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Abstract: This study presents a nanocomposite developed with PVA, multiwall carbon nanotubes
(CNTs) doped with nitrogen, and NaDDBS, which change the electrical properties of the polymer
and its viscosity to be used in electrospinning process for obtaining mats of nano/macro fibers.
The proposed nanocomposite was characterized using Fourier transform-infrared and Raman spec-
troscopy techniques, confirming the presence of the CNxs immersed in the polymer. High-resolution
transmission electron microscopy was used to obtain the micrographs that showed the characteristic
interplanar distances of the multiwall CNT in the polymeric matrix, with values of 3.63 Å. Finally,
the CNx mats were exposed to various aqueous solutions in a potentiostat to demonstrate the effec-
tiveness of the nanofibers for electrochemical analysis. The CNx-induced changes in the electrical
properties of the polymer were identified using cyclic voltammograms, while the electrochemical
analysis revealed supercapacitor behavior.

Keywords: PVA; nanofibers; CNx; electrospinning; electrochemical

1. Introduction

Nanocomposites based on biopolymers have made an impact on the scientific com-
munity due to environmental concerns. Poly (vinyl alcohol) also known as PVA is an
ecofriendly, biocompatible and hydrophilic polymer; it has many hydroxyl groups, strong
covalent bonds, and is a semicrystalline polymer. These characteristics make PVA ideal for
use in colloidal solutions and novel nanocomposites [1].

As is well known, MCNT improves the mechanical and electrical properties when
combined with other materials such as polymers. However, the presence of the Van der
Wall’s interactions between MCNT and the polymer matrix could affect the performance
of the novel nanocomposite [2]. This can be avoided through the use of a surfactant [3]
to ensure the dispersion of the MCNT in combination with some doped options like
multiwalled carbon nanotubes doped with N [4–6].

These nanocomposites are used in an electrospinning process to obtain fibers of
different sizes. The electrospinning process is an inexpensive method to obtain micro- and
nanofibers [7]. A sufficiently high voltage is applied to a liquid to initiate electrospinning,
which begins to accumulate charge, forming droplets until it reaches a conical form known
as a Taylor cone. The size of the fiber depends on the distance between the collector plate
and the Taylor cone, the voltage, and the viscosity of the liquid [8].

The electrospinning process provides a low-cost alternative for fabricating biosensors,
especially those focused on electrochemical sensing. The electrochemical biosensors have
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been demonstrated to have application in food technology, the biomedical field, water
filtration, and more recently, in the recognition of biomolecules.

The combination of the nanocomposite and the easy electrospinning process to fabri-
cate mats of fibers present an alternative to commercial electrodes for electrochemical sens-
ing. The modified PVA with different types of nanoparticles such as TiO2 [9], MnO2 [10],
thermally reduced graphene [11] has demonstrated that the PVA-based nanocomposite is
suitable for this type of recognition. The recognition is possible thanks to the modification
of screen-printed electrodes with mats of nanofibers. This work presents an alternative to
using a commercial electrode cover with nanofibers made of a nanocomposite of polyvinyl
alcohol, surfactant, and multiwall carbon nanotubes doped with N, for further use in
biological sensing.

2. Materials and Methods
2.1. Materials

The main components of the proposed nanocomposite, namely PVA (98% hydrolyzed,
an average molecular weight of 72,000 g mol−1) and functionalized nitrogenate carbon
nanotubes (CNx), were synthesized by a CVD process. Raw nitrogenate carbon nanotubes
were used as reference material. Sodium dodecylbenzenesulfonate (NaDDBS), used as the
surfactant, was purchased from Sigma Aldrich, CDMX, México. Distilled water was used
for all processes.

2.2. Synthesis of CNx

CNx was produced using a CVD process with 200 mL of the solution containing 5 wt%
of FeCp2 (ferrocene) in C7H9N (benzylamine) [12,13]. When the furnace reached 850 ◦C,
argon (Ar) gas was at 0.1 SLPM (standard liter per minute) and 14.1 psi, at the desired
temperature; the gas was changed to 2.1 SLPM and the sprayer containing the previous
ferrocene and benzylamine solution was turned on. This setup was left for 30 min.

After 30 min, the sprayer was turned off, as also the furnace; during the cooling
process, the gas flow was reduced to 0.1 SLPM. To avoid benzylamine contamination of
the CNx, the extreme of the tube was cleaned with acetone. Finally, 0.5 g of CNx was
obtained, and this synthesis was repeated twice to gather 1 g of the carbon nanotubes
doped with nitrogen.

2.3. Purification of CNx

Purification is the process of eliminating the amorphous carbon from CNx. For this,
a mixture of HNO3 and H2SO4 at 1:3 was stirred constantly at room temperature for five
hours. To neutralize the acid a solution of NaOH, 1 mol was prepared with dH2O. Finally,
the CNx was cleaned with ethanol, dH2O, and acetone for five cycles [14].

2.4. Electrospinning Procedures

Solutions of PVA and NaDDBS were prepared separately. The latter was prepared
with 5 mL of dH2O, 50 mg of NaDDBS, and 1 g of CNx. The solution was sonicated and
stirred for three cycles lasting 30 min each. For the PVA solution, a 10% (v/v) concentration
was used. Both solutions were mixed on a hot plate while being stirred to avoid CNx
aggregation and clusters of PVA, to obtain the required viscosity for electrospinning and
were added to achieve an 8.695% v/v in the final solution.

Electrospinning was performed with a syringe pump (Kd Scientific, Holliston, MA,
USA) in a 5 mL syringe, with a velocity of 0.5 µL/min. The distance between the collector
plate and the syringe tip was 15 cm. The process was performed at 10 kV, using two power
supplies connected in series. Nanofiber mats were obtained after 40 min of running the
pump, after confirming that the viscosity remained constant and the tip residue-free.
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2.5. Fourier Transform-Infrared (FT-IR) Spectroscopy

To characterize the chemical groups in the polymer, surfactant, and CNx, FT-IR spectra
were obtained using a Nicolet i10s FT-IR spectrometer (Thermo Scientific, Waltham, MA,
USA). Spectra were obtained separately for CNx as a powder; one mat of nanofibers was
made with the nanocomposite and another nanofiber mat with PVA alone. All spectra
were recorded in the range of 4000–650 cm−1, and 20 scans were taken for four samples
of each material. The spectra were recorded at a resolution of 4 cm−1 and normalized at
1030 cm−1.

2.6. Raman Spectroscopy

Raman spectroscopy was performed using a LabRam HR 800 Raman spectrometer
(Horiba Jobin Yvon, Kyoto, Japan) coupled to an Olympus BX 41 microscope with a
100× objective. Raman spectra were recorded using a 600 lines/mm grating and a 653 nm
emission laser. The spectral resolution was approximately 4 cm−1. The measurements
were conducted spanning the 100–3200 cm−1 wave number and using exposure times of
8–10 s, in the range of 19 ◦C of temperature.

2.7. Electron Microscopy

For scanning electron microscopy (SEM), small samples of the mats were cut and
examined using a Hitachi SU-3500 (Minato-Ku, Tokyo, Japan) instrument under high
vacuum conditions. Images were acquired using the secondary electron detector. The
samples were analyzed using slow frame rates of 3 and 15 Hz and a working distance
of 6 mm. Further, SEM images were used to evaluate the average fiber diameter (AFD)
by measuring each fiber size with the length tool of ImageJ software version 1.47 (http:
//imagej.nih.gov, accessed on 16 October 2021; National Institute of Health, Bethesda,
MD, USA). The collected data were plotted as frequency histograms and adjusted to a
Gaussian distribution function in SigmaPlot software v 12.0 (Systat Software Inc., San
Jose, CA, USA). The goodness of fit of the models was evaluated by their coefficient of
determination (R2). For high-resolution transmission electron microscopy (HR-TEM),
the mats were scraped. Some of the nanofibers were wetted with a droplet of isopropyl
alcohol, deposited onto a copper grid for transmission electron microscopy, and left to dry
for 15 min. The TEM (JEOL, Peabody, MA, USA) was operated in bright-field mode at
80 kV to increase the contrast between CNx and the surrounding polymeric matrix [8,15].
Micrographs were analyzed in GMS 3 software package (Gatan Microscopy, Pleasanton, CA,
USA) using the methodology proposed by Hernández-Varela [16]. Images were processed
through fast Fourier transformation (FFT) for the crystalline regions (CR) of the sample. An
inverse fast Fourier transformation (IFFT) was produced using the crystalline fringe of the
reciprocal space from a particular mask, to produce a higher resolution representation of the
interplanar distances. Finally, images were stored in TIFF format and used for discussion.

2.8. Electrochemical Characterization

Electrochemical characterization of the fabricated PVA/CNT/NaDBBS nanofiber com-
posite was performed using a potentiostat/galvanostat PGSTAT101 (Metrohm Autolab,
Utrecht, Netherlands) connected to a PC with NOVA software used to control the potential,
data acquisition, and treatment. The experiments were conducted using a conventional
electrochemical cell with a three-electrode adaptation connector. For comparison, commer-
cial electrodes (screen-printed electrodes) and a mat of nanofibers made only with PVA
were used in the analysis. The electrodes were characterized using a solution composed of
0.1 mol L−1 potassium ferricyanide (K3Fe(CN)6) and potassium ferrocyanide (K4Fe(CN)6)
in 1 mol L−1 KCl, as well as, 1 mol L−1 KCl as control electrolyte. The electrochemical
window was established between −0.2 and 0.6 V and a 10-scan rate. All reactants were of
analytical grade and had undergone no previous purification. The solutions were prepared
in Milli-Q water (18.2 MΩ cm; Millipore Corporation-Merck, Burllington, MA, USA).

http://imagej.nih.gov
http://imagej.nih.gov
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3. Results
3.1. Effect of Purification in the CNx

Before using the CNx in the nanocomposite, a SEM micrograph was obtained, to
compare the purification of the forest of CNx. Figure 1a shows raw CNx, while Figure 1b
shows the CNx after the purification process. Although they appear to be not completely
dispersed, they are not in groups.

Figure 1. (a) CNx without purification, (b) CNx after treatment with acid for purification.

3.2. Characterization of CNx

Figure 2 presents a Raman spectrum, acquired at 653 nm excitation, collected from
raw nitrogenate carbon nanotubes (CNx) and functionalized nitrogenate carbon nanotubes
(CNx-F) in powder form. The radial breathing modes (RBM) associated with large-diameter
tubes are too weak to be observed in these spectra (100–200 cm−1) [17]. The D-band shows
a high-intensity peak at 1340 cm−1, corresponding to the induced disorder in the carbon
nanotubes, and the G-band shows a tangential peak at 1586 cm−1, which is related to the
tangential E2g Raman active mode of graphite and caused by the tangential vibration of the
two atoms in the graphene unit cell against each other [18]. In the second-order bands, a
group of weak peaks can be observed between 2673 and 2955 cm−1, which correspond to the
G′ and D + G modes. For the D- and G-bands, functionalization caused a relative increase in
the height of the bands. This behavior was expected, as chemical functionalization-induced
increases in the D-band intensity have been reported in previous studies [19].

Figure 2. Raman spectra of raw and functionalized CNx.

3.3. Effect of Surfactant on the Dispersion of PVA/CNx/NaDBBS Composite

CNTs have a high surface tension due to Van der Waal’s interactions between them [15],
provoking some aggregation problems due to the strength of these forces. However, some
studies have shown that good CNx dispersion can be achieved by using a surfactant [3].
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The surfactant reduces the surface tension of the CNx, thus preventing aggregation. In
addition, sonication can be used to achieve good dispersion in the solution, while several
studies have reported that using a group of surfactants produces good results [3,19]. In
all cases, NaDDBS was selected as an effective dispersant because it contains hydrophilic
and hydrophobic parts that cause a double reaction when they are in solution [20]. The
hydrophobic part adsorbs on the CNx surface, while the hydrophilic part dissolves in the
aqueous solution. Figure 3 shows a schematic representation of the interactions between
CNxs, NaDDBS, and PVA in the final composite. The molecular chains of NaDDBS can be
inserted between the disorganized CNx composite, creating a well-defined tridimensional
grid when the CNxs are aligned and dispersed by the surfactant. Thus, by introducing a
low-molecular-weight polymer such as PVA into the solution system, the PVA molecules
can intercalate their structure in the CNx grid. Consequently, a final composite comprising a
PVA/CNx/NaDDBS solution was obtained, suitable for producing electrospun nanofibers.

Figure 3. Schematic illustration of the interactions between CNT, NaDDBS, and PVA in the final
composite.

3.4. Chemical and Physical Characterization of PVA/CNT/NADBBS Composite

Electrospun PVA and PVA/CNx/NaDBBS were observed using SEM. Figure 4 shows
the SEM images of PVA and PVA/CNx/NaDBBS after 40 min of electrospinning, revealing
their respective fiber diameter distributions. As shown in Figure 4a, in the pure PVA
sample, the average fiber diameter was found to be in the range of 640 nm, while in
Figure 4b with 40 min of electrospinning, the average fiber diameter was 470 nm. From
these micrographs, the role of the electrospinning time as a variable for achieving small
nanofiber-based structures can be inferred. The reduced diameter of the nanofibers in the
composite is attributed to the increased stretching of the fibers during electrospinning,
caused by the increased charge due to the presence of conductive CNxs in the polymer
solution. The diameters of the electrospun fibers (Figure 4c,d) can range from several
microns to tens of nanometers. Together, small fiber diameters and a large aspect ratio
lead to an extremely high surface-to-volume (weight) ratio, rendering the electrospun
nanofibers desirable for many applications, such as sensing devices [21].
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Figure 4. Scanning electron micrographs and histograms of fiber diameters for PVA nanofibers
(a,c) and PVA + CNx nanofibers (b,d). AFD = average fiber diameters.

Next, FT-IR spectroscopy was used to assess the chemical groups in the polymers after
electrospinning. Figure 5 shows the FT-IR spectra of PVA and PVA/CNT/NaDBBS after
40 min of electrospinning. In Figure 5, the major peaks in the FT-IR spectrum of PVA all
relate to hydroxyl and acetate groups. More specifically, the broadband observed between
3400 and 3100 cm−1 is associated with the O–H stretching from inter- and intramolecular
hydrogen bonds. The vibrational band observed between 2800 and 2980 cm−1 is the result
of C–H stretching in alkyl groups, while the peaks between 1760 and 1510 cm−1 are due
to the C=O and C–O stretching in the remaining acetate groups in PVA (owing to the
saponification of PVA). Another characteristic peak of PVA below 1500 cm−1 corresponds
to the C–C and C–O–C interactions in the polymeric matrix [21]. Other peaks at 823 cm−1

and 642 cm−1 as a result of the benzene substitutes and aromatic elements [22–24]. Since
the normalization of the spectra at 1030 cm−1 is used to avoid false interpretation of the
data, it seems that the dotted curve is a magnification of the solid curve. These results
suggest an interaction between CNx and the polymer matrix with the O–H group and
–NH2 groups involved in the composite [17,25].

Additionally, Raman spectroscopy was used to evaluate the presence of CNTs and
track the interactions of the composite after the time taken to obtain the mats. Figure 6
presents the Raman spectra of PVA and PVA/CNx/NaDBBS after 40 min of electrospin-
ning. To understand the effect of adding the synthesized nitrogenate CNTs on the internal
structure of the composite, the Raman spectra of PVA with and without CNx are also shown
in Figure 6. It can be seen that except for the intrinsic ns (CH2) stretch band at 2910 cm−1,
other characteristic bands for pure PVA are observed at 1440 cm−1, 857 cm−1, 912 cm−1,
and 480 cm−1 [17,22]. However, when CNT loading levels were detected according to
the characteristic peaks of CNT tangential modes, the well-known D-band, G-band, and
G′-band suffer some shifting to values of 1364 cm−1, 1602 cm−1, and 2720 cm−1, respec-
tively [22,26]. These displacements occur due to the stronger attachments of the CNx onto
the polymeric matrix of the PVA and the influence of the surfactant in the CNx dispersion.
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Figure 5. Fourier transform-infrared spectra highlighting the chemical groups in PVA (solid line) and
PVA/CNT/NaDBBS (dotted line) after electrospinning.

Figure 6. Raman spectra of PVA (green), PVA/CNx/NaDBBS (red), and CNx-functionalized (black). Black asterisks (*)
represent the typical signal for PVA.

On the other hand, some intrinsic factors, such as the polymer solution parameters
(molecular weight, molecular weight distribution, electrical conductivity, surface tension,
viscosity, and solvent type) and extrinsic factors, such as the operating parameters (electrical
field, the distance from the nozzle tip and the collector, and the flow rate of the polymer)
were evaluated to minimize the random errors in the production of the fibers; however, they
were not included for discussion. Moreover, the ambient conditions were considered [4] to
establish the best way to obtain the mats.

Finally, a high-resolution analysis using TEM images was made to evaluate the inter-
action between the polymer and CNx. Figure 7 shows an image of PVA/CNT/NaDBBS
electrospun nanofibers and their high-resolution image analysis. Figure 7a presents the
regular configuration of each nanofiber in polymer mats created with electrospinning. The
nanofibers have sizes around 200 nm, as shown in SEM images; in contrast, Figure 7b
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shows the amplification of the inset selected in Figure 7a. As expected, some irregularities
or amorphous regions (AR) are shown for the PVA/NaDBBS material. However, crystalline
regions are observed (CR) in Figure 7b, attributed to bunches of nanotubes present in the
intermolecular chain of PVA, provoking a regular surface morphology not observed in
PVA. Using the selected region in Figure 7b (dashed square), an edge-on crystalline lamella
was evaluated by applying an FFT. The crystalline region in the reciprocal space (inset,
Figure 7b) was used to produce a mask and later on, produced an IFFT to measure the
interplanar distance in the sample (Figure 7c). For this case study, the interplanar distances
on CNx were measured with the software, and values of 3.63 ± 0.23 Å obtained. Similar
results were found for interplanar distances of multiwalled carbon nanotubes using HR-
TEM. Singh et al. [27] reported values between 3.8–3.2 Å when CNT diameter sizes change
from 5 to 100 nm.

Figure 7. Transmission electron micrographs of (a) PVA + CNx nanofibers and (b) the magnification image of the nanocom-
posite showing their crystallographic structure. (c) Reconstruction of the FFT to IFFT showing the interplanar distances in
CNx. AR: amorphous regions; CR: crystalline regions.

3.5. Electrochemical Characterization

The current-potential characteristics experiments of three different samples were
obtained using a commercial screen-printed electrode (solid line), with PVA (dotted line)
and the nanocomposite (dashed line) shown in Figure 8. Cyclic voltammetry (CV) at
100 mV/s in two solutions used to characterize the electrodes was composed of 0.1 mol L−1

potassium ferricyanide (K3Fe (CN)6), 1 mol L−1 potassium ferrocyanide (K4Fe (CN)6), and
3 mol L−1 KCl. First, a commercial electrode (solid line) was used as a control response
in the KCl solution at room temperature (Figure 8a); another electrode was used and put
on one section of a small piece of PVA mat (dotted line). Finally, another electrode was
covered with the nanocomposite mat (dashed line), in the same KCl solution. The same
experiment was conducted for the electrolyte solution Fe (CN)6

−3/Fe (CN)6
−4 (Figure 8b).

Figure 7 shows the electrochemical responses for raw control electrodes, control
electrodes with a mat of PVA and PVA with CNx, in different aqueous solutions. For
a common electrolyte solution of KCl 1M (Figure 8a), the control electrode has almost
zero response (solid line), and the electrode just with PVA (dotted line), increases the
conductivity of the systems by introducing a small quantity of the surfactant that changes
the electrical properties of the polymer. Nevertheless, it is important to control the addition
of surfactant because high amounts thereof could reduce the viscosity of the solution almost
to the level of water and could form micelles or aggregates. Finally, when CNx are added
to the PVA mat, two characteristic peaks appear around +0.17 V and −0.02 V (dashed line)
because of the redox process involved in the system. It is important to explain that both
peaks are missed in the electrode with just PVA and raw electrode, but the intensity of the
peaks is not significant to evaluate the redox process in the systems.
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Figure 8. Electrochemical kinetics of PVA nanofibers on a screen-printed electrode. Cyclic voltammo-
grams of the screen-printed electrode (solid line), pure PVA (dotted line), and PVA + CNx (dashed
line), showing their electrochemical response to an aqueous solution of 1 M KCl (a) and Fe (CN)6

−3

/Fe (CN)6
−4 (b).

Hence, a complex electrolyte solution based on potassium ferricyanide was used, as
shown in Figure 8b, which presented high surface-sensitivity, with a noticeable response
dependent upon the carbon-oxygen surface groups of the mats in the redox complex [7].
When the control electrode is evaluated (solid line), a classical response is presented in
the electrochemical analysis, while the electrode with only PVA and the electrode with
the PVA/CNx nanocomposite shows a reversible redox process. But the nanocomposite
with PVA/CNx presents two peaks at +0.18 V and −0.05 V, which is a desirable value for
electrode conduct for sensing biological analytes and it is a desired behavior for super-
capacitors [24,25].

4. Conclusions

The applications of polymer nanocomposites have grown exponentially in medical
and biological fields, tissue engineering, and rapid sensing. This work has presented a
novel nanocomposite based on PVA/NaDDBS/CNx, which can be used to reinforce the
commercial screen-printed electrode for electrochemical analysis. The Raman spectroscopy
demonstrates the quality of the CNx and the presence in the polymer matrix. The FT-IR
confirms the bonds between the hydroxyl and acetate groups characteristic of PVA, and
peaks at 823 cm−1 and 642 cm−1 resulting from the benzene that was used in the CVD
process synthesis of CNx.

The TEM and SEM micrographs confirm the crystalline regions attributed to bunches
of nanotubes present in the intermolecular chain of PVA. The measure of the interplanar
distance was found to be 3.63 ± 0.23 Å. The stability of the developed nanocomposite
in the electrochemical analysis was indicated by the probe peaks present at +0.18V and
−0.05V, which is a desirable value for electrode conduct for sensing biological analytes.

These nanocomposite mats can be used as electrodes for electrochemical sensing. In
addition, the nanofiber composite mats exhibit potential as supercapacitors and can be
used as selective biosensors in Bio-MEMS for diagnostic purposes, and in a more present
and urgent application as a filter or trap for biological pathogens.
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