thesis of positive and negative RNA strands (Issur et al., 2009; Yap
et al., 2007). It is the largest and the most conserved of the viral proteins
and contains an N-terminal S-adenosyl-methionine-dependent MTase
involved in RNA cap formation and the C-terminal RdRp domain RdRp
required for viral RNA synthesis (Bartholomeusz et al., 1994; Egloff
et al., 2002) NS5 specifically copies the viral RNA. This specificity
depends on a viral RNA structure that acts as a promoter present at the
50 end of the viral genome, known as SLA (Filomatori et al., 2006;
Lodeiro et al., 2009). The N-terminal of NS5 from DENV is shown to
possess guanine N7 and ribose 20-O MTase activities involved in the for-
mation of the 50 cap (Egloff et al., 2002).

NS5 also blocks type I IFN by binding and promoting STAT2 degra-
dation (Ashour et al., 2009). DENV RNA synthesis requires specific
interaction of NS5 with the SLA structure present at the 50 end of the
viral genome. Both the 50 and the 30 ends of the RNA were necessary for
polymerase activity. NS5 also has terminal transferase activity, which
can interfere with in vitro studies to analyze the ability of the NS5 pro-
tein to copy RNA from a template. Specificity for NS5 RNA synthesis
was provided by viral sequences present at the 50 end of the genome,
and that 30 UTR elements were not necessary to promote RNA synthesis
in vitro (Filomatori et al., 2006) DENV NS5 binds to the promoter SLA
mainly through the RdRp domain (Filomatori et al., 2011; Iglesias et al.,
2011) Crystallographic structures for the RdRp domain of WNV and
DENV (serotype 3) (Egloff et al., 2007; Yap et al., 2007) show a right
hand�like structure composed of fingers, palm, and thumb subdo-
mains. An unexpected observation in the structure of the RdRp from
DENV was the presence of two zinc ions in the thumb and fingers sub-
domains, respectively.
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Structural Proteins

Capsid (12 kDa) is a highly charged basic protein. It is detected in
both the cytoplasm and nucleus (Sangiambut et al., 2008). The primary
role of the capsid in the cytoplasm is to assemble virus particles by
interacting with both the viral RNA genome and the ER membrane
(Markoff et al., 1997) and is known interact with some nuclear proteins
(e.g., histones, nucleolar RNA helicase, importin-a/b) (Bhuvanakantham
et al., 2009; Netsawang et al., 2010; Xu et al., 2011) and is able to cause
apoptosis. Capsid protein consists of a disordered N-terminal end, fol-
lowed by four helices (α1, α2, α3, and α4). The disordered N-terminal
end and α1 are highly positively charged. This is followed by hydro-
phobic helices a2 and a3, and the amphipathic α4. The highly charged
N-terminal end and α4 could be important for RNA binding (Westaway
et al., 1997) while helices α2 and α3 interact with the lipid membrane
(Markoff et al., 1997).

E protein is the major antigenic structure on DENV. It is involved in
both host cell receptor recognition and fusion of the virus to the endoso-
mal membrane during cell entry (Rey et al., 1995). The E protein is
thought to exist as dimers and when exposed to low pH, which mimics
the condition in the endosome, the E protein rearranges to form trimers
(Bressanelli et al., 2004; Modis et al., 2004). E protein is an elongated
protein mainly composed of β-strands. It is organized into three
domains: the central domain I, the dimerization domain II, and the IgC-
like domain III. Each dimer is assembled from two monomers arranged
in a head-to-tail format. The tip of domain II contains the fusion loop,
which interacts with the endosomal membrane during the fusion event
(Modis et al., 2004).

The mechanism of fusion of E protein leads to internalization of
DENV has been proposed by (Modis et al., 2004) and involves domain
II and domain III in the following manner. In the low pH environment
of the endosome, the domain II of the E protein flips up, exposing its
fusion loop, thereby leading to the insertion of the fusion loop into the
endosomal membrane. The membrane may then catalyze trimerization,
causing the formation of a prefusion intermediate. Trimerization then
spreads from the fusion tip of E protein downward to domain I at the
base of the trimer. Domain III then rotates and shifts, displacing the tri-
mers, which in turn cause the endosomal and viral membrane to fuse.
The fusion of membranes may require concerted twisting of a few
trimeric E proteins.

prM protein is present at the newly synthesized immature virus sur-
face, while its furin protease-cleaved derivative, the M protein, is present
on the mature infectious virus. The prM protein consists of a 91-residue
N-terminal pr molecule followed by a 38-residue M ectodomain and a
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35-residue TM region. The primary role of the pr molecule is to cap the
fusion loop of the E protein, thus preventing the newly synthesized
virus from fusing back into the cell, when moving through the acidic
compartments of the trans-Golgi network. On the other hand, the func-
tion of the M protein remains largely unknown. The pr peptide con-
sists of mainly antiparallel β strands. It caps the fusion loop of the E
protein, which is consistent with its proposed function in preventing
virus from fusing back into the cell during exocytosis (Li et al., 2008)
(Fig. 16.6).

Pathogenesis of Dengue

Viral Factors

Viral virulence is influenced by viral genetics (which is “intrinsic” to
the virus) and by host factors such as preexisting immunity and host
genetics (factors that are “extrinsic” to the virus). Certain DENV strains
demonstrate greater epidemic potential, as they replicate better either in
humans or in the mosquito vector and, therefore, have the potential to
displace strains with lower relative replicative ability in either host.
Enhanced replication in mosquitoes may contribute to global spread
and success of a strain due to faster dissemination in the mosquito and
a shorter extrinsic incubation period (Anderson and Rico-Hesse, 2006;
Gubler and Rosen, 1977). Also cross-reactive immune responses in
human populations may also confer a selective advantage to particular
clades or genotypes of DENV, such that strains capable of evading host
adaptive immune responses are able to outcompete other strains in the
population (OhAinle et al., 2011; Vu et al., 2010).

Halstead proposed that DENVs share common immunodominant
epitopes due to their amino acid identity which may be 60%�70%
between the four serotypes which was termed as “sequential infection”
(Halstead, 1970). Genetic changes in certain viral strains confers in them

FIGURE 16.6 Arrangement of nonstructural and structural proteins of dengue in repli-
cation complex.
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greater virulence compared to others and is probably the reason for var-
iation in severity of dengue epidemics as per then-proposed alternate
hypothesis called the “virus virulence” hypothesis (Rosen, 1977) and is
supported by the several studies. DENV virulence is often tightly linked
to host immune status, and it is particularly difficult to separate the role
of viral versus host factors, including host genetics (OhAinle et al., 2011;
Steel et al., 2010).

More fit DENV strains have been proposed to pose increased risk of
causing severe disease than less fit strains due to their propensity for
higher replication in the human host (Rico-Hesse, 2010). Viremia levels
in patients have been associated with disease severity in several studies
(Avirutnan et al., 2006; Libraty et al., 2002b; Tricou et al., 2011).

Three mechanisms of increased viral replication have been proposed
that would allow for higher viral replication in the human host, leading to
higher pathogenicity through more robust infection of target cells and
resultant exacerbated cytokine cascade: (1) More pathogenic DENV strains
replicate more productively in human cells and thereby replicate to higher
titers (Cologna and Rico-Hesse, 2003); (2) more pathogenic DENV strains
may evade host adaptive, cross-reactive immune responses (Kochel et al.,
2002; Mongkolsapaya et al., 2006); or (3) antibody-mediated infection may
increase viral replication through infection of more target cells (Balsitis
et al., 2010; Boonnak et al., 2008; Zellweger et al., 2010) or increased viral
output from infected cells. Also inappropriate cross-reactive adaptive
immune response during sequential DENV infection may lead to the more
severe immunopathogenesis, that is, characteristic of DHF/DSS. Changes
in viral proteins that interact with the host may impact viral virulence.
Such interactions include the interaction of NS1 with the host complement
pathway (Avirutnan et al., 2006), potential immune recognition of NS1
bound to endothelial cells of the vascular system (Avirutnan et al., 2007;
Chen et al., 1997), or cleavage during maturation of NS4B that appears to
induce immunomediators from monocytes that increase endothelial cell
permeability (Kelley et al., 2012). Finally, differences in the breadth of
diversity of circulating DENV genomes during acute infection (“intrahost
diversity”) have been hypothesized to play a role in determining disease
outcome (Descloux et al., 2009).

Halstead et al. have demonstrated that isolates from cases of severe
dengue disease grew better in human monocytic cells than isolates from
mild symptomatic illness. Also increased virulence of Asian DENV-2 in
human infections has been linked to its enhanced replication in vitro.
Mutations at certain position might increase or decrease their virulence
based on the site of mutagenesis. In addition to mutations that may alter
the replicative ability of DENV viruses in human cells, some viruses
may also be less sensitive to elimination by the host immune system,
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including reduced neutralization by the host humoral (antibody-medi-
ated) response.

The four DENV serotypes all have the ability to cause severe and
fatal disease in humans, although DENV-2 and DENV-3 are more often
associated with severe disease. Some serotypes are less symptomatic as
a primary infection, while others are often symptomatic and can even
lead to severe disease during primary infection (Balmaseda et al., 2006;
Fried et al., 2010; Nisalak et al., 2003). In addition, viral strains within
each serotype may differ from one another in their ability to both infect
and cause symptomatic disease in either naı̈ve or DENV-immune indi-
viduals (primary or secondary infection). Specific sequence of infection
by heterologous serotypes may be important in determining disease
outcome (OhAinle et al., 2011).

In interepidemic periods, DENV is thought to be maintained in
endemic populations through silent transmission, during which time
the virus may undergo significant evolution. Also it is seen that DENV
evolves over a single epidemic season, such that viruses isolated at the
end of an epidemic differ from viruses isolated earlier but mechanism
for such changes are unclear (OhAinle et al., 2011).

Host Factors

Age is a risk factor for the development of severe disease and death
from DENV infection. Many studies indicate that the incidence of DSS
was highest in children aged between 6 and 10 years, and younger chil-
dren had a significantly higher chance of dying from their infection
(Anders et al., 2011). And may be due to reason that younger children
have an intrinsically more permeable vascular endothelium and are
therefore more prone to significant plasma leak (Gamble et al., 2000).

Host genetics play a vital role in susceptibility to DENV infection
and studies show that people with an African ancestry have a
reduced risk of developing severe disease as compared to those with
European ancestry (Bernardo et al., 2005; Guzman et al., 2002). Recent
genome-wide association studies (GWAS) has helped in establishing
link between host genetics and disease susceptibility. Highly poly-
morphic human leukocyte antigen (HLA) alleles have been proposed
to have an association with either disease susceptibility or protection
(Coffey et al., 2009). HLA-A*0203 was associated with less severe dis-
ease irrespective of the infecting serotype, whereas HLA-A*0207 was
associated with more severe disease only in patients with secondary
DENV-1 and DENV-2. In contrast, HLA-A*B51 was associated with
more severe disease irrespective of serotype, and HLA-A*B52 was
associated with a less severe disease phenotype in secondary infec-
tions with DENV-1 and DENV-2. In addition, various HLA-B alleles
(B44, B62, B76, and B77) appeared to protect against the development
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of clinical disease from secondary DENV infection (Stephens et al., 2002).
Also, HLA-A*A24 was overrepresented in patients with severe disease,
whereas HLA-DRB1*0901 was underrepresented, suggesting an associa-
tion with susceptibility and protection, respectively (Nguyen et al., 2008).

Several other gene polymorphisms are also associated with DENV
infection few such are tumor necrosis factor (TNF)-308A allele and
increased susceptibility to severe manifestations of DENV infection
(Perez et al., 2010), and a possible protective association between the
TNF-238A allele and severe DENV infection (Garcia et al., 2011) and
increased frequency of the transforming growth factor - beta 1 (TGF-β1)
509 CC genotype in cases of DHF, as compared to the milder DF
(Cheng et al., 2009). The genotype of an single nucleotide polymorphism
(SNP) at position 352 of the VDR gene was associated with protection
from severe dengue (Loke et al., 2002). They also showed that homozy-
gotes for the arginine variant at position 131 of the Fcγ receptor (FcγR)
II gene appeared to be protected from the development of severe DENV
infection. Viral binding to platelets via human platelet antigens may
result in the thrombocytopenia observed in severe infection. The G
allele of DC-SIGN1-336 appears to protect against milder DENV infec-
tion, DF, but not against more serious disease (Sakuntabhai et al., 2005).

GWAS demonstrated susceptibility loci for severe dengue at major
histocompatibility (MHC) class I (MHC I) polypeptide-related sequence
B (MICB) (rs3132468) on chromosome 6 and phospholipase C, epsilon 1
(PLCE1) (rs3765524) on chromosome 10 (Khor et al., 2011). MICB and
other genes associated with natural killer (NK) cell activation are highly
expressed in acute dengue infection.

Host immune response is considered to contribute to many of the
clinical complications associated with severe dengue. Capillary perme-
ability develops at a time when the viral burden is in sharp decline,
arguing against a direct virus mediated effect on the vascular endothe-
lium. Further, the most severe complication of capillary permeability,
DSS, manifests when many patients have low or undetectable viremia
levels and are already or very nearly afebrile (Simmons et al., 2012). A
second line of evidence in support of the immune pathogenesis model
of severe dengue lies in the observation that the vast majority of severe
dengue complications occur in patients with immunological evidence of
a previous history of DENV exposure or, in the case of infants, those
with maternally acquired anti-DENV antibody.

Production of proinflammatory cytokines by immune cells during the
course of infection is a key mechanistic process of capillary permeability
and that the vasodilatory potential of some cytokines that occur in ele-
vated concentrations during acute dengue and are linked to endothelial
cell dysfunction. This hypothesis of a “cytokine storm”-mediating capil-
lary permeability supports the ADE hypothesis (greater virus burden)
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with the concept of immune activation of memory, cross-reactive T cells
in secondary infection.

Host Immune Response

Antibody Response in Primary and Secondary Infection

The kinetics of antibody production in dengue follow the typical
course found in many viral infections with an initial phase of IgM pro-
duction followed by IgG. During a primary DENV infection, antidengue
IgM levels will begin to rise 3�5 days following the onset of fever and
are detected in almost all cases following defervescence. Over the next
2�3 months, IgM levels fall and are replaced by IgG, which can be
detected lifelong and are proposed to provide protection from repeat
infection with that serotype, but not against reinfection with a different
serotype (Halstead, 1988; Innis et al., 1989; Kurane, 2007; Sabin, 1952;
Summers et al., 1984).

Following a secondary infection, the rise of IgM is much less marked
than following primary infection and can be absent; instead, IgG levels
rise more rapidly and to a higher peak. This difference forms the basis
of tests to distinguish primary from secondary dengue infections; a pri-
mary infection is inferred if the IgM:IgG ratio is .1.8 and conversely a
secondary infection is inferred if the ratio is ,1.8 (Innis et al., 1989).

ADE was proposed by Halstead and O’Rourke to explain the increase
in severity seen in secondary dengue infections. This proposes that due
to the large sequence diversity in DENVs, antibody made to the primary
infecting virus will not be of sufficient avidity or titer to neutralize a
secondary infecting virus. Instead these low avidity cross-reactive anti-
bodies may opsonize the virus and lead to its targeting FcR bearing cells
such as macrophage/monocytes, leading to internalization and
increased virus replication. Fc-RIa and Fc-RIIa have been shown to pro-
mote ADE and cytoplasmic domains that contain immuno-tyrosine acti-
vation motifs are essential for this function by promoting endocytosis of
immune complexes (Halstead and O’Rourke, 1977a,b).

ADE is therefore a phenomenon of failed neutralization where the
density of antibody binding is insufficient to cause neutralization but
large enough to pass the threshold required to direct opsonized virions
to Fc receptor�mediated internalization. ADE has been demonstrated to
increase virus replication in primate models following passive transfer
of polyclonal human serum or monoclonal antibodies (mAbs)
(Goncalvez et al., 2007; Halstead et al., 1973a). Anti-prM antibodies are
a particularly interesting group of antibodies with respect to ADE. Anti-
prM antibodies show poor neutralization and typically, even at high
concentrations, neutralization plateaus at 30%�50%. The reason for this
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is likely to do with virus maturation; fully mature virus particles do not
contain prM and are thus not neutralized, whereas many partially mature
virus particles contain enough prM to bind antibody and drive ADE but
do not have enough prM epitopes to allow sufficient antibody density for
neutralization. Furthermore, virions with high levels of prM are not infec-
tious but can be driven to infect cells by ADE with anti-prM antibodies
(Dejnirattisai et al., 2010; Rodenhuis-Zybert et al., 2010). This results in
endocytosis and sufficient prM processing to allow membrane fusion.

There are a number of ways in which antibodies can protect from
viral infection; in simple terms, antibodies may block adhesion to a cel-
lular receptor, block fusion with host cell membranes, or alternatively
destroy virus or virus-infected cells via complement or antibody-
dependent cell-mediated cytotoxicity. Finally, antibody may opsonize
virus and direct it for disposal via Fc receptor�mediated uptake.

How an antibody blocks viral entry is being explained by a number
of theories of which the two being prominent are the single-hit model
and multiple-hit model. The single-hit model proposes that interaction
of antibody with a single or small number of critical epitopes may lock
the virus into a conformation that prevents infection (Dulbecco et al.,
1956). The multiple-hit model conversely proposes that rather than there
being critical epitopes, neutralization is achieved when a proportion of
the virion surface is occluded by antibody, thus interfering with viral
attachment and/or fusion (Della-Porta and Westaway, 1978).

Anti-NS1 has been shown to reduce virus replication in vivo, which
has been proposed to be mediated by either antibodies/complement or
cell-mediated cytotoxicity (Amorim et al., 2012; Costa et al., 2006; Wu
et al., 2003). NS1/anti-NS1 immune complexes can activate complement
and have been proposed to drive complement consumption and pro-
mote vascular leak (Avirutnan et al., 2006). Finally, anti-NS1 antibodies
have been shown to cross-react with unknown epitopes on platelets and
endothelium and have been proposed to drive dengue pathogenesis
(Lin et al., 2006). The ability of an antibody to neutralize a virus is thus
related to its functional avidity for the whole virion.

T-Cell Responses in Dengue Infection

T cells recognize short antigenic peptides bound in the peptide bind-
ing groove of MHC I or MHC class II (MHC II) molecules. The peptides
bound by these molecules are normally short fragments derived
from the degradation of normal cellular proteins. However, during
infection they can acquire and present peptides from a replicating
pathogen. In general, MHC I molecules bind peptides derived from
proteins expressed intracellularly such as a virus replicating in its host
cell and present these to cytotoxic CD8 T cells. MHC II molecules on
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the other hand present peptides derived from endocytosed antigens to
CD4 T cells.

Peptide prediction algorithms and the ability to synthesize large num-
bers of peptides has helped us in understanding the T-cell response in a
DENV person. Using these techniques, a large number of epitopes for
MHC I and MHC II have been mapped. And NS3 seems to be the most
immunodominant region of the virus with many CD4 and CD8 epitopes
described in humans (Duangchinda et al., 2010; Kurane et al., 1989).

T-Cell Responses in Secondary Dengue Infection

Many of the T cells induced in the secondary infection showed poor
responses to secondary infecting virus and T cells in DHF produced
more cytokines and showed less degranulation than in DF, where T cells
showed much higher levels of degranulation in the absence of cytokine
production (Duangchinda et al., 2010). Many of these are raised, and in
some the peak in their levels coincides with the onset of severe symp-
toms. High levels of TNF-a, IFN-g, IL-1RA, IL-6, IL-8, IL10, IL-12, IL-13,
IL-18, TGF-b1, MCP-1, MIF, soluble TNFR-I, soluble TNFR-II, CXCL-9,
CXCL-10, CXCL-11, and RANTES have been recorded, and many of these
can be the products of activated T cells (Dejnirattisai et al., 2008). DHF
may result from T cell�mediated immunopathology. Immunopathology
is being increasingly recognized in a number of viral diseases where the
protective antiviral response, although capable of controlling a virus,
may cause considerable inflammation and tissue damage that can in
some instances be fatal (Friberg et al., 2011; Mongkolsapaya et al., 2006).

Innate Immune Responses in Dengue Virus Infection

DENV counteracts two important elements of innate immunity,
namely, the complement and the type I IFN pathways. These counter-
acting mechanisms allow the virus to establish infection in humans and
possibly affect the generation of effective adaptive immune responses
that are initiated and regulated by DCs. Moreover, some of the elements
involved in antiviral innate immune responses are targeted by DENV.

DENV has been shown to trigger complement activation in vitro and
in vivo (Avirutnan et al., 2006). Complement likely functions to limit
DENV infection by stimulating adaptive immune responses and by neu-
tralizing infection. FcγR engagement by antibodies in vitro and in vivo
can paradoxically enhance replication of DENV (Balsitis et al., 2010;
Zellweger et al., 2010). Complement also augments antibody-mediated
neutralization of flaviviruses, including YFV, DENV, and WNV
(Mehlhop et al., 2009). In myeloid cells that express complement recep-
tors, antibody-dependent complement activation paradoxically may
enhance flavivirus infection (Cardosa et al., 1983).
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Antibody and complement-dependent opsonization may augment
DENV infection in myeloid cells. In early clinical studies, reduced levels
of C3, C4, and factor B, and increased catabolic rates of C3 and C1q
were observed, particularly in patients with severe DENV disease during
secondary infection (Bokisch et al., 1973). In addition, C3 split products
and anaphylatoxins (C3a and C5a) accumulated in the circulation of ill
patients and peaked at the day of maximum vascular leakage (Malasit,
1987). DENV-infected cells may display sufficient amounts of DENV
antigens (prM, E, or NS1 proteins) on their surface to facilitate immune
complex formation and complement deposition. Indeed, DENV-infected
endothelial cells activate human complement in the presence of antibo-
dies resulting in C5b-9 deposition (Avirutnan et al., 2006).

Type I IFN production cascade is triggered after virus infection, because
the sensors for this cascade, including Toll-like receptors (TLRs), and cyto-
plasmic receptors, such as retinoic acid-inducible gene 1 (RIG I) and
MDA5, or RIG I�like receptors (RLRs) can detect virus-specific elements
(PAMPs) and initiate the cascade (Ashour et al., 2010). The activation of
this cascade results in the production of IFNα and IFNβ (type I IFNs) by
cells and the subsequent secretion of these antiviral cytokines that can act
in an autocrine or paracrine manner by binding to the IFNαβ receptors
and triggering the IFN signaling cascade; this culminates in the activation
of ISGs-containing IFN-stimulated response elements that have antiviral
activity (Kawai and Akira, 2007). DENV has been reported to be sensed by
several TLRs and RLRs, including TLR3, TLR7, RIG I and MDA5
(Nasirudeen et al., 2011). Several DENV proteins had been identified as
inhibitors of type I IFN signaling. By inhibiting both the detection and
effector arms of this important pathway, the virus can stop the production
of type I IFNs that would trigger the induction of hundreds of ISGs. Also
DENV can inhibit the production of type I IFN in infected primary human
cells, such as monocytes, monocyte-derived DCs, and monocyte-derived
macrophages. This inhibition is mediated by an active protease complex
(NS2B3) which targets a key host factor, STING (also named MITA)
(Morrison et al., 2012). STING is an adaptor molecule for type I IFN pro-
duction that mediates the phosphorylation of the transcription factor IRF3,
which then translocates to the nucleus and participates in the activation of
the IFNβ promoter. In addition to the direct effects on viral replication, by
inhibiting type I IFN production in human DCs, DENV may affect the
quality of the adaptive immune response generated after infection.

Clinical Features of Dengue

Symptomatic Dengue

Following an infectious mosquito bite there is an incubation period
of up to 2 weeks (commonly 5�7 days), after which the individual
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develops symptoms suddenly and the illness typically follows three
phases—an initial febrile phase, a critical phase starting around 4�5
days from fever onset when complications may develop, followed by a
spontaneous recovery phase.

Febrile Phase—Commonly Lasts for 3�7 Days

The patient experiences sudden onset of high fever (39�C�40�C)
accompanied by nonspecific constitutional symptoms, including head-
ache, general malaise, nausea, vomiting, myalgia, and joint pain (Biswas
et al., 2012; Sirivichayakul et al., 2012).

Other common symptoms include altered taste sensation, colicky
abdominal pain, constipation or diarrhea, and occasionally dysuria.
Cough, sore throat, and rhinorrhea are sometimes present (Gregory
et al., 2010). Occasionally the temperature may rise as high as
40�C�41�C during these first few days, and febrile convulsions may
occur in susceptible children.

On examination during this phase of the illness facial flushing, con-
junctival suffusion, and generalized truncal erythema may be noted. A
faint macular or maculopapular rash is present in some cases.
Generalized mild enlargement of the lymph nodes is common. The liver
is often palpable, soft, and a little tender, although rarely markedly
enlarged and jaundice is unusual. Splenomegaly is occasionally
observed in small infants. Mild hemorrhagic manifestations such as skin
petechia and/or bruising at venepuncture sites are sometimes noted.
Mucosal bleeding, from the nose, gums, gastrointestinal, or genitouri-
nary tracts, does sometimes occur.

Laboratory findings include mild-to-moderate thrombocytopenia and
leukopenia, often with mild elevation of hepatic transaminases (Biswas
et al., 2012; Kalayanarooj et al., 1997).

Critical Phase

Critical phase onset occurs from around days 3�6 of illness, lasting
for 48�72 hours. A number of systemic problems may develop during
this phase of the illness. The most feared complication is an unex-
plained “vasculopathy,” whereby an increase in vascular permeability
results in a capillary leakage syndrome. Profound plasma losses leading
to potentially fatal hypovolemic shock occur in a small proportion of
cases. The altered capillary permeability is often accompanied by hem-
orrhagic manifestations and hematological abnormalities. No specific
event defines the timing of onset of this phase, but vascular leakage
often becomes apparent from around days 3�4 of illness, with shock (if
it occurs) typically developing within 24 hours of defervescence.

A major increase in vascular permeability resulting in severe plasma
leakage will typically result in cardiovascular collapse within hours.
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Pleural effusions, ascites, and overt signs of cardiovascular decompen-
sation will become apparent in the end. DSS is estimated to be devel-
oped in ,10% of cases (Trung et al., 2012). Ultrasound studies indicate
that pleural effusions, ascites, and gall bladder wall edema are com-
monly present during the critical phase and correlate with disease
severity. Hypoproteinemia is well recognized during the critical phase
and correlates with the severity of leakage (Wills et al., 2004). However,
clinical identification of increased permeability is difficult until or
unless DSS develops.

The most common method of monitoring leakage relies on identifi-
cation of relative hemoconcentration. Unfortunately, the method is
rather insensitive, particularly if the patient is receiving parenteral
fluid therapy, and suffers from the serious limitation that an indivi-
dual’s baseline value is rarely known, so that final assessment of
hemoconcentration may not be possible until the acute illness has
resolved. Narrowing of the pulse pressure indicates that plasma vol-
ume depletion has reached a critical point and implies that decompen-
sated shock will soon follow. If fluid resuscitation is not instituted
promptly as soon as the pulse pressure narrows, the ongoing depletion
of plasma rapidly becomes critical, the systolic pressure falls and irre-
versible shock and death may follow despite aggressive resuscitation.
Profound or prolonged shock is often complicated by tissue hypoxia,
metabolic acidosis, and disseminated intravascular coagulation (DIC).
Also liver failure, renal failure, and encephalopathy are seen in associ-
ation with profound shock.

Hemorrhagic Manifestation

Bleeding in gastrointestinal tract is typically seen in patients with
profound or prolonged shock complicated by metabolic acidosis and/or
DIC. Minor epistaxis, gum bleeding, and gastrointestinal bleeding are
sometimes observed in children without shock (Carlos et al., 2005), but
bleeding from mucosal surfaces tends to be both more common and
more severe in adult. Intracranial hemorrhage is a very rare but often
fatal complication (Wani et al., 2010).

Hematological Abnormalities

Some degree of thrombocytopenia, leukopenia, and deranged hemo-
stasis is virtually universal during the critical phase (Biswas et al., 2012;
Trung et al., 2012). Moderate-to-severe thrombocytopenia is common.
The typical evolution of the thrombocytopenia is consistent with early
marrow suppression of megakaryocytopoiesis, followed by increased
peripheral destruction of platelets from the late febrile to the early con-
valescent phase of the disease probably mediated by the evolving
immune response to the infection, During the febrile phase, there is also
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a reduction in the number of total leukocytes and neutrophils, together
with a relative increase in lymphocyte numbers that often includes a
high proportion of atypical lymphocytes (Kalayanarooj et al., 1997;
Khan et al., 2010).

Recovery Phase

Recovery Phase Is Around Days 6�8 of Illness

The increased vascular permeability and abnormal hemostasis are
transient and usually resolve within 48�72 hours. However, convales-
cence may be prolonged in adults, who sometimes experience profound
tiredness, esthenia, and depression for several weeks after recovery
(Seet et al., 2007b). Loss of hair has also been reported during convales-
cence. Dysfunction of specific organs (e.g., hepatic failure or myocardi-
tis) may persist for several weeks after resolution of the vasculopathy
(Qiu et al., 1993).

Factors Influencing Dengue Disease Severity

Children and the elderly have a lower threshold for leakage than
adults (Gamble et al., 2000). Primary infections in children are often
asymptomatic or may cause a relatively benign nonspecific febrile ill-
ness (Endy et al., 2002). Studies have shown that children have greater
risk for vascular leakage and development of DSS compared with adults
(Anders et al., 2011; Trung et al., 2012).

Dengue associated mortality also appears to be higher in pregnant
than nonpregnant women with dengue (Adam et al., 2010). With respect
to fetal outcomes, infection is not known to be associated with fetal mal-
formations (Tsai et al., 2010).

Comorbities such as bronchial asthma, sickle cell anemia, and diabe-
tes mellitus could be risk factors for development of severe disease
forms (Gonzalez et al., 2005). Diabetes mellitus and hypertension were
associated with severe disease (Pang et al., 2012). Also diabetes mellitus,
asthma, hypertension, ischemic heart disease, and chronic kidney dis-
ease were present in the majority of those who died (Leo et al., 2011).

Complications

Skin

Prominent flushing of the skin, especially the face, neck, and chest,
may be seen in around 20% of dengue patients. A blanching macular or
maculopapular rash has been described in up to 30% of patients, first
developing between days 2 and 6 of illness (Trung et al., 2012).
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Eye

Mild nonspecific symptoms to severe complications can result in per-
manent visual loss, conjunctival injection, and subconjunctival hemor-
rhage. Retinal hemorrhage, retinal edema, macular ischemia, macular
edema, vitreous hemorrhage, vitritis, and optic neuritis or papillitis
have been reported infrequently (Siqueira et al., 2004b).

Musculoskeletal symptoms are a prominent feature of dengue, partic-
ularly among adult patients. Almost all adults experience some degree
of myalgia, with associated arthralgia in around one-third of patients,
and these features can be helpful in distinguishing dengue from other
febrile illnesses. Creatine kinase levels are sometimes said to be
markedly elevated, lactate dehydrogenase, and/or aspartate amino-
transferase levels were found to be higher in dengue-infected subjects
(Wang et al., 2009).

Gastrointestinal Tract

Anorexia, nausea, vomiting, diarrhea, and abdominal pain were all
reported more commonly. Nausea, vomiting, and anorexia are usually
found in the first 5 days of illness, while abdominal pain tends to
develop slightly later, between days 3 and 6 of illness. Persistent vomit-
ing and increasingly severe abdominal pain or tenderness are consid-
ered as warning signs for likely progression to severe disease. Liver
dysfunction, described in terms of increased hepatic transaminase
levels, is very common (Sirivichayakul et al., 2012).

Potential mechanisms for hepatic injury involve a variety of possible
insults, including direct effects of the virus or host immune response on
liver cells, circulatory compromise, and/or hypoxia due to hypotension
or localized vascular leakage inside the liver capsule, hepatotoxic effects
of drugs such as acetaminophen or traditional herbal remedies, and tis-
sue tropism of particular viral serotypes or genotypes.

Kidney and Genitourinary Tract

Microscopic hematuria is found in around 20%�30% of dengue
patients during the acute illness. Acute renal failure is a rare complica-
tion, usually found in association with severe DSS, typically in patients
with prolonged shock and multiorgan involvement.

Heart

The most common cardiac manifestations of dengue are arrhyth-
mias. Several case reports have also described disturbances such as
sinoatrial block with atrioventricular dissociation, and atrial fibrilla-
tion, during the critical phase (Kaushik et al., 2010; Mahmod et al.,
2009). During convalescence, rhythm disturbances such as sinus
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pauses, first-degree heart block, and Mobitz type I atrioventricular
block have all been described, as well as atrial and ventricular
ectopy.

Laboratory Diagnosis

Diagnosis is important for clinical care, surveillance support, patho-
genesis studies, vaccine, and drug development and clinical trials
(Guzman and Kouri, 2004). Direct (virus isolation, RNA, and antigen
detection) and indirect methods (serological investigations) constitute
the dengue diagnostic tools (Hunsperger et al., 2009; Peeling et al.,
2010). Diagnostic markers to be studied during a dengue infection
depend on the time of the infection, the immune response, and the
methods and techniques to be used. During the early stages of illness,
virus isolation, antigen, and nucleic acid detection can be used to diag-
nose the infection. Serology is the method of choice for diagnosis at the
end of the acute phase of illness. Once an individual is bitten by an
infected mosquito, an incubation period of 4�10 days ensues. Viremia
is observed 2�3 days before fever onset to 5�6 days after onset. During
the viremic period, virus can be isolated and RNA and sNS1 protein
can be detected.

Depending on the number of infections, the individual develops a
primary, secondary, tertiary, or a quaternary response to infection.
Antidengue IgM antibodies are detected in most of cases 5�6 days after
onset of fever and usually for 60�90 days, but sometimes up to 6
months (Kuno et al., 1998). In primary infections, IgG antibody begins
to appear a few days after the IgM antibody, usually at days 7�9 of
fever. Antibody titers continue to rise slowly over a period of weeks
and remain detectable probably for a lifetime. In secondary infections,
IgG antibody rapidly rises almost immediately after fever onset, with
high levels in most patients IgM antibody as well as a high titer of IgG
in a single serum are used as markers of a recent dengue infection. The
detection of a fourfold IgG or IgM increase or antibody seroconversion
in paired sera is considered to be confirmatory for infection.
Depending on the time of collection, they can be tested for virus/
RNA/antigen detection or for serological studies.

Acute Dengue Diagnosis

Diagnosis during the acute phase of illness allows early case diagno-
sis, which may be important for case management. Clinical samples
should be collected as early as possible and preferably in the first 3
days of fever onset. Tools available for early diagnosis include
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molecular diagnosis such as reverse transcriptase/polymerase chain
reaction (RT/PCR) and real-time RT/PCR (allowing confirmation of the
infection and serotype identification) as well as NS1 detection. This
acute sample is also useful for virus isolation.

Molecular Diagnosis of Dengue

DENV RNA can be extracted from serum or plasma, as well as from
whole blood (WB), blood leukocytes, fresh or paraffin-embedded tissues,
mosquitoes, etc. (Klungthong et al., 2007; Wang et al., 2000b). For storage
up to 24 hours, specimens can be kept at 2�C�8�C. For longer storage,
samples should be frozen at 280�C or at 2196�C in liquid nitrogen.
Repeated freeze�thaw cycles should be avoided for all RNA viruses. WB
samples can also be spotted onto filter paper and viral RNA can then be
detected for weeks or even months (Prado et al., 2005).

Nested RT/PCR uses universal dengue primers targeting the con-
served C/prM region of the DENV genome for an initial reverse tran-
scription and amplification step, followed by a nested PCR
amplification that is serotype-specific (Lanciotti et al., 1992).

The nucleic acid sequence-based amplification assay is a single-step
isothermal RNA-specific amplification assay that does not require ther-
mal cycling instrumentation (Jittmittraphap et al., 2006; Wu et al., 2001).

The reverse-transcription loop-mediated isothermal amplification
assay is based on the principle of a strand displacement reaction and
stem loop structure that amplifies the target under isothermal condi-
tions as well (Lau et al., 2015; Sahni et al., 2013). Recent technologies
using mass spectrometry have led to the development of powerful sys-
tems that can provide rapid discrimination of biological components in
complex mixtures (Gijavanekar et al., 2012; Voge et al., 2016) (Fig. 16.7).

Antigen Detection

Immunohistochemical methods are using cross-reactive polyclonal or
type-specific mAbs against viral structure antigens (Miagostovich et al.,
1997) or NS proteins such as NS3 (Balsitis et al., 2009). These antibodies
can be conjugated to fluorescein (Boonpucknavig et al., 1981), avi-
din�biotin peroxidase (Waterman and Monath, 1982), or alkaline phos-
phatase (Hall et al., 1991).

NS1 exists as cell-associated, cell surface, and extracellular forms.
The amount of NS1 in the serum (sNS1) has been shown to directly cor-
relate with viremia (Libraty et al., 2002a). The concentration of sNS1 in
plasma is highest during the acute phase of the infection (from day 1
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until days 2�4 after onset of fever) and then decreases and is usually
not detected after day 14 (Duyen et al., 2011).

Early and Late Convalescent Diagnosis

Dengue viremia correlates with fever onset, with peak levels at 2�3
days of fever. After this period, viremia as well as sNS1 diminishes,
coinciding with antibody development. Serology is the method of choice
for late and acute convalescent diagnosis. Specific IgM detection as well
as high levels of specific IgG in a monoserum allows confirmation of a
probable and recent infection, while IgM and/or IgG seroconversion or
fourfold increase of IgG titers in paired sera allow infection confirma-
tion (Gubler, 1998a).

The humoral immune dengue response is characterized by the pro-
duction of antidengue IgM and IgG antibodies. IgM titers in primary
infections are significantly higher than in secondary infections (Gubler,
1989b). Currently, IgM antibody capture ELISA in serum samples col-
lected at 5 or 6 days of fever onset constitutes the most important
method for serological dengue diagnosis of recent infection and is being
widely applied in dengue surveillance (Vazquez et al., 2005).

The HI test is considered the “gold standard” for classifying a case as
a primary or secondary infection using paired sera. However, because it
is time-consuming and because of the difficulties of obtaining the sec-
ond serum sample, ELISA is most often chosen (Lukman et al., 2016).

In people suffering a primary dengue infection, the specific IgG anti-
bodies increase slowly at days 7�9 after fever onset, with highest values

FIGURE 16.7 Laboratory diagnosis of dengue. Source: Adapted from Guzman, M.G.,
Gubler, D.J., Izquierdo, A., Martinez, E., Halstead, S.B., 2016. Dengue infection. Nat. Rev. Dis.
Primers 2, 16055. doi:10.1038/nrdp.2016.55.
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at days 15�21. Later on, antibody titer declines, but low levels are
detected for a lifetime. In the course of a secondary infection, IgG anti-
bodies rise early during the infection, remaining at high levels for sev-
eral weeks to months, declining later. These high levels of IgG
antibodies during the acute phase of illness allow a presumptive diag-
nosis (Guzman and Kouri, 2002).

IgG seroconversion (a fourfold increase in titer) is a criterion for den-
gue diagnosis. Innis et al. applied IgM and IgG capture ELISA to detect
both immunoglobulins, defining a primary case by optical density ratios
of IgM/IgG 3 1.78 and a secondary dengue infection by ratios ,1.78.
Kuno et al. using an indirect ELISA, reported IgM/IgG ratios .1.4 as
primary infection and ,1.4 as secondary infection.

The assays used for detecting a past DENV infection are HI, IgG
ELISA (Vazquez et al., 1997), and neutralization assay to detect DENV
neutralizing antibodies (Alvarez et al., 2008).

Viral Isolation and Identification

DENVs have been among the most difficult arboviruses to isolate.
Virus isolation is considered the gold standard for dengue diagnosis but
is only performed in laboratories with an adequate infrastructure and
technical expertise. The viruses may be recovered from serum, plasma,
peripheral mononuclear cells, and tissues collected at autopsy.

Mouse Inoculation

The inoculum consists of 0.02 mL of undiluted or 1:10�1:50 of diluted
sample in culture medium or phosphate buffer saline (PBS) plus anti-
biotics and 2% fetal calf serum. Animals should be observed for at least
2�3 weeks. Rapid identification is achieved by indirect immunofluores-
cent assay, using dengue hyperimmune ascitic fluid, specific dengue
mAbs, by RT/PCR or by neutralization assay.

Mammalian cell lines: With the development of mammalian cell lines,
VERO, BKH21, and LLC-MK2 were introduced for DENV isolation.
These cell lines have a low sensitivity for wild-type viruses. As a result,
they are not used for routine DENV isolation, although they are useful
for the quantitative plaque assays using solid or semisolid overlays.

Mosquito inoculation: The intrathoracic inoculation of adult mosquitoes
opened a new sensitive way for DENV isolation. In addition, a method
to inoculate mosquito larvae was developed. The mosquito species that
have been used include A. aegypti, A. albopictus, Toxorhynchites splendens,
and Toxorhynchites amboinensis (Gubler et al., 1979).

Mosquito cell culture: Mosquito cell lines developed in the 1970s and
1980s provide sensitive systems for DENV isolation. Three cell lines
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have commonly been used: AP-61 from Aedes pseudoscutellaris, C6/36
from A. albopictus and TRA-284 from T. amboinensis. Although TRA-284
is the most sensitive cell line, C6/36 is more widely used. Identification
can also be done by plaque reduction neutralisation assay (PRNT) and
RT/PCR. Viruses may also be identified using serotype-specific mAbs
in an indirect immunofluorescence test. An antigen capture enzyme
linked immunosorbent assay (ELISA) can be used in the absence of a
fluorescence microscope. More recently, flow cytometry as well as NS1
detection have been employed for DENV identification (Jarman et al.,
2011; Kao et al., 2001).

Management of Dengue

Management of suspected dengue patients depends on the clinical ill-
ness, of which there are three phases: febrile, critical (leakage), and con-
valescence. The convalescent phase can be further divided into early
(. 24�36 hours after shock or .48�60 hours after leakage) and late
convalescence (. 36 hours after shock or 60 hours after leakage). The
three latter disease manifestations, DHF (DHF grades I and II), DSS
(DHF grades III and IV), and expanded dengue syndrome, are consid-
ered severe because they may lead to complications and death if there
is not appropriate and timely management. DHF and DSS patients are
different from DF patients in that they have plasma leakage during the
critical phase (Halstead and Lum, 2009). The percentage of DHF/DSS
patients is also minimal compared to viral-like illness and DF patients,
but it is very important that clinician/healthcare personnel diagnose
and properly manage these patients in order to prevent shock, severe
illness, complications, and death.

Management of patients in the febrile phase is mostly symptomatic
and supportive treatment. Dengue patients usually have high sustained
fever ranging from 2 to 7 days, mean duration 4�5 days. Common signs
and symptoms are severe headache, retro-orbital pain, body ache (myal-
gia), arthralgia/joint pain, and minor bleeding manifestations, such as
petechiae, epistaxis, gum bleeding, and coffee-ground vomiting.
Hematemesis and melena are commonly found. Hemoglobinuria is not
uncommon, especially in thalassemia, hemoglobinopathy or G-6-PD
deficiency patients. Rash (erythematous or maculopapular or petechial)
is commonly observed, especially in adult patients. Malaise, poor appe-
tite, nausea/vomiting are common nonspecific signs and symptoms
(Vaughn et al., 1997).

Tourniquet test is helpful in diagnosing DHF and DSS. The way to
do this test is by the following method. Blood pressure should be mea-
sured using an appropriate cuff size. Cuff pressure is increased to half
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way between systolic and diastolic pressure for 5 minutes, then
released. After 1 minute, or after normal skin circulation is observed,
the result can be read. The test is considered positive if there are
310 petechiae/mm3 (Gubler, 2014).

In case of antipyretics, only paracetamol is recommended to reduce
the height of fever, both in children and in adults. Aspirin and NSAID
are contraindicated. An antiemetic may be given if the patients have
nausea/vomiting. Other supportive and symptomatic medicines may be
given according to the clinical signs and symptoms, for example, antic-
onvulsants, H2-blocker, or proton pump inhibitors. Antibiotic is not
indicated if there are no associated bacterial infections. To prevent para-
cetamol overdose and hepatotoxicity, a tepid sponge should be used to
reduce temperature (Kalayanarooj, 2011a).

The following are indications for shock or impending shock:

• Narrowing of pulse pressure to # 20 mmHg.
• Hypotension is commonly observed.
• Some patients may present with clinical signs of shock, that is, rapid

and weak pulse, delayed capillary refill time (. 2 seconds), cold-
clammy skin, or skin mottling with normal blood pressure.

• Rising Hct 320% and thrombocytopenia. Leukopenia and/or
thrombocytopenia, poor appetite, clinical deterioration, and
significant bleeding during defervescence are all indications for
hospitalization (Kalayanarooj, 2011b).

Management During the Critical Phase

Detect early plasma leakage and volume replacement is indicated.
The principle of volume replacement in DHF/DSS patients is to give
the minimal amount to maintain effective circulation (intravascular vol-
ume). Intravenous fluid has to be similar to the plasma that has been
lost into the pleural and peritoneal spaces, for example, normal saline
solution (NSS), lactate ringer solution, acetate ringer. The total volume
replacement during the critical period is about maintenance (M)1 5%
deficit (D) (B4.6 L in adult), and the estimated total duration is
B36�60 hours. Intravenous fluid is to be given only in those patients
who enter the critical period (Kalayanarooj and Nimmannitya, 2003).

Colloidal solutions should be used for DHF/DSS patients with signs
of fluid overload. The colloidal solution to be used is only plasma
expander; 10% dextran-40 in NSS. Six percent Heta-starch (Voluven)
may be used instead if dextran-40 is not available (Kalayanarooj, 2008).

Blood/blood component transfusion: WB is preferred, if available. Plasma
has little role in the treatment of uncomplicated DHF/DSS. Hct before
and after blood transfusion is a very important measure for
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management and follow-up to assess the degree of bleeding. Blood is
usually transfused at the rate of 5 mL/kg/h. Platelet transfusion is indi-
cated in those patients who have significant bleeding. Without clinical
bleeding, there is no value for platelet transfusion prophylaxis in chil-
dren regardless of how low the platelet count has fallen. Prophylaxis
platelet transfusion may be given when the platelet count is
,10,000 cells/mm3.

Signs of recovery in most cases are the return of the appetite and an
improvement of general conditions. Vital signs are stable. Hct returns to
baseline level. WBC returns to normal. Platelet count will return to nor-
mal within 3�5 days (80%) in the majority of cases. Increase in urine
output is observed. Management of complications that arise as a result
of DHF/DSS may be done as per existing protocols (Gubler, 2014).

Prevention and Control

Dengue Vector Control

There is little to no effective vector control in many dengue-endemic
countries. Even where robust programs are implemented, the disease
remains an ongoing risk (Elder and Ballenger-Browning, 2009). Vector
control tools are limited in number and not as efficacious as needed. The
logistical challenges associated with insecticide applications (adulticides
and larvicides), the primary tools used for vector control, result from the
need for these agents to come in direct contact with the target vector. In
large urban settings the scale and timing of applications are impractical,
especially where resources are limited. Furthermore, many protocols
show no benefit to disease control. The ineffectiveness of these efforts is
due in part to insufficient monitoring and a lack of well-designed pro-
grams but is exacerbated by the rise in the level of insecticide resistance.

Community-based source reduction by treating mosquito breeding
sites has been tried in a number of locations (Al-Muhandis and Hunter,
2011; Ballenger-Browning and Elder, 2009; Erlanger et al., 2008).
However, even the most site-specific community-based campaigns have
limitations. These strategies require education of local people and
resource-intensive education is needed to reach the large number of
people necessary to wage an effective campaign. Community-based
campaigns struggle with campaign fatigue.

The following methods and indices are used to surveillance of den-
gue vector:

• Container index: Percentage of water-holding containers positive for
A. aegypti larvae or pupae.

• House (or premise) index: Percentage of houses positive for
containers with A. aegypti larvae or pupae.
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• Breteau index: Number of containers positive for A. aegypti larvae or
pupae per 100 houses.

• Collection of eggs by ovitrap: Ovitraps are small containers set out in
the field to collect mosquito eggs.

• Collection of adults using a device is the battery-powered backpack
aspirator developed by the American Biophysics Corporation
“Standard Professional Light Trap,” the Omni-Directional Fay- Prince
trap (with and without CO2) and the Centers for Disease Control and
Prevention (CDC) Wilton trap or B-G Sentinel trap.

Container surveys are a useful measure of the impact of source
reduction efforts. Classic source reduction—the elimination of breeding
sites—is conducted by trained inspectors under expert supervision but
is highly laborious and ineffective.

Control of larvae uses the following methods such as use of kerosene, die-
sel oil, and similar products kill larvae and pupae by penetrating the tracheal
system and preventing respiration, and monomolecular films of amphoteric
surfactants, both natural (soya lecithin) and synthetic, have repeatedly sur-
faced as a putative control method (Webb and Russell, 2009, 2012).

Insecticides such as DDT were effective against A. aegypti with a 24-
hour LC50 for larvae as low as 0.002 ppm. An example of initial success
followed by failure is the remarkable success that was obtained in
Americas from 1948 to 1952 by “perifocal” treatments: a 3%�5% suspen-
sion of DDT applied to the inside and outside of potential breeding sites.
By 1952, the species could no longer be found in Argentina, Bolivia,
Brazil, British Guiana, Chile, nearly all of Colombia, Ecuador, French
Guiana, Mexico, Paraguay, Peru, Uruguay, and the Central American
countries, and in 1962, it was declared fully eradicated from 22 countries
in the Americas and in 1972 from all Mediterranean countries. Hopes for
permanent eradication began to fade, however, with the rapid appear-
ance of resistance to DDT and other organochlorine insecticides.

So when resistance became a major problem organophosphorous lar-
vicides, particularly temephos (Abate), were adopted. Alternatives to
temephos are methoprene, a synthetic compound that interferes with
insect metamorphosis, and bti, a mosquito-specific, gut-toxic protein
suspension derived from the bacterium Bacillus thuringiensis serotype
H-14. Numerous larvicidal plant extracts have been identified in the
laboratory (Giatropoulos et al., 2012; Kovendan et al., 2012, 2013;
Mahesh Kumar et al., 2013).

Biological Control

The concept of using live predators to kill A. aegypti is attractive, but
although many organisms have been studied, few are in routine use.
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Larvivorous fish have been used for many years in cisterns and other
large containers (Wu et al., 1987).

Control of adults is being achieved using residual insecticides.
Insecticides that are chemically stable can be applied as a residue to sur-
faces onto which mosquitoes alight. Transient contact with these resi-
dues may be sufficient to kill susceptible insects. “Fogging” and other
aerosol treatments are used where insecticidal aerosols are widely used
for mosquito control. It is generally accepted that the mosquito must be
in flight to collide with enough particles to kill it. For this reason, such
aerosols are only effective while the particles are airborne for a short
time period (Hayes et al., 2006).

Ultralow volume (ULV) aerosols of concentrated insecticide (gener-
ally .50% active ingredient) are usually referred to as ULV; the quan-
tity of liquid dispensed can be as little as 50 mL/ha. Indoor space
sprays with low volume and ULV aerosols are more effective when
applied as indoor space sprays, because adult A. aegypti are highly
endophilic (Lofgren, 1972).

Protection of water storage containers will eliminate the breeding
source and reliable water supply should eliminate the need to store
water, but in many communities, storage is a cultural habit, reinforced
by failures of the piped supply. Intermittent use of stored water will
enhance mosquito production if vessels accumulate leaves and other lit-
ter as sources of larval nutrition. Personal protection should be main-
tained using screens, bed nets, mosquito repellents, and antimosquito
sound devices.

So with the failure of these control measures vector control agencies
need new affordable, efficacious tools that are safe for people and the
environment. Ideally, these tools should be scalable from small villages to
large cities, and be socially acceptable and economically and politically
sustainable. Furthermore, they should be compatible with current and
developing control tools, including vaccines, antiviral drugs, and new
insecticides. Genetic-based strategies targeting the vector mosquitoes have
the potential to fill these needs and are poised to contribute to future vec-
tor control efforts (Alphey et al., 2010; Wilder-Smith et al., 2012).

Genetic strategies are based on the widely accepted theory that dis-
ruption of the vector phase of the pathogen life cycle will reduce or
eliminate transmission to humans. Disruption can be achieved by elimi-
nating or reducing mosquito densities below transmission thresholds or
by making the mosquitoes refractory to virus infection. Novel strategies
are being developed based on genetically engineered strains of mosqui-
toes with design features that maximize utility and safety profiles
(Alphey et al., 2011).
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Some strategies are designed to be resilient to the immigration of
wild mosquitoes originating temporally and spatially. Others have the
potential to lower population densities below the transmission thresh-
old of one or more vector-borne pathogens. These genetic-based tools
offer access to mosquito breeding sites that would otherwise be inacces-
sible or cryptic using conventional tools. Genetic approaches in princi-
ple should be safer than vector control strategies employing
insecticides. Strains can be designed to lower or minimize vector com-
petence for all known pathogens transmitted by the targeted species
and increase insecticide susceptibility (Aksoy et al., 2001).

Engineered strains are species-specific, and because A. aegypti and A.
albopictus are invasive species throughout most regions in the world and
are preyed upon opportunistically, deployment of these strategies is
anticipated to have a negligible impact on ecosystems. Adopting any of
these strategies will require site-specific risk assessment prior to release,
and monitoring and surveillance during and following releases.
Successful genetic strategies will have to be affordable to have a mean-
ingful impact on dengue transmission (Allen et al., 2009; Sinkins and
Gould, 2006).

Strategy impact and field properties can be combined as follows:

• Self-limiting population suppression—Periodic releases of genetically
engineered mosquitoes suppress population size followed by the
elimination of the engineered insects at the cessation of releases.

• Self-sustaining population suppression—Fewer periodic releases
needed to suppress population sizes.

• Self-limiting population replacement—Eliminates ability of the
mosquitoes to transmit the virus.

• Self-sustaining population replacement—Eliminates ability of the
mosquito to transmit the virus.

Antidengue Drug Development

Current absence of antiviral for dengue has triggered much research
in the field of dengue drug discovery and many hypotheses that treat-
ment with an effective antiviral within 48 hours of the onset of the dis-
ease may lead to rapid reduction in viral load and limit the
development of severe dengue. It may also lead to reduced disease mor-
bidity in DF patients as well as reduced transmission. Few experiments
revealed that levels of proinflammatory cytokines and the extent of
splenomegaly were also reduced with the drug treatment. Human clini-
cal trials in patients with acute dengue have been conducted with chlo-
roquine (Tricou et al., 2010) and balapiravir (Nguyen et al., 2013).
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One of the approaches is to develop drugs that inhibit or modulate
host targets that lead to triggering of the inflammation cascade.

Given the complexity of dengue disease pathogenesis, it is critical to
establish a set of characteristics that an ideal drug for treatment of DF
should possess. Briefly, an effective drug must be active against all four
dengue serotypes. It should be an oral drug, because it is the least
expensive form to manufacture and distribution, an important consider-
ation for a disease endemic in developing countries. The drug ideally
would be effective with once a day dosing, but for acute dengue, a dos-
ing frequency as often as three times a day, if needed to maintain drug
levels above a minimally effective concentration, would be acceptable.

The viral processes that can be targeted by antivirals include (1)
entry/fusion inhibitors; (2) translation/polyprotein processing inhibi-
tors; (3) replication inhibitors; and (4) packaging/virus maturation inhi-
bitors (Noble et al., 2010).

Entry inhibitors: Inhibitors that bind directly to the viral E protein
(Schmidt et al., 2010, 2012) or those that can interfere with the steps in
the viral and host membrane fusion can be used to effectively block
viral entry. Similarly, peptide-based inhibitors that target the stem
region of the E protein or therapeutic antibodies that bind to E domain
III (DIII) or other parts of the E ectodomain can neutralize the virus in
cell-based infections assays. mAbs against E protein domain III that
potently neutralized dengue infection that are either serotype-specific or
cross-reactive (Beltramello et al., 2010).

Polyprotein Processing and Translation Inhibitors

Following entry into the cell the dengue viral mRNA is recognized
by the host translational machinery to produce the polyprotein that is
processed into mature structural and NS proteins by the action of host
proteases resident in the ER lumen and the viral NS2B/NS3 protease in
the cytoplasm. Active site�directed tetrapeptide and tripeptide inhibi-
tors were synthesized to probe the dynamics of the DENV protease
active site with different functional groups that compete with the sub-
strate. These active site serine-trap inhibitors contained either boronic
acid, trifluoromethylketone, or aldehyde as the electrophilic warhead
(Schuller et al., 2011) and showed potent protease inhibitor activity
against DENV-1�4 NS2B/NS3 protease as well as other flaviviral pro-
teases, thus demonstrating that pan-dengue or pan-flaviviral protease
inhibitors can be developed (Chu et al., 2015; Dwivedi et al., 2016;
Pelliccia et al., 2017; Soares et al., 2018; Tan et al., 2018; Wu et al., 2015).
In addition to targeting polyprotein processing, it has been shown that
specific translational inhibitors can be developed. Peptide-conjugated
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phosphorodiamidate morpholino oligomers that specifically inhibit viral
RNA translation or viral RNA synthesis by mimicking the 50 SL or 30SL,
respectively, have been investigated (Holden et al., 2006).

Replication inhibitors targeting NS1, NS3 helicase, NS4A, NS4B, NS5
methyl transferase, and NS5 RdRp are being considered and many
in vitro studies have proved their efficacy (Abdel-Magid, 2017; da Costa
et al., 2013; Pelliccia et al., 2017; Yeo et al., 2015).

Viral packaging inhibitors where the interaction between capsid, NS3,
and RNA during encapsidation has been alluded to and preventing this
important interaction could lead to discovery of new antiviral com-
pounds. Also furin inhibitors provide a strategy for inhibiting virus rep-
lication and potent inhibitors that may be broad acting antivirals have
been pursued (Becker et al., 2012).

Dengue Vaccine Development

The potential use of safe and effective dengue vaccines is a very
attractive dengue control in addition to vector control. Even if only par-
tially effective, the use of dengue vaccines could be highly beneficial in
blunting dengue epidemics, and for increasing population-level immu-
nity to the level where vector control could be more effective (Halstead
and Deen, 2002). Dengue vaccines could have beneficial individual-level
effects by reducing the probability of infection given exposure to an
infected mosquito, that is, vaccine efficacy (VE) for susceptibility to
infection, reducing the probability of clinical disease given infection or
the probability of severe disease, that is, VE for disease progression, or
reducing the probability that an infected vaccinated person will transmit
virus to a mosquito that bites him or her, that is, VE for direct
transmission.

In addition, with increasing vaccine coverage in a population, vac-
cines could reduce the overall transmission in the entire community,
even to unvaccinated people, and thus have indirect or herd effects. All
of these individual-level and community-level vaccine effects need to be
taken into account when assessing the potential effectiveness and
impact of dengue vaccines (Halstead, 2016).

A potential vaccine must provide a delicate balance between the level
of immunogenicity it evokes and the attenuation of DENV pathogenicity.
The immunogenicity induced by the vaccine should be such that the level
of neutralizing antibodies produced is high enough to provide complete
protection against all four serotypes, but also sufficiently attenuated so
as not to cause unacceptable pathogenicity (underattenuation) or fail to
induce an effective immune response (overattenuation) (Halstead and
Aguiar, 2016).

332 16. DENGUE VIRUS

EMERGING AND REEMERGING VIRAL PATHOGENS



Some of the dengue vaccines that have developed or under develop-
ment are discussed below.

Yellow Fever Virus as Molecular Backbone Acambis/Sanofi
Pasteur Vaccine (CYD)

DENV vaccine is based on dengue�YF vaccine virus chimeras
Chimeric yellow fever virus attenuated 17D (CYD). The operative
hypothesis was that the attenuation characteristics of 17D YF vaccine
virus will impart similar attenuation attributes to the chimera
(Guirakhoo et al., 2002). Chimeric viruses are replicated by the YF RNA
polymerase. The CYD tetravalent vaccine is produced by combining the
four CYD viruses into a single vaccine preparation, and the vaccine is
freeze�dried and contains no adjuvant or preservative.

Takeda/Inviragen/Centers for Disease Control and Prevention
Vaccine

The US CDC developed a tetravalent chimeric dengue vaccine by
splicing the prM and E genes of attenuated DENV-1, -3, and -4 into NS
RNA of the successfully attenuated DENV-2 16681 PDK-53. The tetrava-
lent vaccine candidate has undergone preclinical testing in mice and
nonhuman primates comparing intradermal and subcutaneous routes
of delivery. The intradermal delivery of a tetravalent preparation of
DENVax (105 pfu per DENV-type) produced superior immune
responses in cynamolgous monkeys (Osorio et al., 2011a,b).

NIH Vaccine

They developed vaccines that contained molecularly attenuated
viruses, a DENV-4 mutant (DENV-4 2AD30), transcribed from recombi-
nant cDNA, with a 30-nucleotide deletion in the 30 UTR (10,478�10,507),
produced lower viremia and slightly decreased neutralizing antibody
responses compared with wild-type DENV-4 (Bray et al., 1996). A simi-
lar rDENV-1 D30 construct was made and evaluated in animal models
and found to be attenuated and immunogenic. To make recombinant (r)
DENV-2/4 D30(ME), the prM and E structural proteins of the DEN4
candidate vaccine rDENV-4 D30 were those of DENV-2 NGC. Yet
another approach uses a capsid-deleted WNV vector to produce DENV
pseudoinfectious derivatives (Suzuki et al., 2009). The DENV-WNV
chimeras are expected to retain the wild-type WNV attribute of high
replicative efficiency enhancing the productive potential of such an
approach.

Another vaccine candidate, rDENV-3/4 D30(ME), was made that
contains the membrane (M) precursor and envelope (E) genes of DENV-
3 inserted into DENV-4 with a 30-nucleotide deletion in the 30 UTR.
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Tetravalent NIH Vaccine

National Institute of Health (NIH) has chosen to generate tetravalent
dengue vaccines either by separately introducing 30 terminus changes
into each of the four DENV or by making structural gene chimeras,
including all four sets of dengue antigens or by using a combination of
these approaches.

Live-Attenuated Vaccines: US FDA Vaccine

Investigators at the Center for Biologics Evaluation and Research at
the US FDA created a chimeric virus combining a DENV-2 with the ter-
minal 30 stem and loop structure of WNV. This virus grew normally in
mammalian LLC-MK2 cells but was severely restricted for growth in
C6/36 insect cells and was designated “mutant F” or “mutF.” And
in rhesus monkey, immune responses were similar to those of the wild-
type virus (Li et al., 2014; Yang et al., 2016).

University of Hawaii Vaccine

United States Armed Forces Epidemiology Board initiated a coopera-
tive scientific effort to develop vaccines against the four DENV.
Workers at the Department of Tropical Medicine and Medical
Microbiology of the University of Hawaii Medical School anticipated
this effort by screening tissue culture-passaged wild-type DENV-1, -2,
and -4 and mouse-passaged DENV-3 in cell systems that had been used
to propagate viral vaccines licensed for use in the United States. These
included WI-38 continuous human embryo lung, primary chick and
duck embryo fibroblasts, primary rabbit kidney cells, primary dog
(PDK) kidney cells and primary African green monkey kidney cells.
Serial passage of different wild-type DENV (2 DENV-1, 2 DENV-2, and
3 DENV-4) resulted in phenotypic changes. These phenotypic changes
were used successfully to identify human dengue vaccine candidates at
Mahidol University and when this vaccine was introduced to human
trials, all human volunteers at Thailand developed classical DF, and this
result led to the abandonment of further development of the Mahidol
LAV (Goh et al., 2016; Huang et al., 2003; Rabablert and Yoksan, 2009).

Vectored Vaccines

With the advent of genetic engineering, many attempts have been
made to develop vaccines by inserting genes for structural proteins in
replicative carriers. The virus most commonly used vector early in this
era was vaccinia virus (Deubel et al., 1988; Men et al., 2000).
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Measles Virus as Vector

In this technology, genes coding for 100 amino acids of the envelope
domain III (EDIII) fused to 40 amino acids of the ectodomain of the
membrane protein (ectoM) from DENV-1 were inserted into the genome
of the Schwarz strain of measles vaccine (Brandler et al., 2007, 2010).

Adenovirus as Vector

At least two laboratories have developed second-generation adenovi-
rus complex vectors to express and present dengue antigen. Two con-
structs were developed, one with prM and E genes of DENV-1 and -2,
and the other with the same genes of DENV-3 and -4. These vaccines
were mixed and given to a large group of rhesus monkeys. Twenty per-
cent of animals raised tetravalent-neutralizing antibodies following one
dose, but 100% developed high-titered neutralizing antibodies when
boosted with a second dose 3 months later. When challenged with live
DENV-1�4 at 1 or 6 months, all animals were protected against DENV-
1�3, with moderate protection to DENV-4 challenge (Holman et al.,
2007; Raviprakash et al., 2008).

Alphavirus Vector

The University of North Carolina has developed a vaccine in which
DENV E protein is produced by a Venezuelan encephalitis virus repli-
con (VRP). A gene cassette encoding envelope proteins (E proteins)
prM and E from mouse-adapted DENV-2 strain NGC was cloned into
a VRP that programmed proper in vitro expression and processing of
DENV-2 E proteins on infection of Vero cells. Immunization in
BALB/c mice resulted in high levels of DENV-specific serum IgG and
significant levels of neutralizing antibodies (Khalil et al., 2014; White
et al., 2007, 2013).

Walter Reed Army Institute of Research Vaccine

The Walter Reed Army Institute of Research also developed a tetra-
valent live-attenuated dengue vaccine based on serial passage of wild-
type DENV in PDK cells. Among the selected passage levels, the sero-
conversion rates were 100%, 92%, 46%, and 58% for a single dose of
DENV-1, -2, -3, and -4, respectively (Kanesa-Thasan et al., 2003).

Recombinant Subunit Vaccines

T- and B-cell epitopes have been mapped on DENV structural pro-
teins such as EDIII and NS proteins (Kurane et al., 1998). The right
combination of epitopes expressed in protein subunit vaccines could be
the basis for an effective and safe vaccine at moderate cost. Structural
and NS DENV proteins have been produced in adequate amounts in
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many expression systems including Escherichia coli (Simmons et al.,
1998) baculovirus in Spodoptera frugiperda insect cells and Drosophila
cells (Velzing et al., 1999), yeast (Tan et al., 2007), and vaccinia virus
(Men et al., 2000).

DNAVaccines

DNA vaccines consist of a plasmid or plasmids containing dengue
genes reproduced to high copy number in bacteria such as E. coli
(Whalen, 1996). The plasmid contains a eukaryotic promoter and termi-
nation sequence to drive transcription in the vaccine recipient. The tran-
scribed RNA is translated to produce proteins to be processed and
presented to the immune system in the context of MHC molecules.
Additional genes such as intracellular trafficking and immunostimula-
tory sequences can be added to the plasmid. The target organism’s
immune system recognizes the expressed antigen, and generates antibo-
dies and/or cell-mediated immune responses. DNA-based vaccine con-
structs can be modified without the need for subsequent viability as
required when working with infectious clones. DNA vaccines afford
numerous advantages over conventional vaccines, including ease of
production, stability, and transport at room temperature, and they pro-
vide a possibility to immunize against multiple pathogens with a single
vaccine. Workers at the US Naval Medical Research Institute evaluated
two eukaryotic plasmid expression vectors (pkCMVint-Polyli and
pVR1012,) expressing the PrM protein and 92% of the E protein for
DENV-2 (New Guinea C strain). Both constructs induced neutralizing
antibody in all mice (Kochel et al., 1997). But various improvements to
the original construct have been made, and animal trials are underway
to evaluate their immunogenicity and efficacy.
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